Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Labeling
2.2. Multiphoton Imaging of Fluorescent Cholesterol Analogues
2.3. STED Microscopy of Nile Red
2.4. Generation of Cell Phantoms for Benchmarking of DMD Performance
2.5. Analysis of MP and STED Microscopy Data by Dynamic Mode Decomposition
3. Results
3.1. High-Fidelity Reconstruction and Denoising of Multiphoton Microscopy Data by DMD
3.2. Reconstruction of Two-Photon Polarimetry Data of Membrane Probes by HoDMD
3.3. Reconstruction of 3D-STED Microscopy Image Stacks by DMD
3.4. Interpolation of Missing Frames in 3D-STED Microscopy Image Stacks by DMD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bigay, J.; Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: Defining cellular territories in determining specificity. Dev. Cell 2012, 23, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Ritchie, K.; Murakoshi, H.; Jacobson, K.; Kusumi, A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 2002, 157, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Mueller, V.; Ringemann, C.; Honigmann, A.; Schwarzmann, G.; Medda, R.; Leutenegger, M.; Polyakova, S.; Belov, V.N.; Hell, S.W.; Eggeling, C. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 2011, 101, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.M.; Clausen, M.P.; Keller, J.; Mueller, V.; Wu, C.; Bear, J.E.; Hell, S.W.; Lagerholm, B.C.; Eggeling, C. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane—A minimally invasive investigation by STED-FCS. Sci. Rep. 2015, 5, 11454. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, P.; Fowler, S.D. Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 1985, 26, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.D.; Greenspan, P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: Comparison with oil red O. J. Histochem. Cytochem. 1985, 33, 833–836. [Google Scholar] [CrossRef]
- Bagatolli, L.A. LAURDAN fluorescence properties in membranes: A journey from the fluorometer to the microscope. In Fluorescent Methods to Study Biological Membranes; Springer Series in Fluorescence; Mely, Y., Duportail, G., Eds.; Springer Press: Berlin/Heidelberg, Germany, 2012; pp. 3–35. [Google Scholar]
- Bongiovanni, M.N.; Godet, J.; Horrocks, M.H.; Tosatto, L.; Carr, A.R.; Wirthensohn, D.C.; Ranasinghe, R.T.; Lee, J.E.; Ponjavic, A.; Fritz, J.V.; et al. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. Nat. Commun. 2016, 7, 13544. [Google Scholar] [CrossRef] [PubMed]
- Spahn, C.; Grimm, J.B.; Lavis, L.D.; Lampe, M.; Heilemann, M. Whole-Cell, 3D, and Multicolor STED Imaging with Exchangeable Fluorophores. Nano Lett. 2019, 19, 500–505. [Google Scholar] [CrossRef]
- Lauritsen, L.; Szomek, M.; Hornum, M.; Reinholdt, P.; Kongsted, J.; Nielsen, P.; Brewer, J.R.; Wüstner, D. Ratiometric fluorescence nanoscopy and lifetime imaging of novel Nile Red analogs for analysis of membrane packing in living cells. Sci. Rep. 2024; under revision. [Google Scholar]
- Solanko, K.A.; Modzel, M.; Solanko, L.M.; Wüstner, D. Fluorescent sterols and cholesteryl esters as probes for intracellular cholesterol transport. Lipid Insights 2016, 8, 95. [Google Scholar] [CrossRef]
- Hölttä-Vuori, M.; Uronen, R.L.; Repakova, J.; Salonen, E.; Vattulainen, I.; Panula, P.; Li, Z.; Bittman, R.; Ikonen, E. BODIPY-cholesterol: A new tool to visualize sterol trafficking in living cells and organisms. Traffic 2008, 9, 1839–1849. [Google Scholar] [CrossRef] [PubMed]
- Solanko, L.M.; Honigmann, A.; Midtiby, H.S.; Lund, F.W.; Brewer, J.R.; Dekaris, V.; Bittman, R.; Eggeling, C.; Wüstner, D. Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure. Biophys. J. 2013, 105, 2082–2092. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto-Yamaki, N.; Tanaka, K.A.; Suzuki, K.G.; Hirosawa, K.M.; Miyahara, M.S.; Kalay, Z.; Tanaka, K.; Kasai, R.S.; Kusumi, A.; Fujiwara, T.K. Ultrafast Diffusion of a Fluorescent Cholesterol Analog in Compartmentalized Plasma Membranes. Traffic 2014, 15, 583–612. [Google Scholar] [CrossRef] [PubMed]
- Scheidt, H.A.; Müller, P.; Herrmann, A.; Huster, D. The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J. Biol. Chem. 2003, 278, 45563–45569. [Google Scholar] [CrossRef]
- Milles, S.; Meyer, T.; Scheidt, H.A.; Schwarzer, R.; Thomas, L.; Marek, M.; Szente, L.; Bittman, R.; Herrmann, A.; Günther Pomorski, T.; et al. Organization of fluorescent cholesterol analogs in lipid bilayers—Lessons from cyclodextrin extraction. Biochim. Biophys. Acta 2013, 1828, 1822–1828. [Google Scholar] [CrossRef]
- Scheidt, H.A.; Meyer, T.; Nikolaus, J.; Baek, D.J.; Haralampiev, I.; Thomas, L.; Bittman, R.; Muller, P.; Herrmann, A.; Huster, D. Cholesterol’s aliphatic side chain modulates membrane properties. Angew. Chem. 2013, 52, 12848–12851. [Google Scholar] [CrossRef]
- McIntosh, A.L.; Atshaves, B.P.; Huang, H.; Gallegos, A.M.; Kier, A.B.; Schroeder, F. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 2008, 43, 1185–1208. [Google Scholar] [CrossRef]
- Mukherjee, S.; Zha, X.; Tabas, I.; Maxfield, F.R. Cholesterol distribution in living cells: Fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 1998, 75, 1915–1925. [Google Scholar] [CrossRef]
- McIntosh, A.L.; Gallegos, A.M.; Atshaves, B.P.; Storey, S.M.; Kannoju, D.; Schroeder, F. Fluorescence and multiphoton imaging resolve unique structural forms of sterol in membranes of living cells. J. Biol. Chem. 2003, 278, 6384–6403. [Google Scholar] [CrossRef] [PubMed]
- Wüstner, D.; Brewer, J.R.; Bagatolli, L.A.; Sage, D. Potential of ultraviolet widefield imaging and multiphoton microscopy for analysis of dehydroergosterol in cellular membranes. Microsc. Res. Tech. 2011, 74, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Wüstner, D.; Landt Larsen, A.; Færgeman, N.J.; Brewer, J.R.; Sage, D. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate based image segmentation. Traffic 2010, 11, 440–454. [Google Scholar] [CrossRef]
- Wüstner, D.; Lund, F.W.; Solanko, L.M. Quantitative fluorescence studies of intracellular sterol transport and distribution. In Fluorescent Methods to Study Biological Membranes; Springer Series in Fluorescence; Mely, Y., Duportail, G., Eds.; Springer Press: Berlin/Heidelberg, Germany, 2012; pp. 185–213. [Google Scholar]
- Delpretti, S.; Luisier, F.; Ramani, S.; Blu, T.; Unser, M. Multiframe SURE-LET denoising of timelapse fluorescence microscopy images. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 149–152. [Google Scholar] [CrossRef]
- Gasecka, A.; Han, T.J.; Favard, C.; Cho, B.R.; Brasselet, S. Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry. Biophys. J. 2009, 97, 2854–2862. [Google Scholar] [CrossRef]
- Brasselet, S.; Ferrand, P.; Kress, A.; Wang, X.; Ranchon, H.; Gasecka, A. (Eds.) Imaging Molecular Order in Cell Membranes by Polarization-Resolved Fluorescence Microscopy; Springer: Berlin/Heidelberg, Germany, 2013; Volume 13, pp. 311–337. [Google Scholar]
- Farkas, E.R.; Webb, W.W. Multiphoton polarization imaging of steady-state molecular order in ternary lipid vesicles for the purpose of lipid phase assignment. J. Phys. Chem. B 2010, 114, 15512–15522. [Google Scholar] [CrossRef] [PubMed]
- Ferrand, P.; Gasecka, P.; Kress, A.; Wang, X.; Bioud, F.Z.; Duboisset, J.; Brasselet, S. Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores. Biophys. J. 2014, 106, 2330–2339. [Google Scholar] [CrossRef] [PubMed]
- Wüstner, D.; Sklenar, H. Atomistic Monte Carlo simulation of lipid membranes. In. J. Mol. Sci. 2014, 15, 1767–1803. [Google Scholar] [CrossRef]
- Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Grosek, J.; Kutz, N. Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video. arXiv 2014, arXiv:1404.7592. [Google Scholar]
- Bi, C.; Yuan, Y.; Zhang, J.W.; Shi, Y.; Xiang, Y.; Wang, Y.; Zhang, R.H. Dynamic Mode Decomposition Based Video Shot Detection. IEEE Access 2018, 6, 21397–21407. [Google Scholar] [CrossRef]
- Tirunagari, S.; Poh, N.; Wells, K.; Bober, M.; Gorden, I.; Windridge, D. Movement correction in DCE-MRI through windowed and reconstruction dynamic mode decomposition. Mach. Vis. Appl. 2017, 28, 393–407. [Google Scholar] [CrossRef]
- Tirunagari, S.; Poh, N.; Wells, K.; Bober, M.; Gorden, I.; Windridge, D. Functional Segmentation through Dynamic Mode Decomposition: Automatic Quantification of Kidney Function in DCE-MRI Images. arXiv 2019, arXiv:1905.10218. [Google Scholar]
- Casorso, J.; Kong, X.; Chi, W.; Van De Ville, D.; Yeo, B.T.T.; Liegeois, R. Dynamic mode decomposition of resting-state and task fMRI. Neuroimage 2019, 194, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.F.; Klyuzhin, I.S.; McKeown, M.J.; Stoessl, A.J.; Sossi, V. Novel data-driven, equation-free method captures spatio-temporal patterns of neurodegeneration in Parkinson’s disease: Application of dynamic mode decomposition to PET. Neuroimage Clin. 2020, 25, 102150. [Google Scholar] [CrossRef] [PubMed]
- Le Marois, A.; Labouesse, S.; Suhling, K.; Heintzmann, R. Noise-Corrected Principal Component Analysis of fluorescence lifetime imaging data. J. Biophotonics 2017, 10, 1124–1133. [Google Scholar] [CrossRef]
- Pnevmatikakis, E.A. Analysis pipelines for calcium imaging data. Curr. Opin. Neurobiol. 2019, 55, 15–21. [Google Scholar] [CrossRef]
- Wüstner, D. Image segmentation and separation of spectrally similar dyes in fluorescence microscopy by dynamic mode decomposition of photobleaching kinetics. BMC Bioinform. 2022, 23, 334. [Google Scholar] [CrossRef]
- Wüstner, D. Dynamic Mode Decomposition of Fluorescence Loss in Photobleaching Microscopy Data for Model-Free Analysis of Protein Transport and Aggregation in Living Cells. Sensors 2022, 22, 4731. [Google Scholar] [CrossRef]
- Le Clainche, S.; Vega, J.M. Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Sys. 2017, 16, 882–925. [Google Scholar] [CrossRef]
- Chen, K.K.; Tu, J.H.; Rowley, C.W. Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analysis. J. Nonlinear Sci. 2012, 22, 887–915. [Google Scholar] [CrossRef]
- Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2016. [Google Scholar]
- Zipfel, W.R.; Williams, R.M.; Webb, W.W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 2014, 26, 024103. [Google Scholar] [CrossRef]
- Demo, N.; Tezzele, M.; Rozza, G. PyDMD: Python Dynamic Mode Decomposition. J. Open Source Softw. 2018, 3, 530. [Google Scholar] [CrossRef]
- Bartles, J.R.; Feracci, H.M.; Stieger, B.; Hubbard, A.L. Biogenesis of the rat hepatocyte plasma membrane in vivo: Comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J. Cell Biol. 1987, 105, 1241–1251. [Google Scholar] [CrossRef]
- Wüstner, D.; Herrmann, A.; Hao, M.; Maxfield, F.R. Rapid nonvesicular transport of sterol between the plasma membrane domains of polarized hepatic cells. J. Biol. Chem. 2002, 277, 30325–30336. [Google Scholar] [CrossRef] [PubMed]
- Kirshner, H.; Aguet, F.; Sage, D.; Unser, M. 3-D PSF fitting for fluorescence microscopy: Implementation and localization application. J. Microsc. 2013, 249, 13–25. [Google Scholar] [CrossRef]
- Gavish, M.; Donoho, D.L. The optimal hard threshold for singular values is 4/sqrt(3). IEEE Trans. Inf. Theory 2014, 60, 5040–5063. [Google Scholar] [CrossRef]
- Meiniel, W.; Olivo-Marin, J.C.; Angelini, E.D. Denoising of Microscopy Images: A Review of the State-of-the-Art, and a New Sparsity-Based Method. IEEE Trans. Image Process 2018, 27, 3842–3856. [Google Scholar] [CrossRef] [PubMed]
- Luisier, F.; Blu, T. SURE-LET multichannel image denoising: Interscale orthonormal wavelet thresholding. IEEE Trans. Image Process 2008, 17, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Luisier, F. The SURE-LET Approach to Image Denoising. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2010. [Google Scholar]
- Hupfel, M.; Yu Kobitski, A.; Zhang, W.; Nienhaus, G.U. Wavelet-based background and noise subtraction for fluorescence microscopy images. Biomed. Opt. Express 2021, 12, 969–980. [Google Scholar] [CrossRef]
- Nasser, L.; Boudier, T. A novel generic dictionary-based denoising method for improving noisy and densely packed nuclei segmentation in 3D time-lapse fluorescence microscopy images. Sci. Rep. 2019, 9, 5654. [Google Scholar] [CrossRef] [PubMed]
- Krull, A.; Vicar, T.; Prakash, M.; Lalit, M.; Jug, F. Probabilistic Noise2Void: Unsupervised Content-Aware Denoising. Front. Comp. Sci. 2020, 2, 5. [Google Scholar] [CrossRef]
- Prakash, M.; Delbracio, M.; Milanfar, P.; Jug, F. Interpretable unsupervised diversity denoising and artefact removal. In Proceedings of the International Conference on Learning Representations, Virtual Event, 3–7 May 2021. [Google Scholar]
- Li, R.; Maggiora, G.; Andriasyan, V.; Petkidis, A.; Yushkevich, A.; Kudryashev, M.; Yakimovich, A. Microscopy image reconstruction with physics-informed denoising diffusion probabilistic model. arXiv 2023, arXiv:2306.02929. [Google Scholar]
- Baddoo, P.J.; Herrmann, B.; McKeon, B.J.; Kutz, J.N.; Brunton, S.L. Physics-informed dynamic mode decomposition (piDMD). arXiv 2021, arXiv:2112.04307. [Google Scholar]
- Wijesinghe, P.; Dholakia, K. Emergent physics-informed design of deep learning for microscopy. J. Phys. Photonics 2021, 3, 021003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wüstner, D.; Egebjerg, J.M.; Lauritsen, L. Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes. Sensors 2024, 24, 2096. https://doi.org/10.3390/s24072096
Wüstner D, Egebjerg JM, Lauritsen L. Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes. Sensors. 2024; 24(7):2096. https://doi.org/10.3390/s24072096
Chicago/Turabian StyleWüstner, Daniel, Jacob Marcus Egebjerg, and Line Lauritsen. 2024. "Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes" Sensors 24, no. 7: 2096. https://doi.org/10.3390/s24072096
APA StyleWüstner, D., Egebjerg, J. M., & Lauritsen, L. (2024). Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes. Sensors, 24(7), 2096. https://doi.org/10.3390/s24072096