\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence theorems in Orlicz and Bögel continuous functions spaces by means of Kantorovich discrete type sampling operators

  • *Corresponding author: Serkan Ayan

    *Corresponding author: Serkan Ayan 

Dedicated to Prof. Vijay Gupta on the occasion of his 60th birthday.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this study, we prove the convergence theorems on the space of compactly supported functions and in the general setting of Orlicz spaces for a general class of Kantorovich type discrete operators defined by Carlo Bardaro and Ilaria Mantellini. We also define the generalized Boolean sum (GBS) operator for the class of bivariate Kantorovich type discrete operators and examine the approximation properties of GBS operators in the space of Bögel functions.

    Mathematics Subject Classification: 41A35, 41A30, 41A10, 94A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. M. AcuT. AcarC.-V. Muraru and V. A. Radu, Some approximation properties by a class of bivariate operators, Math. Methods Appl. Sci., 42 (2019), 5551-5565.  doi: 10.1002/mma.5515.
    [2] P. N. AgrawalA.-M. AcuR. Chauhan and T. Garg, Approximation of Bögel continuous functions and deferred weighted A-statistical convergence by Bernstein-Kantorovich type operators on a triangle, J. Math. Inequal., 15 (2021), 1695-1711.  doi: 10.7153/jmi-2021-15-116.
    [3] P. N. AgrawalN. Ispir and M. Sidharth, Quantitative estimates of generalized Boolean sum operators of blending type, Numer. Funct. Anal. Optim., 39 (2018), 295-307.  doi: 10.1080/01630563.2017.1360347.
    [4] C. BadeaI. Badea and H. H. Gonska, A test function theorem and apporoximation by pseudopolynomials, Bull. Austral. Math. Soc., 34 (1986), 53-64.  doi: 10.1017/S0004972700004494.
    [5] C. Badea and C. Cottin, Korovkin-type theorems for generalized Boolean sum operators, in Approximation Theory, Colloq. Math. Soc. János Bolyai, 58, North-Holland, Amsterdam, 1991, 51–68.
    [6] C. Bardaro and I. Mantellini, A quantitative asymptotic formula for a general class of discrete operators, Comput. Math. Appl., 60 (2010), 2859-2870.  doi: 10.1016/j.camwa.2010.09.043.
    [7] C. Bardaro and I. Mantellini, On convergence properties for a class of Kantorovich discrete operators, Numer. Funct. Anal. Optim., 33 (2012), 374-396.  doi: 10.1080/01630563.2011.652270.
    [8] C. Bardaro and I. Mantellini, A Voronovskaja-type theorem for a general class of discrete operators, Rocky Mountain J. Math., 39 (2009), 1411-1442.  doi: 10.1216/RMJ-2009-39-5-1411.
    [9] C. Bardaro, J. Musielak and G. Vinti, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Anal. Appl. (Singap.), 9, Walter de Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110199277.
    [10] C. BardaroG. VintiP. L. Butzer and R. L. Stens, Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process., 6 (2007), 29-52.  doi: 10.1007/BF03549462.
    [11] K. Bögel, Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veränderlichen, J. Reine Angew. Math., 170 (1934), 197-217.  doi: 10.1515/crll.1934.170.197.
    [12] K. Bögel, Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew. Math., 173 (1935), 5-30.  doi: 10.1515/crll.1935.173.5.
    [13] P. L. Butzer and R. L. Stens, Linear prediction by samples from the past, in Advanced Topics in Shannon Sampling and Interpolation Theory, Springer Texts Electrical Engrg., Springer, New York, 1993,157-183.
    [14] P. L. Butzer and R. L. Stens, Sampling theory for not necessarily band-limited functions: A historical overview, SIAM Rev., 34 (1992), 40-53.  doi: 10.1137/1034002.
    [15] F. CluniD. CostarelliA. M. Minotti and G. Vinti, Applications of sampling Kantorovich operators to thermographic images for seismic engineering, J. Comput. Anal. Appl., 19 (2015), 602-617. 
    [16] D. CostarelliA. M. Minotti and G. Vinti, Approximation of discontinuous signals by sampling Kantorovich series, J. Math. Anal. Appl., 450 (2017), 1083-1103.  doi: 10.1016/j.jmaa.2017.01.066.
    [17] D. Costarelli and G. Vinti, Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces, Boll. Unione Mat. Ital. (9), 4 (2011), 445-468. 
    [18] D. Costarelli and G. Vinti, Order of approximation for sampling Kantorovich operators, J. Integral Equations Appl., 26 (2014), 345-368.  doi: 10.1216/JIE-2014-26-3-345.
    [19] D. Costarelli and G. Vinti, A quantitative estimate for the sampling Kantorovich series in terms of the modulus of continuity in Orlicz spaces, Constr. Math. Anal., 2 (2019), 8-14.  doi: 10.33205/cma.484500.
    [20] E. Dobrescu and I. Matei, The approximation by Bernstein type polynomials of bidimensionally continuous functions, An. Univ. Timişoara Ser. Şti. Mat.-Fiz, 4 (1966), 85-90.
    [21] H. FengS. HouL.-Y. Wei and D.-X. Zhou, CNN models for readability of Chinese texts, Math. Found. Comput., 5 (2022), 351-362.  doi: 10.3934/mfc.2022021.
    [22] T. GargA. M. Acu and P. N. Agrawal, Weighted approximation and GBS of Chlodowsky-Szász-Kantorovich type operators, Anal. Math. Phys., 9 (2019), 1429-1448.  doi: 10.1007/s13324-018-0246-4.
    [23] S. HuangY. Feng and Q. Wu, Learning theory of minimum error entropy under weak moment conditions, Anal. Appl. (Singap.), 20 (2022), 121-139.  doi: 10.1142/S0219530521500044.
    [24] F. Lv and J. Fan, Optimal learning with Gaussians and correntropy loss, Anal. Appl. (Singap.), 19 (2021), 107-124.  doi: 10.1142/S0219530519410124.
    [25] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.
    [26] E. Y. Özkan, Quantitative estimates for the tensor product $(p, q)$-Balázs-Szabados operators and associated generalized Boolean sum operators, Filomat, 34 (2020), 779-793.  doi: 10.2298/FIL2003779O.
    [27] E. Y. Özkan, Some inequalities and numerical results estimating error of approximation for tensor product kind bivariate quantum beta-type operators and pertaining to GBS variant, J. Inequal. Appl., 2022 (2022), 20pp. doi: 10.1186/s13660-022-02798-w.
    [28] A. Sathish Kumar and P. Devaraj, Approximation by generalized Kantorovich sampling type series, Kyungpook Math. J., 59 (2019), 465–480. doi: 10.5666/KMJ.2019.59.3.465.
    [29] M. SidhartN. İspir and P. N. Agrawal, Approximation of $B$-continuous and $B$-differentiable functions by GBS operators of $q$-Bernstein-Schurer-Stancu type, Turkish J. Math., 40 (2016), 1298-1315.  doi: 10.3906/mat-1509-66.
    [30] D.-X. Zhou, Deep distributed convolutional neural networks: Universality, Anal. Appl. (Singap.), 16 (2018), 895-919.  doi: 10.1142/S0219530518500124.
  • 加载中
SHARE

Article Metrics

HTML views(2448) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return