An Improved Data Processing Algorithm for Spectrally Resolved Interferometry Using a Femtosecond Laser
Abstract
:1. Introduction
2. Principles
3. Simulation and Experiment Results
3.1. Simulation Results
3.2. Experimental Setup
3.3. Experimental Results and Discussion
4. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, K.; Li, R.; Xu, P. Design and Verification of Micro/Nano-Probes for Coordinate Measuring Machines. Nanomanuf. Metrol. 2018, 2, 1–15. [Google Scholar] [CrossRef]
- Bosse, H.; Wilkening, G. Developments at PTB in nanometrology for support of the semiconductor industry. Meas. Sci. Technol. 2005, 16, 2155–2166. [Google Scholar] [CrossRef]
- Gao, W.; Ibaraki, S.; Donmez, M.A.; Kono, D.; Mayer, J.R.R.; Chen, Y.L.; Szipka, K.; Archenti, A.; Linares, J.M.; Suzuki, N. Machine tool calibration: Measurement, modeling, and compensation of machine tool errors. Int. J. Mach. Tools Manuf. 2023, 187, 104017. [Google Scholar] [CrossRef]
- Masten, M.K.; Duren, R.M.; Wong, E.; Breckenridge, B.; Shaffer, S.J.; Duncan, C.; Tubbs, E.F.; Salomon, P.M.; Stockum, L.A. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar. Proc. Acquis. Track. Pointing XII 1998, 3365, 51–60. [Google Scholar]
- Gao, W. Precision Nanometrology: Sensors and Measuring Systems for Nanomanufacturing; Springer: London, UK, 2010; pp. 69–107. [Google Scholar]
- Pellegrini, S.; Buller, G.S.; Smith, J.M.; Wallace, A.M.; Cova, S. Laser-based distance measurement using picosecond resolution time-correlated single-photon counting. Meas. Sci. Technol. 2000, 11, 712–716. [Google Scholar] [CrossRef]
- Estler, W.T.; Edmundson, K.L.; Peggs, G.N.; Parker, D.H. Large-Scale Metrology—An Update. CIRP Ann. 2002, 51, 587–609. [Google Scholar] [CrossRef]
- Ishii, Y.; Chen, J.; Murata, K. Digital phase-measuring interferometry with a tunable laser diode. Opt. Lett. 1987, 12, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Dickey, J.O.; Bender, P.L.; Faller, J.E.; Newhall, X.X.; Ricklefs, R.L.; Ries, J.G.; Shelus, P.J.; Veillet, C.; Whipple, A.L.; Wiant, J.R.; et al. Lunar laser ranging: A continuing legacy of the apollo program. Science 1994, 265, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Polhemus, C. Two-wavelength interferometry. Appl. Opt. 1973, 12, 2071–2074. [Google Scholar] [CrossRef] [PubMed]
- Wyant, J.C. Testing aspherics using two-wavelength holography. Appl. Opt. 1971, 10, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Polhemus, C.; Chocol, C. Method for subtracting phase errors in an interferometer. Appl. Opt. 1971, 10, 441–442. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.J. Extending the unambiguous range of two-color interferometers. Appl. Opt. 1994, 33, 5948–5953. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 2000, 39, 5512–5517. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.Z.; Zhang, X.D.; Gao, W.; Guo, Y.B.; Byrne, G.; Hansen, H.N. Nanomanufacturing—Perspective and applications. CIRP Ann. 2017, 66, 683–705. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision positioning. CIRP Ann. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Gao, W.; Shimizu, Y. Optical Metrology for Precision Engineering, 1st ed.; De Gruyter: Berlin, Germany, 2021; pp. 379–389. [Google Scholar]
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef]
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 2000, 288, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 2006, 78, 1279–1295. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 2008, 100, 013902. [Google Scholar] [CrossRef] [PubMed]
- Fortier, T.; Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 131–147. [Google Scholar] [CrossRef]
- Murphy, M.T.; Udem, T.; Holzwarth, R.; Sizmann, A.; Pasquini, L.; Araujo-Hauck, C.; Dekker, H.; D’Odorico, S.; Fischer, M.; Hänsch, T.W.; et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc. 2007, 380, 839–847. [Google Scholar] [CrossRef]
- Shin, D.W.; Matsukuma, H.; Sato, R.; Manske, E.; Gao, W. Improved peak-to-peak method for cavity length measurement of a Fabry-Perot etalon using a mode-locked femtosecond laser. Opt. Express 2023, 31, 25797–25814. [Google Scholar] [CrossRef]
- Camenzind, S.L.; Fricke, J.F.; Kellner, J.; Willenberg, B.; Pupeikis, J.; Phillips, C.R.; Keller, U. Dynamic and precise long-distance ranging using a free-running dual-comb laser. Opt. Express 2022, 30, 37245–37260. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W.; Matsukuma, H.; Sato, R.; Gao, W. Fabry-Perot angle sensor using a mode-locked femtosecond laser source. Opt. Express 2022, 30, 46366–46382. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Shimizu, Y.; Tamada, J.; Nakamura, K.; Matsukuma, H.; Chen, X.; Gao, W. Laser autocollimation based on an optical frequency comb for absolute angular position measurement. Precis. Eng. 2018, 54, 284–293. [Google Scholar] [CrossRef]
- Chen, Y.L.; Shimizu, Y.; Kudo, Y.; Ito, S.; Gao, W. Mode-locked laser autocollimator with an expanded measurement range. Opt. Express 2016, 24, 15554–15569. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Minoshima, K. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement. Opt. Express 2015, 23, 25979–25987. [Google Scholar] [CrossRef] [PubMed]
- Doloca, N.R.; Meiners-Hagen, K.; Wedde, M.; Pollinger, F.; Abou-Zeid, A. Absolute distance measurement system using a femtosecond laser as a modulator. Meas. Sci. Technol. 2010, 21, 115302. [Google Scholar] [CrossRef]
- Pollinger, F.; Meiners-Hagen, K.; Wedde, M.; Abou-Zeid, A. Diode-laser-based high-precision absolute distance interferometer of 20 m range. Appl. Opt. 2009, 48, 6188–6194. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-S.; Kim, S.-W. Distance Measurements Using Mode-Locked Lasers: A Review. Nanomanuf. Metrol. 2018, 1, 131–147. [Google Scholar] [CrossRef]
- Wang, G.; Tan, L.; Yan, S. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry. Sensors 2018, 18, 500. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jang, Y.S.; Hyun, S.; Chun, B.J.; Kang, H.J.; Yan, S.; Kim, S.W.; Kim, Y.J. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt. Express 2015, 23, 9121–9129. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.; Kim, Y.J.; Kim, Y.; Kim, S.W. Absolute distance measurement using the frequency comb of a femtosecond laser. CIRP Ann. 2010, 59, 555–558. [Google Scholar] [CrossRef]
- Hu, D.; Wu, Z.; Cao, H.; Shi, Y.; Li, R.; Tian, H.; Song, Y.; Hu, M. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser. Opt. Commun. 2021, 482, 126566. [Google Scholar] [CrossRef]
- Liao, R.; Tian, H.; Liu, W.; Li, R.; Song, Y.; Hu, M. Dual-comb generation from a single laser source: Principles and spectroscopic applications towards mid-IR—A review. J. Phys. Photonics 2020, 2, 042006. [Google Scholar] [CrossRef]
- Zhou, S.; Le, V.; Xiong, S.; Yang, Y.; Ni, K.; Zhou, Q.; Wu, G. Dual-comb spectroscopy resolved three-degree-of-freedom sensing. Photonics Res. 2021, 9, 243–251. [Google Scholar] [CrossRef]
- Niu, Q.; Zheng, J.H.; Cheng, X.R.; Liu, J.C.; Jia, L.H.; Ni, L.M.; Nian, J.; Zhang, F.M.; Qu, X.H. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb. Opt. Express 2022, 30, 35029–35040. [Google Scholar] [CrossRef] [PubMed]
- Joo, K.N.; Kim, S.W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 2006, 14, 5954–5960. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wu, T.; Lin, J.; Yang, L.; Zhu, J. Optical Frequency Comb Frequency-division Multiplexing Dispersive Interference Multichannel Distance Measurement. Nanomanuf. Metrol. 2023, 6, 6. [Google Scholar] [CrossRef]
- Joo, K.-N. Dichroic spectrally-resolved interferometry to overcome the measuring range limit. Meas. Sci. Technol. 2015, 26, 095204. [Google Scholar] [CrossRef]
- Liu, T.; Matsukuma, H.; Suzuki, A.; Sato, R.; Gao, W. Enhanced Data-Processing Algorithms for Dispersive Interferometry Using a Femtosecond Laser. Sensors 2024, 24, 370. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wu, J.; Suzuki, A.; Sato, R.; Matsukuma, H.; Gao, W. Improved Algorithms of Data Processing for Dispersive Interferometry Using a Femtosecond Laser. Sensors 2023, 23, 4953. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-S.; Park, J.; Jin, J. Comb-mode resolved spectral domain interferometer enabled by a broadband electro-optic frequency comb. Photonics Res. 2022, 11, 72–80. [Google Scholar] [CrossRef]
- Jang, Y.S.; Liu, H.; Yang, J.; Yu, M.; Kwong, D.L.; Wong, C.W. Nanometric Precision Distance Metrology via Hybrid Spectrally Resolved and Homodyne Interferometry in a Single Soliton Frequency Microcomb. Phys. Rev. Lett. 2021, 126, 023903. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, Z.; Wang, W.; Zhang, F.; Chen, J.; Wang, Y.; Zheng, J.; Chu, S.T.; Zhao, W.; Little, B.E.; et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res. 2020, 8, 1964–1972. [Google Scholar] [CrossRef]
- Brigham, E.O. The Fast Fourier Transform and Its Applications; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1988; pp. 98–103. [Google Scholar]
- Wang, F.; Shi, Y.; Zhang, S.; Yu, X.; Li, W. Automatic Measurement of Silicon Lattice Spacings in High-Resolution Transmission Electron Microscopy Images Through 2D Discrete Fourier Transform and Inverse Discrete Fourier Transform. Nanomanuf. Metrol. 2022, 5, 119–126. [Google Scholar] [CrossRef]
- ISO/IEC 98-3; Uncertainty of Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995). ISO: Geneva, Switzerland, 2008.
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Chen, B.; Zhang, E.; Zhang, S.; Yang, Y. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlen equation estimation. Rev. Sci. Instrum. 2015, 86, 085111. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Xu, X.; Li, W.; Shi, H.; Qian, Z.; Sun, W.; Zhai, J. Underwater arbitrary distance measurement using laser frequency comb with simultaneous correction of underwater refractive index. Measurement 2022, 204, 111995. [Google Scholar] [CrossRef]
Symbol | Standard Uncertainty | Sensitivity Coefficient | |c| · |u| |
---|---|---|---|
ut | 0.015 K | 9.3 × 10−7 | 1.395 × 10−8 |
up | 0.038 hPa | 2.7 × 10−9 | 1.026 × 10−10 |
uh | 0.204% | 8.6 × 10−9 | 1.754 × 10−9 |
un | 1.406 × 10−8 |
Source of Uncertainty | Symbol | Standard Uncertainty | Sensitivity Coefficient | |c| · |u| [m] |
---|---|---|---|---|
n | un | 1.406 × 10−8 | −5.013 × 10−4 m | 7.048 × 10−12 |
τ1 | uτ1 | 3.176 × 10−4 ps | 1.498 × 108 m/s | 4.756 × 10−8 |
ts | uts | 3.336 × 10−4 ps | 1.498 × 108 m/s | 4.997 × 10−8 |
cov(τ1,ts) | −2.914 × 10−30 s2 | 2 · cτ1 · cts · cov(τ1, ts) | −1.305 × 10−13 | |
Combined uncertainty uL | 3.550 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Matsukuma, H.; Suzuki, A.; Sato, R.; Gao, W. An Improved Data Processing Algorithm for Spectrally Resolved Interferometry Using a Femtosecond Laser. Sensors 2024, 24, 2869. https://doi.org/10.3390/s24092869
Liu T, Matsukuma H, Suzuki A, Sato R, Gao W. An Improved Data Processing Algorithm for Spectrally Resolved Interferometry Using a Femtosecond Laser. Sensors. 2024; 24(9):2869. https://doi.org/10.3390/s24092869
Chicago/Turabian StyleLiu, Tao, Hiraku Matsukuma, Amane Suzuki, Ryo Sato, and Wei Gao. 2024. "An Improved Data Processing Algorithm for Spectrally Resolved Interferometry Using a Femtosecond Laser" Sensors 24, no. 9: 2869. https://doi.org/10.3390/s24092869
APA StyleLiu, T., Matsukuma, H., Suzuki, A., Sato, R., & Gao, W. (2024). An Improved Data Processing Algorithm for Spectrally Resolved Interferometry Using a Femtosecond Laser. Sensors, 24(9), 2869. https://doi.org/10.3390/s24092869