Time-Series Modeling and Forecasting of Cerebral Pressure–Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Questions, Population, and Inclusion/Exclusion Criteria
2.2. Search Strategy
2.3. Study Selections
2.4. Data Collection
2.5. Bias Assessment
2.6. Statistical Analysis
3. Results
3.1. Healthy Population—General Study Characteristics and Modeling Methods
3.1.1. Time and/or Frequency Domain Modeling Techniques
3.1.2. Autoregressive Modeling Techniques
3.1.3. Model Comparison Studies
3.2. Human Patient Population Studies—General Study Characteristics and Modeling Methods
3.2.1. Time and/or Frequency Domain Modeling Techniques
3.2.2. Autoregressive Modeling Techniques
3.2.3. Machine Learning Techniques
3.2.4. Model Comparison Studies
3.3. Animal Studies
4. Discussion
4.1. Limitations of the Literature
4.2. Limitations of This Review
4.3. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Addison, P.S. Identifying Stable Phase Coupling Associated with Cerebral Autoregulation Using the Synchrosqueezed Cross-Wavelet Transform and Low Oscillation Morlet Wavelets. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5960–5963. [Google Scholar]
- Zeiler, F.A.; Smielewski, P.; Donnelly, J.; Czosnyka, M.; Menon, D.K.; Ercole, A. Estimating Pressure Reactivity Using Noninvasive Doppler-Based Systolic Flow Index. J. Neurotrauma 2018, 35, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, F.; Hamilton, R.; Asgari, S.; Kim, S.; Hu, X. Intracranial Hypertension Prediction Using Extremely Randomized Decision Trees. Med. Eng. Phys. 2012, 34, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Komlodi-Pasztor, E.; Gilbert, M.R.; Armstrong, T.S. Diagnosis and Management of Stroke in Adults with Primary Brain Tumor. Curr. Oncol. Rep. 2022, 24, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Korte, N.; Nortley, R.; Attwell, D. Cerebral Blood Flow Decrease as an Early Pathological Mechanism in Alzheimer’s Disease. Acta Neuropathol. 2020, 140, 793–810. [Google Scholar] [CrossRef] [PubMed]
- Panerai, R.B. Assessment of Cerebral Pressure Autoregulation in Humans—A Review of Measurement Methods. Physiol. Meas. 1998, 19, 305. [Google Scholar] [CrossRef]
- Skrifvars, M.B.; Sekhon, M.; Åneman, E.A. Monitoring and Modifying Brain Oxygenation in Patients at Risk of Hypoxic Ischaemic Brain Injury after Cardiac Arrest. Crit. Care 2021, 25, 312. [Google Scholar] [CrossRef]
- Panerai, R.B. Cerebral Autoregulation: From Models to Clinical Applications. Cardiovasc. Eng. 2008, 8, 42–59. [Google Scholar] [CrossRef]
- Silverman, A.; Petersen, N.H. Physiology, Cerebral Autoregulation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ahmadi, M.; O’Neil, M.; Fragala-Pinkham, M.; Lennon, N.; Trost, S. Machine Learning Algorithms for Activity Recognition in Ambulant Children and Adolescents with Cerebral Palsy. J. NeuroEng. Rehabil. 2018, 15, 105. [Google Scholar] [CrossRef]
- Hu, P.; Li, Y.; Liu, Y.; Guo, G.; Gao, X.; Su, Z.; Wang, L.; Deng, G.; Yang, S.; Qi, Y.; et al. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study. Front. Aging Neurosci. 2022, 14, 857521. [Google Scholar] [CrossRef]
- Islam, M.S.; Hussain, I.; Rahman, M.M.; Park, S.J.; Hossain, M.A. Explainable Artificial Intelligence Model for Stroke Prediction Using EEG Signal. Sensors 2022, 22, 9859. [Google Scholar] [CrossRef]
- Chacón, M.; Jara, J.L.; Miranda, R.; Katsogridakis, E.; Panerai, R.B. Non-Linear Models for the Detection of Impaired Cerebral Blood Flow Autoregulation. PLoS ONE 2018, 13, e0191825. [Google Scholar] [CrossRef] [PubMed]
- Cochrane Handbook Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook (accessed on 27 September 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Sainbhi, A.S.; Marquez, I.; Gomez, A.; Stein, K.Y.; Amenta, F.; Vakitbilir, N.; Froese, L.; Zeiler, F.A. Regional Disparity in Continuously Measured Time-Domain Cerebrovascular Reactivity Indices: A Scoping Review of Human Literature. Physiol. Meas. 2023, 44, 07TR02. [Google Scholar] [CrossRef]
- Siddiqi, A.Z.; Froese, L.; Gomez, A.; Sainbhi, A.S.; Stein, K.; Park, K.; Vakitbilir, N.; Zeiler, F.A. The Effect of Burst Suppression on Cerebral Blood Flow and Autoregulation: A Scoping Review of the Human and Animal Literature. Front. Physiol. 2023, 14, 1204874. [Google Scholar] [CrossRef] [PubMed]
- Ainslie, P.N.; Barach, A.; Murrell, C.; Hamlin, M.; Hellemans, J.; Ogoh, S. Alterations in Cerebral Autoregulation and Cerebral Blood Flow Velocity during Acute Hypoxia: Rest and Exercise. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H976–H983. [Google Scholar] [CrossRef]
- Brown, C.M.; Dütsch, M.; Öhring, S.; Neundörfer, B.; Hilz, M.J. Cerebral Autoregulation Is Compromised during Simulated Fluctuations in Gravitational Stress. Eur. J. Appl. Physiol. 2004, 91, 279–286. [Google Scholar] [CrossRef]
- Bu, L.; Li, J.; Li, F.; Liu, H.; Li, Z. Wavelet Coherence Analysis of Cerebral Oxygenation Signals Measured by Near-Infrared Spectroscopy in Sailors: An Exploratory, Experimental Study. BMJ Open 2016, 6, e013357. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, M.; Li, J.; Li, F.; Liu, H.; Li, Z. Effects of Sleep Deprivation on Phase Synchronization as Assessed by Wavelet Phase Coherence Analysis of Prefrontal Tissue Oxyhemoglobin Signals. PLoS ONE 2017, 12, e0169279. [Google Scholar] [CrossRef]
- Bu, L.; Wang, D.; Huo, C.; Xu, G.; Li, Z.; Li, J. Effects of Poor Sleep Quality on Brain Functional Connectivity Revealed by Wavelet-Based Coherence Analysis Using NIRS Methods in Elderly Subjects. Neurosci. Lett. 2018, 668, 108–114. [Google Scholar] [CrossRef]
- Chacon, M.; Araya, C.; Panerai, R.B. Non-Linear Multivariate Modeling of Cerebral Hemodynamics with Autoregressive Support Vector Machines. Med. Eng. Phys. 2011, 33, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Chacón, M.; Rojas-Pescio, H.; Peñaloza, S.; Landerretche, J. Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics. Entropy 2022, 24, 428. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.A.H.R.; Levine, B.D.; Zhang, R. Dynamic Cerebral Autoregulation during Repeated Squat-Stand Maneuvers. J. Appl. Physiol. 2009, 106, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Clough, R.H.; Minhas, J.S.; Haunton, V.J.; Hanby, M.F.; Robinson, T.G.; Panerai, R.B. Dynamics of the Cerebral Autoregulatory Response to Paced Hyperventilation Assessed Using Subcomponent and Time-Varying Analyses. J. Appl. Physiol. 2022, 133, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Zhang, M.; Li, Z.; Xin, Q.; Lu, L.; Zhou, W.; Han, Q.; Gao, Y. Wavelet Coherence Analysis of Spontaneous Oscillations in Cerebral Tissue Oxyhemoglobin Concentrations and Arterial Blood Pressure in Elderly Subjects. Microvasc. Res. 2014, 93, 14–20. [Google Scholar] [CrossRef]
- Edwards, M.R.; Lin, D.C.; Hughson, R.L. Modeling the Interaction Between Perfusion Pressure and CO2 on Cerebral Blood Flow. In Frontiers in Modeling and Control of Breathing: Integration at Molecular, Cellular, and Systems Levels; Poon, C.-S., Kazemi, H., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2001; pp. 285–290. ISBN 978-1-4615-1375-9. [Google Scholar]
- Edwards, M.R.; Devitt, D.L.; Hughson, R.L. Two-Breath CO2 Test Detects Altered Dynamic Cerebrovascular Autoregulation and CO2 Responsiveness with Changes in Arterial Pco2. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R627–R632. [Google Scholar] [CrossRef]
- Gehalot, P.; Mathew, A.; Behbehani, K.; Zhang, R. Efficacy of Using Mean Arterial Blood Pressure Sequence for Linear Modeling of Cerebral Autoregulation. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2005; pp. 5619–5622. [Google Scholar]
- Iwasaki, K.; Ogawa, Y.; Shibata, S.; Aoki, K. Acute Exposure to Normobaric Mild Hypoxia Alters Dynamic Relationships between Blood Pressure and Cerebral Blood Flow at Very Low Frequency. J. Cereb. Blood Flow. Metab. 2007, 27, 776–784. [Google Scholar] [CrossRef]
- Katsogridakis, E.; Simpson, D.M.; Bush, G.; Fan, L.; Birch, A.A.; Allen, R.; Potter, J.F.; Panerai, R.B. Revisiting the Frequency Domain: The Multiple and Partial Coherence of Cerebral Blood Flow Velocity in the Assessment of Dynamic Cerebral Autoregulation. Physiol. Meas. 2016, 37, 1056. [Google Scholar] [CrossRef]
- Kostoglou, K.; Debert, C.T.; Poulin, M.J.; Mitsis, G.D. Nonstationary Multivariate Modeling of Cerebral Autoregulation during Hypercapnia. Med. Eng. Phys. 2014, 36, 592–600. [Google Scholar] [CrossRef]
- Kuo, T.B.-J.; Chern, C.-M.; Sheng, W.-Y.; Wong, W.-J.; Hu, H.-H. Frequency Domain Analysis of Cerebral Blood Flow Velocity and Its Correlation with Arterial Blood Pressure. J. Cereb. Blood Flow. Metab. 1998, 18, 311–318. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Cui, R.; Xin, Q.; Liqian, L.; Zhou, W.; Han, Q.; Gao, Y. Wavelet Coherence Analysis of Prefrontal Oxygenation Signals in Elderly Subjects with Hypertension. Physiol. Meas. 2014, 35, 777. [Google Scholar] [CrossRef]
- Liu, Y.; Birch, A.A.; Allen, R. Dynamic Cerebral Autoregulation Assessment Using an ARX Model: Comparative Study Using Step Response and Phase Shift Analysis. Med. Eng. Phys. 2003, 25, 647–653. [Google Scholar] [CrossRef]
- Liu, Y.; Allen, R. Analysis of Dynamic Cerebral Autoregulation Using an ARX Model Based on Arterial Blood Pressure and Middle Cerebral Artery Velocity Simulation. Med. Biol. Eng. Comput. 2002, 40, 600–605. [Google Scholar] [CrossRef]
- Marmarelis, V.Z.; Shin, D.C.; Zhang, R. Linear and Nonlinear Modeling of Cerebral Flow Autoregulation Using Principal Dynamic Modes. Open Biomed. Eng. J. 2012, 6, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Marmarelis, V.Z.; Mitsis, G.D.; Shin, D.C.; Zhang, R. Multiple-Input Nonlinear Modelling of Cerebral Haemodynamics Using Spontaneous Arterial Blood Pressure, End-Tidal CO2 and Heart Rate Measurements. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150180. [Google Scholar] [CrossRef] [PubMed]
- Mitsis, G.D.; Poulin, M.J.; Robbins, P.A.; Marmarelis, V.Z. Nonlinear Modeling of the Dynamic Effects of Arterial Pressure and CO2 Variations on Cerebral Blood Flow in Healthy Humans. IEEE Trans. Biomed. Eng. 2004, 51, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Mitsis, G.D.; Zhang, R.; Levine, B.D.; Marmarelis, V.Z. Cerebral Hemodynamics during Orthostatic Stress Assessed by Nonlinear Modeling. J. Appl. Physiol. 2006, 101, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Oudegeest-Sander, M.H.; van Beek, A.H.E.A.; Abbink, K.; Olde Rikkert, M.G.M.; Hopman, M.T.E.; Claassen, J.A.H.R. Assessment of Dynamic Cerebral Autoregulation and Cerebrovascular CO2 Reactivity in Ageing by Measurements of Cerebral Blood Flow and Cortical Oxygenation. Exp. Physiol. 2014, 99, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Panerai, R.B.; Dawson, S.L.; Potter, J.F. Linear and Nonlinear Analysis of Human Dynamic Cerebral Autoregulation. Am. J. Physiol. Heart Circ. Physiol. 1999, 277, H1089–H1099. [Google Scholar] [CrossRef]
- Panerai, R.B.; Chacon, M.; Pereira, R.; Evans, D.H. Neural Network Modelling of Dynamic Cerebral Autoregulation: Assessment and Comparison with Established Methods. Med. Eng. Phys. 2004, 26, 43–52. [Google Scholar] [CrossRef]
- Panerai, R.B.; Salinet, A.S.M.; Robinson, T.G. Contribution of Arterial Blood Pressure and PaCO2 to the Cerebrovascular Responses to Motor Stimulation. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H459–H466. [Google Scholar] [CrossRef]
- Panerai, R.B.; Haunton, V.J.; Llwyd, O.; Minhas, J.S.; Katsogridakis, E.; Salinet, A.S.; Maggio, P.; Robinson, T.G. Cerebral Critical Closing Pressure and Resistance-Area Product: The Influence of Dynamic Cerebral Autoregulation, Age and Sex. J. Cereb. Blood Flow. Metab. 2021, 41, 2456–2469. [Google Scholar] [CrossRef]
- Peng, T.; Rowley, A.B.; Ainslie, P.N.; Poulin, M.J.; Payne, S.J. Multivariate System Identification for Cerebral Autoregulation. Ann. Biomed. Eng. 2008, 36, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Placek, M.M.; Wachel, P.; Iskander, D.R.; Smielewski, P.; Uryga, A.; Mielczarek, A.; Szczepański, T.A.; Kasprowicz, M. Applying Time-Frequency Analysis to Assess Cerebral Autoregulation during Hypercapnia. PLoS ONE 2017, 12, e0181851. [Google Scholar] [CrossRef]
- Saleem, S.; Teal, P.D.; Kleijn, W.B.; Ainslie, P.N.; Tzeng, Y.-C. Identification of Human Sympathetic Neurovascular Control Using Multivariate Wavelet Decomposition Analysis. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H837–H848. [Google Scholar] [CrossRef] [PubMed]
- Smirl, J.D.; Haykowsky, M.J.; Nelson, M.D.; Tzeng, Y.-C.; Marsden, K.R.; Jones, H.; Ainslie, P.N. Relationship Between Cerebral Blood Flow and Blood Pressure in Long-Term Heart Transplant Recipients. Hypertension 2014, 64, 1314–1320. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, M.; Wang, Y.; Zhang, M.; Wang, B.; Xin, Q.; Li, Z. Age-Related Alterations in Phase Synchronization of Oxyhemoglobin Concentration Changes in Prefrontal Tissues as Measured by near-Infrared Spectroscopy Signals. Microvasc. Res. 2016, 103, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, M.; Bu, L.; Xu, L.; Wang, W.; Li, Z. Posture-Related Changes in Brain Functional Connectivity as Assessed by Wavelet Phase Coherence of NIRS Signals in Elderly Subjects. Behav. Brain Res. 2016, 312, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zuckerman, J.H.; Giller, C.A.; Levine, B.D. Transfer Function Analysis of Dynamic Cerebral Autoregulation in Humans. Am. J. Physiol. Heart Circ. Physiol. 1998, 274, H233–H241. [Google Scholar] [CrossRef]
- Asgari, S.; Adams, H.; Kasprowicz, M.; Czosnyka, M.; Smielewski, P.; Ercole, A. Feasibility of Hidden Markov Models for the Description of Time-Varying Physiologic State After Severe Traumatic Brain Injury. Crit. Care Med. 2019, 47, e880. [Google Scholar] [CrossRef]
- Caldas, J.R.; Panerai, R.B.; Bor-Seng-Shu, E.; Almeida, J.P.; Ferreira, G.S.R.; Camara, L.; Nogueira, R.C.; Oliveira, M.L.; Jatene, F.B.; Robinson, T.G.; et al. Cerebral Hemodynamics with Intra-Aortic Balloon Pump: Business as Usual? Physiol. Meas. 2017, 38, 1349. [Google Scholar] [CrossRef]
- Chiu, C.-C.; Yeh, S.-J.; Li, T.-Y. Classification of Diabetics with Various Degrees of Autonomic Neuropathy Based on Linear and Nonlinear Features Using Support Vector Machine. In Proceedings of the Medical Biometrics; Zhang, D., Sonka, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 42–51. [Google Scholar]
- Czosnyka, M.; Guazzo, E.; Whitehouse, M.; Smielewski, P.; Czosnyka, Z.; Kirkpatrick, P.; Piechnik, S.; Pickard, J.D. Significance of Intracranial Pressure Waveform Analysis after Head Injury. Acta Neurochir. 1996, 138, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Daley, M.L.; Leffler, C.W.; Czosnyka, M.; Pickard, J.D. Intracranial Pressure Monitoring: Modeling Cerebrovascular Pressure Transmission. In Proceedings of the Brain Edema XIII; Hoff, J.T., Keep, R.F., Xi, G., Hua, Y., Eds.; Springer: Vienna, Austria, 2006; pp. 103–107. [Google Scholar]
- Elixmann, I.M.; Hansinger, J.; Goffin, C.; Antes, S.; Radermacher, K.; Leonhardt, S. Single Pulse Analysis of Intracranial Pressure for a Hydrocephalus Implant. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3939–3942. [Google Scholar]
- Farhadi, A.; Chern, J.J.; Hirsh, D.; Davis, T.; Jo, M.; Maier, F.; Rasheed, K. Intracranial Pressure Forecasting in Children Using Dynamic Averaging of Time Series Data. Forecasting 2019, 1, 47–58. [Google Scholar] [CrossRef]
- Giller, C.; Lacopino, D.G. Use of Middle Cerebral Velocity and Blood Pressure for the Analysis of Cerebral Autoregulation at Various Frequencies: The Coherence Index. Neurol. Res. 1997, 19, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Güiza, F.; Depreitere, B.; Piper, I.; Van den Berghe, G.; Meyfroidt, G. Novel Methods to Predict Increased Intracranial Pressure During Intensive Care and Long-Term Neurologic Outcome after Traumatic Brain Injury: Development and Validation in a Multicenter Dataset*. Crit. Care Med. 2013, 41, 554. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, M.; Li, W.; Gao, Y.; Xin, Q.; Wang, Y.; Li, Z. Wavelet Coherence Analysis of Prefrontal Tissue Oxyhaemoglobin Signals as Measured Using Near-Infrared Spectroscopy in Elderly Subjects with Cerebral Infarction. Microvasc. Res. 2014, 95, 108–115. [Google Scholar] [CrossRef]
- Haubrich, C.; Diehl, R.R.; Kasprowicz, M.; Diedler, J.; Sorrentino, E.; Smielewski, P.; Czosnyka, M. Increasing Intracranial Pressure After Head Injury: Impact on Respiratory Oscillations in Cerebral Blood Flow Velocity. In Intracranial Pressure and Brain Monitoring XV; Ang, B.-T., Ed.; Acta Neurochirurgica Supplement; Springer International Publishing: Cham, Switzerland, 2016; pp. 171–175. ISBN 978-3-319-22533-3. [Google Scholar]
- Hu, K.; Lo, M.-T.; Peng, C.-K.; Liu, Y.; Novak, V. A Nonlinear Dynamic Approach Reveals a Long-Term Stroke Effect on Cerebral Blood Flow Regulation at Multiple Time Scales. PLoS Comput. Biol. 2012, 8, e1002601. [Google Scholar] [CrossRef]
- Jachan, M.; Reinhard, M.; Spindeler, L.; Hetzel, A.; Schelter, B.; Timmer, J. Parametric Versus Nonparametric Transfer Function Estimation of Cerebral Autoregulation from Spontaneous Blood-Pressure Oscillations. Cardiovasc. Eng. 2009, 9, 72–82. [Google Scholar] [CrossRef]
- Kostoglou, K.; Wright, A.D.; Smirl, J.D.; Bryk, K.; van Donkelaar, P.; Mitsis, G.D. Dynamic Cerebral Autoregulation in Young Athletes Following Concussion. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 696–699. [Google Scholar]
- Kvandal, P.; Sheppard, L.; Landsverk, S.A.; Stefanovska, A.; Kirkeboen, K.A. Impaired Cerebrovascular Reactivity after Acute Traumatic Brain Injury Can Be Detected by Wavelet Phase Coherence Analysis of the Intracranial and Arterial Blood Pressure Signals. J. Clin. Monit. Comput. 2013, 27, 375–383. [Google Scholar] [CrossRef]
- Li, W.; Zhang, M.; Huo, C.; Xu, G.; Chen, W.; Wang, D.; Li, Z. Time-Evolving Coupling Functions for Evaluating the Interaction between Cerebral Oxyhemoglobin and Arterial Blood Pressure with Hypertension. Med. Phys. 2021, 48, 2027–2037. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, B.; Liu, Y.; Lv, Z.; Li, W.; Li, Z.; Fan, Y. Frequency-Specific Effective Connectivity in Subjects with Cerebral Infarction as Revealed by NIRS Method. Neuroscience 2018, 373, 169–181. [Google Scholar] [CrossRef]
- Mariak, Z.; Swiercz, M.; Krejza, J.; Lewko, J.; Lyson, T. Intracranial Pressure Processing with Artificial Neural Networks: Classification of Signal Properties. Acta Neurochir. 2000, 142, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Tejada, I.; Czosnyka, M.; Czosnyka, Z.; Juhler, M.; Smielewski, P. Causal Relationship between Slow Waves of Arterial, Intracranial Pressures and Blood Velocity in Brain. Comput. Biol. Med. 2021, 139, 104970. [Google Scholar] [CrossRef] [PubMed]
- Megjhani, M.; Weiss, M.; Kwon, S.B.; Ford, J.; Nametz, D.; Kastenholz, N.; Fogel, H.; Velazquez, A.; Roh, D.; Agarwal, S.; et al. Vector Angle Analysis of Multimodal Neuromonitoring Data for Continuous Prediction of Delayed Cerebral Ischemia. Neurocrit. Care 2022, 37, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.C.; dos Santos, K.R.M.; Marshall, R.S.; Kougioumtzoglou, I.A. Joint Time-Frequency Analysis of Dynamic Cerebral Autoregulation Using Generalized Harmonic Wavelets. Physiol. Meas. 2020, 41, 024002. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.B.; Lazaridis, C.; Jermaine, C.M.; Robertson, C.S.; Rusin, C.G. Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in Patients with Severe Traumatic Brain Injury. Crit. Care Med. 2016, 44, 1754. [Google Scholar] [CrossRef] [PubMed]
- Naraei, P.; Kenez, M.; Sadeghian, A. A Hybrid Wavelet Based K-Means Clustering Approach to Detect Intracranial Hypertension. In Proceedings of the 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), Toronto, ON, Canada, 20–21 July 2017; pp. 21–25. [Google Scholar]
- Panerai, R.B.; Rennie, J.M.; Kelsall, A.W.R.; Evans, D.H. Frequency-Domain Analysis of Cerebral Autoregulation from Spontaneous Fluctuations in Arterial Blood Pressure. Med. Biol. Eng. Comput. 1998, 36, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Petrov, D.; Miranda, S.P.; Balu, R.; Wathen, C.; Vaz, A.; Mohan, V.; Colon, C.; Diaz-Arrastia, R. Prediction of Intracranial Pressure Crises after Severe Traumatic Brain Injury Using Machine Learning Algorithms. J. Neurosurg. 2023, 139, 528–535. [Google Scholar] [CrossRef]
- Pinto, H.; Dias, C.; Rocha, A.P. Multiscale Information Decomposition of Long Memory Processes: Application to Plateau Waves of Intracranial Pressure. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 1753–1756. [Google Scholar]
- Porta, A.; Fantinato, A.; Bari, V.; Gelpi, F.; Cairo, B.; Maria, B.D.; Bertoldo, E.G.; Fiolo, V.; Callus, E.; Vincentiis, C.D.; et al. Evaluation of the Impact of Surgical Aortic Valve Replacement on Short-Term Cardiovascular and Cerebrovascular Controls through Spontaneous Variability Analysis. PLoS ONE 2020, 15, e0243869. [Google Scholar] [CrossRef]
- Sammons, E.L.; Samani, N.J.; Smith, S.M.; Rathbone, W.E.; Bentley, S.; Potter, J.F.; Panerai, R.B. Influence of Noninvasive Peripheral Arterial Blood Pressure Measurements on Assessment of Dynamic Cerebral Autoregulation. J. Appl. Physiol. 2007, 103, 369–375. [Google Scholar] [CrossRef]
- Schäck, T.; Muma, M.; Feng, M.; Guan, C.; Zoubir, A.M. Robust Nonlinear Causality Analysis of Nonstationary Multivariate Physiological Time Series. IEEE Trans. Biomed. Eng. 2018, 65, 1213–1225. [Google Scholar] [CrossRef]
- Semenyutin, V.; Antonov, V.; Malykhina, G.; Salnikov, V. Investigation of Cerebral Autoregulation Using Time-Frequency Transformations. Biomedicines 2022, 10, 3057. [Google Scholar] [CrossRef]
- Shaw, M.; Hawthorne, C.; Moss, L.; Kommer, M.; O’Kane, R.; Piper, I. Time Series Analysis and Prediction of Intracranial Pressure Using Time-Varying Dynamic Linear Models. In Intracranial Pressure and Neuromonitoring XVII; Depreitere, B., Meyfroidt, G., Güiza, F., Eds.; Acta Neurochirurgica Supplement; Springer International Publishing: Cham, Switzerland, 2021; pp. 225–229. ISBN 978-3-030-59436-7. [Google Scholar]
- Sourina, O.; Ang, B.-T.; Nguyen, M.K. Fractal-Based Approach in Analysis of Intracranial Pressure (ICP) in Severe Head Injury. In Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Corfu, Greece, 3–5 November 2010; pp. 1–4. [Google Scholar]
- Swiercz, M.; Mariak, Z.; Lewko, J.; Chojnacki, K.; Kozlowski, A.; Piekarski, P. Neural Network Technique for Detecting Emergency States in Neurosurgical Patients. Med. Biol. Eng. Comput. 1998, 36, 717–722. [Google Scholar] [CrossRef]
- Swiercz, M.; Mariak, Z.; Krejza, J.; Lewko, J.; Szydlik, P. Intracranial Pressure Processing with Artificial Neural Networks: Prediction of ICP Trends. Acta Neurochir. 2000, 142, 401–406. [Google Scholar] [CrossRef]
- Thelin, E.P.; Raj, R.; Bellander, B.-M.; Nelson, D.; Piippo-Karjalainen, A.; Siironen, J.; Tanskanen, P.; Hawryluk, G.; Hasen, M.; Unger, B.; et al. Comparison of High versus Low Frequency Cerebral Physiology for Cerebrovascular Reactivity Assessment in Traumatic Brain Injury: A Multi-Center Pilot Study. J. Clin. Monit. Comput. 2020, 34, 971–994. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Tarumi, T.; Liu, H.; Zhang, R.; Chalak, L. Wavelet Coherence Analysis of Dynamic Cerebral Autoregulation in Neonatal Hypoxic–Ischemic Encephalopathy. NeuroImage Clin. 2016, 11, 124–132. [Google Scholar] [CrossRef]
- Tsui, F.-C.; Sun, M.; Li, C.-C.; Sclabassi, R.J. A Wavelet Based Neural Network for Prediction of ICP Signal. In Proceedings of the 17th International Conference of the Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–23 September 1995; Volume 2, pp. 1045–1046. [Google Scholar]
- Turalska, M.; Latka, M.; Czosnyka, M.; Pierzchala, K.; West, B.J. Generation of Very Low Frequency Cerebral Blood Flow Fluctuations in Humans. In Proceedings of the Acta Neurochirurgica Supplements; Steiger, H.-J., Ed.; Springer: Vienna, Austria, 2009; pp. 43–47. [Google Scholar]
- Wijayatunga, P.; Koskinen, L.-O.D.; Sundström, N. Probabilistic Prediction of Increased Intracranial Pressure in Patients with Severe Traumatic Brain Injury. Sci. Rep. 2022, 12, 9600. [Google Scholar] [CrossRef]
- Zeiler, F.A.; Smielewski, P.; Stevens, A.; Czosnyka, M.; Menon, D.K.; Ercole, A. Non-Invasive Pressure Reactivity Index Using Doppler Systolic Flow Parameters: A Pilot Analysis. J. Neurotrauma 2019, 36, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, F.A.; Aries, M.; Cabeleira, M.; van Essen, T.A.; Stocchetti, N.; Menon, D.K.; Timofeev, I.; Czosnyka, M.; Smielewski, P.; Hutchinson, P.; et al. Statistical Cerebrovascular Reactivity Signal Properties after Secondary Decompressive Craniectomy in Traumatic Brain Injury: A CENTER-TBI Pilot Analysis. J. Neurotrauma 2020, 37, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, F.A.; Cabeleira, M.; Hutchinson, P.J.; Stocchetti, N.; Czosnyka, M.; Smielewski, P.; Ercole, A.; Anke, A.; Beer, R.; Bellander, B.-M.; et al. Evaluation of the Relationship between Slow-Waves of Intracranial Pressure, Mean Arterial Pressure and Brain Tissue Oxygen in TBI: A CENTER-TBI Exploratory Analysis. J. Clin. Monit. Comput. 2021, 35, 711–722. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, M.; Pan, S.J.; Loy, L.Y.; Guo, W.; Zhang, Z.; Chin, P.L.; Guan, C.; King, N.K.K.; Ang, B.T. Artificial Neural Network Based Intracranial Pressure Mean Forecast Algorithm for Medical Decision Support. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 7111–7114. [Google Scholar]
- Zhang, F.; Feng, M.; Loy, L.Y.; Zhang, Z.; Guan, C. Online ICP Forecast for Patients with Traumatic Brain Injury. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 37–40. [Google Scholar]
- Alexandrin, V.V. Relationship between Myogenic Reaction and Autoregulation of Cerebral Circulation. Bull. Exp. Biol. Med. 2010, 150, 168–171. [Google Scholar] [CrossRef]
- Doblar, D.D.; Min, B.G.; Chapman, R.W.; Harback, E.R.; Welkowitz, W.; Edelman, N.H. Dynamic Characteristics of Cerebral Blood Flow Response to Sinusoidal Hypoxia. J. Appl. Physiol. 1979, 46, 721–729. [Google Scholar] [CrossRef]
- Issam, N.; Raffaello, S.; Dafne, S.; Luigi, C.; Abdelkrim, T. A Simple Approach to Studying Cerebral Blood Flow during Psychological Stress. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392, 505–509. [Google Scholar] [CrossRef]
- Zheng, Y.; Mayhew, J. A Time-Invariant Visco-Elastic Windkessel Model Relating Blood Flow and Blood Volume. NeuroImage 2009, 47, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zuckerman, J.H.; Levine, B.D. Deterioration of Cerebral Autoregulation during Orthostatic Stress: Insights from the Frequency Domain. J. Appl. Physiol. 1998, 85, 1113–1122. [Google Scholar] [CrossRef]
- Dhrymes, P.J. Cross-Spectral Analysis. In Econometrics: Statistical Foundations and Applications; Dhrymes, P.J., Ed.; Springer Study Edition; Springer: New York, NY, USA, 1974; pp. 444–484. ISBN 978-1-4613-9383-2. [Google Scholar]
- Gu, M. Transfer Function Analysis. In Advanced Optical Imaging Theory; Gu, M., Ed.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2000; pp. 71–107. ISBN 978-3-540-48471-4. [Google Scholar]
- He, L.; Feng, B. Time–Frequency Domain Analysis. In Fundamentals of Measurement and Signal Analysis; He, L., Feng, B., Eds.; Springer Nature: Singapore, 2022; pp. 143–160. ISBN 978-981-19654-9-4. [Google Scholar]
- Thakur, G. The Synchrosqueezing Transform for Instantaneous Spectral Analysis. In Excursions in Harmonic Analysis, Volume 4: The February Fourier Talks at the Norbert Wiener Center; Balan, R., Begué, M., Benedetto, J.J., Czaja, W., Okoudjou, K.A., Eds.; Applied and Numerical Harmonic Analysis; Springer International Publishing: Cham, Switzerland, 2015; pp. 397–406. ISBN 978-3-319-20188-7. [Google Scholar]
- Tiecks, F.P.; Lam, A.M.; Aaslid, R.; Newell, D.W. Comparison of Static and Dynamic Cerebral Autoregulation Measurements. Stroke 1995, 26, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Atlas, L.E.; Marks, R.J. The Use of Cone-Shaped Kernels for Generalized Time-Frequency Representations of Nonstationary Signals. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1084–1091. [Google Scholar] [CrossRef]
- Likothanassis, S.D.; Demiris, E.N. ARMAX Model Identification with Unknown Process Order and Time-Varying Parameters. In Signal Analysis and Prediction; Procházka, A., Uhlíř, J., Rayner, P.W.J., Kingsbury, N.G., Eds.; Applied and Numerical Harmonic Analysis; Birkhäuser: Boston, MA, USA, 1998; pp. 175–184. ISBN 978-1-4612-1768-8. [Google Scholar]
- Geng, K.; Marmarelis, V.Z. Methodology of Recurrent Laguerre–Volterra Network for Modeling Nonlinear Dynamic Systems. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2196–2208. [Google Scholar] [CrossRef] [PubMed]
- Marmarelis, V.Z. Identification of Nonlinear Biological Systems Using Laguerre Expansions of Kernels. Ann. Biomed. Eng. 1993, 21, 573–589. [Google Scholar] [CrossRef]
- Kaur, J.; Parmar, K.S.; Singh, S. Autoregressive Models in Environmental Forecasting Time Series: A Theoretical and Application Review. Environ. Sci. Pollut. Res. 2023, 30, 19617–19641. [Google Scholar] [CrossRef]
- Lusia, D.A.; Ambarwati, A. Multivariate Forecasting Using Hybrid VARIMA Neural Network in JCI Case. In Proceedings of the 2018 International Symposium on Advanced Intelligent Informatics (SAIN), Yogyakarta, Indonesia, 29–30 August 2018; pp. 11–14. [Google Scholar]
- Banks, D.L.; Fienberg, S.E. Data Mining, Statistics. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 247–261. ISBN 978-0-12-227410-7. [Google Scholar]
- Roebroeck, A. Granger Causality. In Brain Mapping; Toga, A.W., Ed.; Academic Press: Waltham, MA, USA, 2015; pp. 593–597. ISBN 978-0-12-397316-0. [Google Scholar]
- Eddy, S.R. What Is a Hidden Markov Model? Nat. Biotechnol. 2004, 22, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Ge, T.; Smoller, J.W.; Sabuncu, M.R. Chapter 2—Kernel Machine Regression in Neuroimaging Genetics. In Machine Learning and Medical Imaging; Wu, G., Shen, D., Sabuncu, M.R., Eds.; The Elsevier and MICCAI Society Book Series; Academic Press: Cambridge, MA, USA, 2016; pp. 31–68. ISBN 978-0-12-804076-8. [Google Scholar]
- Gifre-Renom, L.; Jones, E.A.V. Vessel Enlargement in Development and Pathophysiology. Front. Physiol. 2021, 12, 639645. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.P.; Panerai, R.B.; Robinson, T.G. Are Hand-Held TCD Measurements Acceptable for Estimates of CBFv? Ultrasound Med. Biol. 2012, 38, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
Time–Frequency Domain Modeling Techniques | |||
---|---|---|---|
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
CPP | Cross-spectral analysis—1 study [29] | Successfully modeled. | Not explored. |
CBFv | Aaslid–Tiecks model—1 study [44] | Effective modeling of CBFv signal was reported ([51], p-value < 0.01; [32], p-value < 0.05; [50], p-value < 0.05; [19], p-value < 0.05; [43], p-value < 0.05). | Not explored. |
Cross-spectral analysis—3 studies [20,30,35,45] | |||
Discrete-time Laguerre function model—1 study [34] | |||
FFT—1 study [44] | |||
Multiple coherence analysis—2 studies [33,48] | |||
Laguerre–Wiener method—2 studies [44,45] | |||
LVN model—2 studies [41,42] | |||
PDM-based model—2 studies [39,40] | |||
Power spectrum analysis—1 study [51] | |||
TFA—9 studies [19,26,32,39,40,43,49,51,103] | |||
Wavelet analysis—1 study [50] | |||
Welch method—1 study [33] | |||
ZAMD—1 study [49] | |||
CA | Cross-spectral analysis—1 study [20] | Successfully modeled. | Not explored. |
Discrete-time Laguerre function model—1 study [34] | |||
PDM-based model—2 studies [39,40] | |||
TFA—5 studies [39,40,47,49,103] | |||
Welch method—1 study [33] | |||
ZAMD—1 study [49] | |||
NIRS * | TFA—1 study [19] | Effective modeling of Δ[HbO] signal was reported ([21], p-value < 0.04; [22,23], p-value < 0.04 in both studies; [28], p-value < 0.03; [36], p-value < 0.014; [52], p-value < 0.03; [53], p-value < 0.05; [50], p-value < 0.05). | Not explored. |
Wavelet analysis—8 studies [1,21,22,23,28,36,52,53] | |||
Autoregressive Modeling Techniques | |||
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
CPP | ARMAX—1 study [29] | Successfully modeled. | Not explored. |
CBFv | ARMA—3 studies [27,46,49] | Effective modeling of CBFv signal was reported ([27], p-value = 0.003; [46], p-value < 0.03; [31], p-value < 0.3; [37], p-value < 0.001). | Not explored. |
ARMAX—1 study [29] | |||
ARX—3 studies [31,37,38] | |||
CA | ARMA—3 studies [27,30,49] | Successfully modeled. | Not explored. |
ARX—2 studies [31,38] | |||
Machine Learning Techniques | |||
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
CBFv | Linear regression—1 study [45] | Effective modeling of CBFv signal was reported ([24], p-value < 0.002; [13], p-value < 0.001) | Not explored. |
SVM—3 studies [13,24,25] | |||
TLRN—1 study [45] | |||
CA | SVM—3 studies [13,24,25] | Successfully modeled. | Not explored. |
Time–Frequency Domain Modeling Techniques | |||
---|---|---|---|
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
ICP | DEKF—1 study [83] | Effective modeling of ICP signal was reported ([92], p-value < 0.1). | Not explored. |
GP algorithm—2 studies [63,76] | |||
Granger causality—3 studies [89,95,96] | |||
MDP—1 study [91] | |||
Moving correlation coefficient—1 study [58] | |||
Probabilistic Markov model—1 model [93] | |||
Robust time-varying generalized partial directed coherence with Kalman filter—1 study [83] | |||
TFA—1 study [65] | |||
Wavelet analysis—1 study [69] | |||
CPP | GP algorithm—1 study [63] | Successfully modeled. | Not explored. |
Moving correlation coefficient—1 study [58] | |||
CBFv | TFA—2 studies [65,92] | Effective modeling of CBFv signal was reported ([92], p-value < 0.1). | Not explored. |
CA | Wavelet analysis—1 study [69] | Successfully modeled. | Not explored. |
PbtO2 | DEKF—1 study [83] | Successfully modeled. | Not explored. |
GP algorithm—1 study [76] | |||
Granger causality—1 study [96] | |||
Robust time-varying generalized partial directed coherence with Kalman filter—1 study [83] | |||
Autoregressive Modeling Techniques | |||
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
ICP | AR—2 studies [88,93] | Effective modeling of ICP signal was reported ([95], p-value < 0.3). | Not explored. |
AR-OR—1 study [76] | |||
ARIMA—5 studies [2,89,94,96,98] | |||
ARMA—2 studies [59,97] | |||
VARFI—1 study [80] | |||
VARIMA—3 studies [89,95,96] | |||
CPP | ARMA—1 study [59] | Successfully modeled. | Not explored. |
VARFI—1 study [80] | |||
VARIMA—1 study [95] | |||
CBFv | ARIMA—2 studies [2,94] | Successfully modeled. | Not explored. |
PbtO2 | AR-OR—1 study [76] | Successfully modeled. | Not explored. |
ARIMA—1 study [96] | |||
VARIMA—1 study [96] | |||
Machine Learning Techniques | |||
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
ICP | ANN—3 studies [88,97,98] | Not explored. | Adequate performance to predict ICP was reported ([79]; precision = 0.76 and accuracy = 0.86 with random forest). |
HMM—1 study [55] | |||
FASSTER time varying DLM—1 study [85] | |||
Fractal analysis with box-counting and Higuchi algorithms—1 study [86] | |||
LGBM—1 study [79] | |||
Logistic regression—2 studies [63,76] | |||
Random forest—1 study [79] | |||
RNN—1 study [91] | |||
Wavelet-based k-means clustering—1 study [77] | |||
XGBoost—1 study [79] | |||
CPP | HMM—1 study [55] | Not explored. | Adequate prediction performance was reported. |
Logistic regression—1 study [63] | |||
PbtO2 | Logistic regression—1 study [76] | Not explored. | Adequate prediction performance was reported. |
Time–Frequency Domain Modeling Techniques | |||
---|---|---|---|
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
ICP | ETS model—1 study [61] | Not explored. | Adequate performance to predict ICP was reported. |
Granger causality with EEMD—1 study [73] | |||
Kalman filtering—1 study [87] | |||
Single pulse analysis—1 study [60] | |||
CBFv | CWT—1 study [84] | Effective modeling of CBFv signal was reported ([56], p-value = 0.052; [78], p-value < 0.0009; [82], p-value < 0.02; [69], p-value < 0.05; [90], p-value < 0.3; [92], p-value < 0.1). | Not explored. |
FFT—1 study [62] | |||
GHW—1 study [75] | |||
Granger causality with EEMD—1 study [73] | |||
IMPFA—1 study [66] | |||
Impulse-response-based LET model—1 study [68] | |||
MMPF—1 study [66] | |||
Nonparametric transfer function estimator—1 study [67] | |||
STFT—1 study [84] | |||
TFA—4 studies [6,66,75,82] | |||
Wavelet analysis—1 study [69] | |||
CA | GHW—1 study [75] | Successfully modeled. | Not explored. |
TFA—4 studies [6,56,75,82] | |||
Wavelet analysis—2 studies [75,90] | |||
NIRS * | DBI—2 studies [70,71] | Effective modeling of Δ[HbO] signal was reported ([70], p-value < 0.02; [71], p-value < 0.03; [64], p-value < 0.4). | Not explored. |
Wavelet analysis—2 studies [64,90] | |||
Autoregressive Modeling Techniques | |||
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
ICP | ARIMA—1 study [61] | Successfully modeled. | Not explored. |
ARX—1 study [87] | |||
CBFv | ARMAX—1 study [67] | Successfully modeled. | Not explored. |
ARX—1 study [68] | |||
VAR—1 study [67] | |||
CA | ARX—1 study [68] | Successfully modeled. | Not explored. |
Machine Learning Techniques | |||
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability | Prediction/Forecasting Ability |
ICP | AdaBoost—1 study [3] | Not explored. | Adequate performance to predict ICP was reported ([61]; NMSE = 0.89 with random forest, [3]; AUC = 0.87~0.96 with ExtraTrees). |
ANN—2 studies [72,87] | |||
ExtraTrees—1 study [3] | |||
Lasso regression—1 study [61] | |||
Linear regression—2 studies [3,61] | |||
Random forest—1 study [61] | |||
SVM—1 study [61] | |||
TSAM algorithm—1 study [74] | |||
CPP | TSAM algorithm—1 study [74] | Not explored. | Successfully modeled. |
CBFv | k-NN—1 study | Successfully modeled. | Not explored. |
SVM—1 study [57] | |||
CA | SVM—1 study [57] | Successfully modeled. | Not explored. |
PbtO2 | TSAM algorithm—1 study [74] | Successfully modeled. | Not explored. |
Time–Frequency Domain Modeling Techniques | ||
---|---|---|
Cerebral Physiologic Metric | Number of Studies and Technique | Temporal Modeling Ability |
CBF | Windkessel models—1 study [102] | Successfully modeled. |
Fourier analysis—1 study [100] | ||
Wavelet analysis—1 study [99] | ||
CBFv | Cross-spectral analysis—1 study [101] | Successfully modeled. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakitbilir, N.; Froese, L.; Gomez, A.; Sainbhi, A.S.; Stein, K.Y.; Islam, A.; Bergmann, T.J.G.; Marquez, I.; Amenta, F.; Ibrahim, Y.; et al. Time-Series Modeling and Forecasting of Cerebral Pressure–Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature. Sensors 2024, 24, 1453. https://doi.org/10.3390/s24051453
Vakitbilir N, Froese L, Gomez A, Sainbhi AS, Stein KY, Islam A, Bergmann TJG, Marquez I, Amenta F, Ibrahim Y, et al. Time-Series Modeling and Forecasting of Cerebral Pressure–Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature. Sensors. 2024; 24(5):1453. https://doi.org/10.3390/s24051453
Chicago/Turabian StyleVakitbilir, Nuray, Logan Froese, Alwyn Gomez, Amanjyot Singh Sainbhi, Kevin Y. Stein, Abrar Islam, Tobias J. G. Bergmann, Izabella Marquez, Fiorella Amenta, Younis Ibrahim, and et al. 2024. "Time-Series Modeling and Forecasting of Cerebral Pressure–Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature" Sensors 24, no. 5: 1453. https://doi.org/10.3390/s24051453
APA StyleVakitbilir, N., Froese, L., Gomez, A., Sainbhi, A. S., Stein, K. Y., Islam, A., Bergmann, T. J. G., Marquez, I., Amenta, F., Ibrahim, Y., & Zeiler, F. A. (2024). Time-Series Modeling and Forecasting of Cerebral Pressure–Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature. Sensors, 24(5), 1453. https://doi.org/10.3390/s24051453