Development of a Charge-Multiplication CMOS Image Sensor Based on Capacitive Trench for Low-Light-Level Imaging
Abstract
:1. Introduction
2. CDTI Device Description
2.1. Experimental Setup
2.2. Preliminary Measurements
3. EMCCD Operations
3.1. Experimental Setup
3.2. Measurements
3.3. FWC Optimization with Larger Pitches
3.4. Dark Current Optimization with Lower Temperature
4. Modified CDTI Structure Investigated Using TCAD Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guckenberger, D.; Abdalla, S.; Bradbury, C.; Clymore, J.; De Dobbelaere, P.; Foltz, D.; Gloeckner, S.; Harrison, M.; Jackson, S.; Kucharski, D.; et al. Advantages of CMOS photonics for future transceiver applications. In Proceedings of the 36th European Conference and Exhibition on Optical Communication, Torino, Italy, 19–23 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Fedotov, M.; Kuper, E.; Panchenko, V. Experimental observation of intracell avalanche amplification in charge coupled devices. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1991, 308, 430–434. [Google Scholar] [CrossRef]
- Ma, J.; Hondongwa, D.; Fossum, E.R. Jot devices and the Quanta Image Sensor. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 10.1.1–10.1.4. [Google Scholar] [CrossRef]
- Gajar, S.; Burke, B. Charge amplification by impact ionization in charge-coupled devices. IEEE Trans. Electron Devices 1988, 35, 2435–2436. [Google Scholar] [CrossRef]
- Robbins, M.; Hadwen, B. The noise performance of electron multiplying charge-coupled devices. IEEE Trans. Electron Devices 2003, 50, 1227–1232. [Google Scholar] [CrossRef]
- Hynecek, J. Impactron-a new solid state image intensifier. IEEE Trans. Electron Devices 2001, 48, 2238–2241. [Google Scholar] [CrossRef]
- Jerram, P.; Pool, P.J.; Bell, R.; Burt, D.J.; Bowring, S.; Spencer, S.; Hazelwood, M.; Moody, I.; Catlett, N.; Heyes, P.S. The LLCCD: Low-light imaging without the need for an intensifier. In Proceedings of the Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, San Jose, CA, USA, 22–24 January 2001; Sampat, N., Canosa, J., Blouke, M.M., Canosa, J., Sampat, N., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2001; Volume 4306, pp. 178–186. [Google Scholar] [CrossRef]
- Dunford, A.G.; Stefanov, K.D.; Holland, A.D. The operational characteristics and potential applications of a low voltage EMCCD in a CMOS process. In Proceedings of the High Energy, Optical, and Infrared Detectors for Astronomy VIII, Austin, TX, USA, 10–13 June 2018; Holland, A.D., Beletic, J., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2018; Volume 10709, p. 1070927. [Google Scholar] [CrossRef]
- Shimizu, R.; Arimoto, M.; Nakashima, H.; Misawa, K.; Suzuki, K.; Ohno, T.; Nose, Y.; Watanabe, K.; Ohyama, T.; Tani, K. A charge-multiplication CMOS image sensor suitable for low-light-level imaging. In Proceedings of the 2009 IEEE International Solid-State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009; pp. 50–51, 51a. [Google Scholar] [CrossRef]
- Fereyre, P.; Mayer, F.; Fournier, M.; Buton, C.; de Brugière, T.G.; Barbier, R. Electron Multiplying Device Made on a 180 nm Standard CMOS Imaging Technology. In Proceedings of the IISW, Vaals, The Netherlands, 8–11 June 2015. [Google Scholar]
- Dunford, A.; Stefanov, K.; Holland, A. Low voltage electron multiplying CCD in a CMOS process. In Proceedings of the High Energy, Optical, and Infrared Detectors for Astronomy VII, Edinburgh, UK, 26 June–1 July 2016; Holland, A.D., Beletic, J., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9915, p. 99152Y. [Google Scholar] [CrossRef]
- Stefanov, K.D.; Dunford, A.; Holland, A.D. Electron Multiplying Low-Voltage CCD with Increased Gain. IEEE Trans. Electron Devices 2018, 65, 2990–2996. [Google Scholar] [CrossRef]
- Yamada, T.; Fukumoto, A. Trench CCD image sensor. IEEE Trans. Consum. Electron. 1989, 35, 360–367. [Google Scholar] [CrossRef]
- Fossum, E. A novel trench-defined MISIM CCD structure for X-ray imaging and other applications. IEEE Electron Device Lett. 1989, 10, 177–179. [Google Scholar] [CrossRef]
- Touron, P.; Roy, F.; Magnan, P.; Marcelot, O.; Demiguel, S.; Virmontois, C. Capacitive Trench-Based Charge Transfer Device. IEEE Electron Device Lett. 2020, 41, 1388–1391. [Google Scholar] [CrossRef]
- Salih Alj, A.; Touron, P.; Roy, F.; Demiguel, S.; Michelot, J.; Virmontois, C.; Magnan, P.; Goiffon, V. Capacitive Deep Trench Isolation-Based CCD-on-CMOS Image Sensor Sensitivity to Total Ionizing Dose. IEEE Trans. Nucl. Sci. 2023, 70, 2018–2026. [Google Scholar] [CrossRef]
- Pratlong, J.; Jerram, P.; Tsiolis, G.; Arkesteijn, V.; Donegan, P.; Korthout, L. TDI CMOS image sensor for Earth Observation. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; Sodnik, Z., Karafolas, N., Cugny, B., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 11180, p. 111806H. [Google Scholar] [CrossRef]
- Brodersen, R.; Buss, D.; Tasch, A. Experimental characterization of transfer Efficiency in charge-coupled devices. IEEE Trans. Electron Devices 1975, 22, 40–46. [Google Scholar] [CrossRef]
- Engeler, W.E.; Tiemann, J.J.; Baertsch, R.D. Surface-Charge Transport in a Multielement Charge-Transfer Structure. J. Appl. Phys. 2003, 43, 2277–2285. Available online: https://pubs.aip.org/aip/jap/article-pdf/43/5/2277/10563537/2277_1_online.pdf (accessed on 26 October 2023). [CrossRef]
- Janesick, J. Photon Transfer; SPIE: Bellingham, WA, USA, 2007; pp. 289–290. [Google Scholar]
- Prigozhin, G.; Burke, B.; Bautz, M.; Kissel, S.; LaMarr, B. CCD Charge Injection Structure at Very Small Signal Levels. IEEE Trans. Electron Devices 2008, 55, 2111–2120. [Google Scholar] [CrossRef]
- Hynecek, J. CCM-a new low-noise charge carrier multiplier suitable for detection of charge in small pixel CCD image sensors. IEEE Trans. Electron Devices 1992, 39, 1972–1975. [Google Scholar] [CrossRef]
- Synopsys. Sentaurus Device User Guide; 2020.09 ed.; Synopsys: Mountain View, CA, USA, 2020. [Google Scholar]
- Bush, N.; Heymes, J.; Hall, D.; Holland, A.; Jordan, D. Measurement and optimization of clock-induced charge in electron multiplying charge-coupled devices. J. Astron. Telesc. Instruments Syst. 2021, 7, 016002. [Google Scholar] [CrossRef]
- Marcelot, O.; Goiffon, V.; Magnan, P. Exploration of Pinned Photodiode Radiation Hardening Solutions Through TCAD Simulations. IEEE Trans. Electron Devices 2019, 66, 3411–3416. [Google Scholar] [CrossRef]
- Moll, J.; Van Overstraeten, R. Charge multiplication in silicon p-n junctions. Solid-State Electron. 1963, 6, 147–157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcelot, O.; Morvan, M.; Salih Alj, A.; Demiguel, S.; Virmontois, C.; Rouvie, A.; Estribeau, M.; Goiffon, V. Development of a Charge-Multiplication CMOS Image Sensor Based on Capacitive Trench for Low-Light-Level Imaging. Sensors 2023, 23, 9518. https://doi.org/10.3390/s23239518
Marcelot O, Morvan M, Salih Alj A, Demiguel S, Virmontois C, Rouvie A, Estribeau M, Goiffon V. Development of a Charge-Multiplication CMOS Image Sensor Based on Capacitive Trench for Low-Light-Level Imaging. Sensors. 2023; 23(23):9518. https://doi.org/10.3390/s23239518
Chicago/Turabian StyleMarcelot, Olivier, Marjorie Morvan, Antoine Salih Alj, Stephane Demiguel, Cedric Virmontois, Anne Rouvie, Magali Estribeau, and Vincent Goiffon. 2023. "Development of a Charge-Multiplication CMOS Image Sensor Based on Capacitive Trench for Low-Light-Level Imaging" Sensors 23, no. 23: 9518. https://doi.org/10.3390/s23239518
APA StyleMarcelot, O., Morvan, M., Salih Alj, A., Demiguel, S., Virmontois, C., Rouvie, A., Estribeau, M., & Goiffon, V. (2023). Development of a Charge-Multiplication CMOS Image Sensor Based on Capacitive Trench for Low-Light-Level Imaging. Sensors, 23(23), 9518. https://doi.org/10.3390/s23239518