Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiological Data Collection
2.2. Data Processing
2.3. HAR Classifier Development
2.3.1. Random Forest Algorithm
2.3.2. Convolutional Neural Network (CNN)
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santiago, J.A.; Quinn, J.P.; Potashkin, J.A. Physical activity rewires the human brain against neurodegeneration. Int. J. Mol. Sci. 2022, 23, 6223. [Google Scholar] [CrossRef]
- Hannan, A.L.; Harders, M.P.; Hing, W.; Climstein, M.; Coombes, J.S.; Furness, J. Impact of wearable physical activity monitoring devices with exercise prescription or advice in the maintenance phase of cardiac rehabilitation: Systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2019, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, A.; Lorussi, F.; Carbonaro, N.; De Rossi, D. Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 2015, 15, 28435–28455. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, L.; Zhang, C.; Bao, B.; Li, Q.; Wang, L.; Song, Z.; Li, D. Deep-learning enabled smart insole system aiming for multifunctional foot-healthcare applications. Exploration 2024, 4, 20230109. [Google Scholar] [CrossRef]
- Massaroni, C.; Di Tocco, J.; Bravi, M.; Carnevale, A.; Presti, D.L.; Sabbadini, R.; Schena, E. Respiratory monitoring during physical activities with a multi-sensor smart garment and related algorithms. IEEE Sens. J. 2019, 20, 2173–2180. [Google Scholar] [CrossRef]
- Zhang, S.; Rowlands, A.V.; Murray, P.; Hurst, T.L. Physical activity classification using the GENEA wrist-worn accelerometer. Med. Sci. Sports Exerc. 2012, 44, 742–748. [Google Scholar] [CrossRef]
- Mannini, A.; Intille, S.S.; Rosenberger, M.; Sabatini, A.M.; Haskell, W. Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 2013, 45, 2193–2203. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; Wareham, N.J. Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef]
- Troiano, R.; Mc Clain, J. Objective measures of physical activity, sleep, and strength in US National Health and Nutrition Examination Survey (NHANES) 2011–2014. In Proceedings of the 8th International Conference on Diet and Activity Methods, Rome, Italy, 14–17 May 2012. [Google Scholar]
- Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey. IEEE Access 2020, 8, 210816–210836. [Google Scholar] [CrossRef]
- Grouios, G.; Ziagkas, E.; Loukovitis, A.; Chatzinikolaou, K.; Koidou, E. Accelerometers in our pocket: Does smartphone accelerometer technology provide accurate data? Sensors 2022, 23, 192. [Google Scholar] [CrossRef]
- Nweke, H.F.; Teh, Y.W.; Mujtaba, G.; Al-Garadi, M.A. Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions. Inf. Fusion 2019, 46, 147–170. [Google Scholar] [CrossRef]
- Shuchang, Z. A Survey on Human Action Recognition. arXiv 2022, arXiv:2301.06082. [Google Scholar]
- Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.Y. A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sens. J. 2016, 16, 4566–4578. [Google Scholar] [CrossRef]
- Altun, K.; Barshan, B. Human activity recognition using inertial/magnetic sensor units. In Proceedings of the Human Behavior Understanding: First International Workshop, HBU 2010, Istanbul, Turkey, 22 August 2010; Proceedings 1. Springer: Berlin/Heidelberg, Germany, 2010; pp. 38–51. [Google Scholar]
- Martín, H.; Bernardos, A.M.; Tarrío, P.; Casar, J.R. Enhancing activity recognition by fusing inertial and biometric information. In Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8. [Google Scholar]
- Afzali Arani, M.S.; Costa, D.E.; Shihab, E. Human activity recognition: A comparative study to assess the contribution level of accelerometer, ECG, and PPG signals. Sensors 2021, 21, 6997. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, A.; Chen, C.; Wang, X.; Jiang, X.; Tao, L.; Chen, W. Exploration of human activity recognition using a single sensor for stroke survivors and able-bodied people. Sensors 2021, 21, 799. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Gabrielli, V.; Ciabattoni, L.; Spinsante, S. Cross-Domain Classification of Physical Activity Intensity: An EDA-Based Approach Validated by Wrist-Measured Acceleration and Physiological Data. Electronics 2021, 10, 2159. [Google Scholar] [CrossRef]
- Jia, R.; Liu, B. Human daily activity recognition by fusing accelerometer and multi-lead ECG data. In Proceedings of the 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), Yunnan, China, 5–8 August 2013; pp. 1–4. [Google Scholar]
- Zhu, Q.; Tian, X.; Wong, C.W.; Wu, M. ECG reconstruction via PPG: A pilot study. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; pp. 1–4. [Google Scholar]
- Pinheiro, N.; Couceiro, R.; Henriques, J.; Muehlsteff, J.; Quintal, I.; Goncalves, L.; Carvalho, P. Can PPG be used for HRV analysis? In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2945–2949. [Google Scholar]
- Shi, W.; Zhou, C.; Zhang, Y.; Li, K.; Ren, X.; Liu, H.; Ye, X. Hybrid modeling on reconstitution of continuous arterial blood pressure using finger photoplethysmography. Biomed. Signal Process. Control 2023, 85, 104972. [Google Scholar] [CrossRef]
- Peper, E.; Harvey, R.; Lin, I.M.; Tylova, H.; Moss, D. Is there more to blood volume pulse than heart rate variability, respiratory sinus arrhythmia, and cardiorespiratory synchrony? Biofeedback 2007, 35, 54. [Google Scholar]
- Almanifi, O.R.A.; Khairuddin, I.M.; Razman, M.A.M.; Musa, R.M.; Majeed, A.P.A. Human activity recognition based on wrist PPG via the ensemble method. ICT Express 2022, 8, 513–517. [Google Scholar] [CrossRef]
- Lee, J. Motion artifacts reduction from PPG using cyclic moving average filter. Technol. Health Care 2014, 22, 409–417. [Google Scholar] [CrossRef]
- Boukhechba, M.; Cai, L.; Wu, C.; Barnes, L.E. ActiPPG: Using deep neural networks for activity recognition from wrist-worn photoplethysmography (PPG) sensors. Smart Health 2019, 14, 100082. [Google Scholar] [CrossRef]
- Park, H.; Dong, S.Y.; Lee, M.; Youn, I. The role of heart-rate variability parameters in activity recognition and energy-expenditure estimation using wearable sensors. Sensors 2017, 17, 1698. [Google Scholar] [CrossRef] [PubMed]
- Weippert, M.; Behrens, K.; Rieger, A.; Stoll, R.; Kreuzfeld, S. Heart rate variability and blood pressure during dynamic and static exercise at similar heart rate levels. PloS ONE 2013, 8, e83690. [Google Scholar] [CrossRef] [PubMed]
- Biagetti, G.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Turchetti, C. Human activity recognition using accelerometer and photoplethysmographic signals. In Intelligent Decision Technologies 2017: Proceedings of the 9th KES International Conference on Intelligent Decision Technologies (KES-IDT 2017)–Part II 9; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 53–62. [Google Scholar]
- Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 2014, 62, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H.; Kawanaka, H.; Bhuiyan, M.S.; Oguri, K. Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 2901–2904. [Google Scholar]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, M.; Pal Attia, T.; Joseph, B.; Gregg, N.M.; Nurse, E.S.; Viana, P.F.; Worrell, G.; Dümpelmann, M.; Richardson, M.P.; Freestone, D.R.; et al. Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning. Sci. Rep. 2021, 11, 21935. [Google Scholar] [CrossRef]
- Ganapathy, N.; Veeranki, Y.R.; Kumar, H.; Swaminathan, R. Emotion recognition using electrodermal activity signals and multiscale deep convolutional neural network. J. Med. Syst. 2021, 45, 49. [Google Scholar] [CrossRef]
- Sides, K.; Kilungeja, G.; Tapia, M.; Kreidl, P.; Brinkmann, B.H.; Nasseri, M. Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics. Front. Netw. Physiol. 2023, 3, 1227228. [Google Scholar] [CrossRef] [PubMed]
- Motogna, V.; Lupu-Florian, G.; Lupu, E. Strategy for affective computing based on HRV and EDA. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18–19 November 2021; pp. 1–4. [Google Scholar]
- Chowdhury, A.K.; Tjondronegoro, D.; Chandran, V.; Zhang, J.; Trost, S.G. Prediction of relative physical activity intensity using multimodal sensing of physiological data. Sensors 2019, 19, 4509. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, L.; Jia, Y.; Guo, S. Human activity recognition based on deep learning with multi-spectrogram. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 23–25 October 2020; pp. 11–15. [Google Scholar]
- Gjoreski, H.; Ciliberto, M.; Wang, L.; Morales FJ, O.; Mekki, S.; Valentin, S.; Roggen, D. The university of Sussex-huawei locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE Access 2018, 6, 42592–42604. [Google Scholar] [CrossRef]
- Ito, C.; Cao, X.; Shuzo, M.; Maeda, E. Application of CNN for human activity recognition with FFT spectrogram of acceleration and gyro sensors. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 1503–1510. [Google Scholar]
- Empatica Inc, Empatica E4, Revision 001, 19 November 2014. Available online: https://box.empatica.com/documentation/20141119_E4_TechSpecs.pdf (accessed on 6 May 2024).
- Dehghani, A.; Sarbishei, O.; Glatard, T.; Shihab, E. A quantitative comparison of overlapping and non-overlapping sliding windows for human activity recognition using inertial sensors. Sensors 2019, 19, 5026. [Google Scholar] [CrossRef] [PubMed]
- Khusainov, R.; Azzi, D.; Achumba, I.E.; Bersch, S.D. Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations. Sensors 2013, 13, 12852–12902. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Elgendi, M.; Chen, Z.; Ward, R. An optimal filter for short photoplethysmogram signals. Sci. Data 2018, 5, 180076. [Google Scholar] [CrossRef]
- Zhu, J.; San-Segundo, R.; Pardo, J.M. Feature extraction for robust physical activity recognition. Hum. Centric Comput. Inf. Sci. 2017, 7, 16. [Google Scholar] [CrossRef]
- Rosati, S.; Balestra, G.; Knaflitz, M. Comparison of different sets of features for human activity recognition by wearable sensors. Sensors 2018, 18, 4189. [Google Scholar] [CrossRef] [PubMed]
- Posada-Quintero, H.F.; Reljin, N.; Mills, C.; Mills, I.; Florian, J.P.; VanHeest, J.L.; Chon, K.H. Time-varying analysis of electrodermal activity during exercise. PLoS ONE 2018, 13, e0198328. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ren, S.; He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Logacjov, A.; Bach, K.; Kongsvold, A.; Bårdstu, H.B.; Mork, P.J. HARTH: A human activity recognition dataset for machine learning. Sensors 2021, 21, 7853. [Google Scholar] [CrossRef]
- Mehrang, S.; Pietilä, J.; Korhonen, I. An activity recognition framework deploying the random forest classifier and a single optical heart rate monitoring and triaxial accelerometer wrist-band. Sensors 2018, 18, 613. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep learning in human activity recognition with wearable sensors: A review on advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef]
- Laughlin, M.H. Cardiovascular response to exercise. Adv. Physiol. Educ. 1999, 277, S244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Classifier | Classifier Inputs | Individual Activity Classification F1-Score | Grouped Activity Classification F1-Score | Individual Activity Classification AUC | Grouped Activity Classification AUC |
---|---|---|---|---|---|
RF | ACC (C0) | 77.42 ± 23.01 | 92.52 ± 9.61 | 98.63 ± 2.39 | 99.56 ± 0.77 |
ACC + BVP (C1) | 76.10 ± 22.98 | 92.31 ± 9.56 | 98.57 ± 2.48 | 99.63 ± 0.64 | |
ACC + EDA (C2) | 77.95 ± 22.90 | 93.29 ± 10.03 | 98.81 ± 2.53 | 99.82 ± 0.43 | |
ACC + BVP + EDA(C3) | 77.21 ± 23.32 | 93.22 ± 10.53 | 98.72 ± 2.61 | 99.82 ± 0.47 | |
CNN | ACC (C0) | 64.22 ± 19.20 | 80.65 ± 11.09 | 94.29 ± 4.18 | 96.53 ± 4.08 |
ACC + BVP (C1) | 69.01 ± 20.27 | 86.34 ± 11.16 | 96.54 ± 3.57 | 98.03 ± 3.49 | |
ACC + EDA (C2) | 67.70 ± 22.97 | 83.77 ± 11.84 | 95.93 ± 4.34 | 97.54 ± 2.54 | |
ACC + BVP + EDA(C3) | 69.89 ± 18.59 | 87.51 ± 9.55 | 96.54 ± 4.21 | 98.48 ± 2.24 |
Classifier Input | ACC (C0) | ACC + BVP (C1) | ACC + EDA (C2) | ACC + BVP + EDA (C3) | ||||
---|---|---|---|---|---|---|---|---|
Activity | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC |
Brisk walking | 83.92 ± 21.71 | 98.25 ± 4.43 | 81.34 ± 23.17 | 98.17 ± 4.76 | 82.43 ± 22.49 | 98.11 ± 7.16 | 79.46 ± 27.67 | 97.98 ± 6.92 |
Cycling | 88.24 ± 19.21 | 99.37 ± 1.12 | 87.60 ± 16.42 | 99.57 ± 1.00 | 89.19 ± 19.27 | 99.66 ± 0.79 | 90.44 ± 15.85 | 99.70 ± 0.86 |
Jogging | 65.60 ± 31.88 | 97.66 ± 3.56 | 63.98 ± 32.15 | 97.74 ± 3.38 | 65.15 ± 32.33 | 97.84 ± 3.40 | 65.11 ± 31.19 | 97.68 ± 3.54 |
Lying | 83.22 ± 16.56 | 99.10 ± 1.75 | 80.27 ± 18.50 | 98.96 ± 2.06 | 80.71 ± 20.08 | 99.11 ± 1.75 | 79.38 ± 21.29 | 99.01 ± 1.97 |
Running | 59.69 ± 35.09 | 98.44 ± 3.01 | 68.54 ± 34.27 | 98.41 ± 2.77 | 60.49 ± 33.69 | 98.57 ± 2.66 | 69.45 ± 33.91 | 98.54 ± 2.60 |
Stairs | 85.97 ± 11.81 | 99.08 ± 1.50 | 85.66 ± 11.63 | 99.11 ± 1.40 | 89.65 ± 11.00 | 99.66 ± 0.87 | 89.01 ± 12.01 | 99.64 ± 0.92 |
Standing | 74.00 ± 22.10 | 97.89 ± 2.34 | 72.46 ± 20.14 | 97.57 ± 3.09 | 74.32 ± 21.17 | 98.09 ± 2.48 | 74.24 ± 18.28 | 97.86 ± 2.91 |
Walking | 79.36 ± 25.77 | 99.14 ± 1.36 | 78.93 ± 27.53 | 99.07 ± 1.42 | 81.69 ± 23.20 | 99.44 ± 1.17 | 80.58 ± 26.39 | 99.38 ± 1.17 |
Classifier Input | ACC (C0) | ACC + BVP (C1) | ACC + EDA (C2) | ACC + BVP + EDA (C3) | ||||
---|---|---|---|---|---|---|---|---|
Activity | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC |
Brisk walking 3 | 65.78 ± 19.71 | 95.18 ± 4.23 | 65.06 ± 18.64 | 95.29 ± 3.61 | 64.89 ± 20.18 | 94.93 ± 5.70 | 68.72 ± 18.55 | 95.83 ± 3.98 |
Cycling 123 | 67.53 ± 16.60 | 95.39 ± 3.48 | 78.94 ± 14.67 | 98.11 ± 2.24 | 75.49 ± 16.54 | 97.41 ± 2.75 | 80.54 ± 12.96 | 98.32 ± 2.26 |
Jogging 23 | 55.53 ± 27.20 | 92.38 ± 4.08 | 56.44 ± 25.02 | 95.65 ± 3.57 | 60.72 ± 23.21 | 96.53 ± 2.36 | 58.77 ± 23.03 | 96.09 ± 3.55 |
Lying 123 | 73.75 ± 17.19 | 97.28 ± 3.49 | 81.05 ± 20.30 | 98.66 ± 2.13 | 76.99 ± 18.89 | 97.75 ± 3.71 | 80.11 ± 18.34 | 98.48 ± 2.43 |
Running | 51.10 ± 21.84 | 95.37 ± 3.02 | 55.61 ± 19.28 | 95.77 ± 3.47 | 56.35 ± 18.33 | 95.42 ± 3.86 | 54.73 ± 20.11 | 94.76 ± 7.29 |
Stairs 123 | 75.19 ± 9.22 | 96.23 ± 4.01 | 80.52 ± 12.89 | 97.37 ± 2.98 | 78.81 ± 12.67 | 96.48 ± 5.13 | 81.68 ± 13.39 | 98.07 ± 3.12 |
Standing 13 | 66.94 ± 16.62 | 96.24 ± 2.91 | 74.36 ± 17.44 | 97.54 ± 3.36 | 69.63 ± 18.82 | 96.49 ± 3.39 | 73.08 ± 18.13 | 97.67 ± 2.73 |
Walking 3 | 57.95 ± 25.24 | 91.32 ± 8.24 | 60.08 ± 24.99 | 92.92 ± 7.21 | 58.72 ± 25.11 | 92.45 ± 7.80 | 61.52 ± 24.23 | 93.87 ± 8.35 |
Classifier Input | ACC (C0) | ACC + BVP (C1) | ACC + EDA (C2) | ACC + BVP + EDA (C3) | ||||
---|---|---|---|---|---|---|---|---|
Activity | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC |
Low-intensity * | 96.36 ± 4.58 | 99.85 ± 0.27 | 95.46 ± 5.58 | 99.89 ± 0.24 | 96.66 ± 4.28 | 99.93 ± 0.14 | 96.67 ± 4.19 | 99.94 ± 0.12 |
Medium-intensity | 92.96 ± 8.11 | 99.50 ± 0.80 | 93.05 ± 10.45 | 99.57 ± 0.54 | 92.96 ± 11.75 | 99.86 ± 0.22 | 91.86 ± 16.57 | 99.86 ± 0.25 |
High-intensity | 99.33 ± 2.31 | 100.0 ± 0.00 | 99.39 ± 2.22 | 100.0 ± 0.00 | 99.30 ± 2.30 | 100.0 ± 2.28 × 10−5 | 99.38 ± 2.22 | 100.0 ± 1.14 × 10−3 |
Cycling | 87.87 ± 20.91 | 99.41 ± 1.10 | 87.18 ± 17.48 | 99.60 ± 0.96 | 89.06 ± 19.86 | 99.64 ± 0.91 | 89.93 ± 17.24 | 99.68 ± 0.98 |
Stairs | 86.09 ± 12.11 | 99.06 ± 1.67 | 86.46 ± 12.08 | 99.12 ± 1.45 | 88.48 ± 11.95 | 99.69 ± 0.86 | 88.24 ± 12.46 | 99.62 ± 1.01 |
Classifier Input | ACC (C0) | ACC + BVP (C1) | ACC + EDA (C2) | ACC + BVP + EDA (C3) | ||||
---|---|---|---|---|---|---|---|---|
Activity | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC | F1-Score | AUC ROC |
Low-intensity *13 | 85.76 ± 8.74 | 96.66 ± 3.30 | 91.89 ± 8.06 | 97.55 ± 1.68 | 88.27 ± 7.83 | 96.98 ± 2.53 | 91.70 ± 7.95 | 98.15 ± 1.53 |
Medium-intensity 13 | 82.61 ± 9.68 | 92.89 ± 2.88 | 86.37 ± 9.35 | 97.53 ± 3.06 | 83.59 ± 12.22 | 96.07 ± 3.95 | 87.81 ± 8.36 | 97.60 ± 2.31 |
High-intensity | 95.16 ± 8.79 | 99.66 ± 0.98 | 94.65 ± 11.50 | 99.55 ± 1.44 | 94.54 ± 12.12 | 99.53 ± 1.44 | 95.89 ± 7.57 | 99.67 ± 1.03 |
Cycling 123 | 65.07 ± 18.14 | 97.52 ± 9.11 | 78.76 ± 13.98 | 98.29 ± 2.77 | 74.82 ± 15.82 | 98.29 ± 5.29 | 80.63 ± 13.24 | 99.13 ± 3.27 |
Stairs 13 | 74.64 ± 10.11 | 95.90 ± 4.13 | 80.05 ± 12.93 | 97.21 ± 3.74 | 77.65 ± 11.20 | 96.83 ± 4.23 | 81.51 ± 10.62 | 97.87 ± 3.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilmore, J.; Nasseri, M. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry. Sensors 2024, 24, 3005. https://doi.org/10.3390/s24103005
Gilmore J, Nasseri M. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry. Sensors. 2024; 24(10):3005. https://doi.org/10.3390/s24103005
Chicago/Turabian StyleGilmore, Justin, and Mona Nasseri. 2024. "Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry" Sensors 24, no. 10: 3005. https://doi.org/10.3390/s24103005
APA StyleGilmore, J., & Nasseri, M. (2024). Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry. Sensors, 24(10), 3005. https://doi.org/10.3390/s24103005