Mathematics > Numerical Analysis
[Submitted on 7 May 2022]
Title:A modified EM method and its fast implementation for multi-term Riemann-Liouville stochastic fractional differential equations
View PDFAbstract:In this paper, a modified Euler-Maruyama (EM) method is constructed for a kind of multi-term Riemann-Liouville stochastic fractional differential equations and the strong convergence order min{1-{\alpha}_m, 0.5} of the proposed method is proved with Riemann-Liouville fractional derivatives' orders 0<{\alpha}_1<{\alpha}_2<...<{\alpha}_m <1. Then, based on the sum-of-exponentials approximation, a fast implementation of the modified EM method which is called a fast EM method is derived to greatly improve the computational efficiency. Finally, some numerical examples are carried out to support the theoretical results and show the powerful computational performance of the fast EM method.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.