Comparing the Lower-Limb Muscle Activation Patterns of Simulated Walking Using an End-Effector-Type Robot with Real Level and Stair Walking in Children with Spastic Bilateral Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Devices
2.3. Assessment Protocol
2.4. Electromyography Measurement
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Degree of Muscle Activation in Each Gait Phase
3.2. Onset–Offset of Muscle Activity
4. Discussion
4.1. Comparison of Muscle Activation Patterns between Simulated and Real-Life Gait Conditions
4.2. Comparison of Onset–Offset of Muscle Activity
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vitrikas, K.; Dalton, H.; Breish, D. Cerebral Palsy: An Overview. Am. Fam. Physician 2020, 101, 213–220. [Google Scholar]
- Ashwal, S.; Russman, B.S.; Blasco, P.A.; Miller, G.; Sandler, A.; Shevell, M.; Stevenson, R. Practice parameter: Diagnostic assessment of the child with cerebral palsy: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2004, 62, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Smithers-Sheedy, H.; Badawi, N.; Blair, E.; Cans, C.; Himmelmann, K.; Krägeloh-Mann, I.; McIntyre, S.; Slee, J.; Uldall, P.; Watson, L.; et al. What constitutes cerebral palsy in the twenty-first century? Dev. Med. Child Neurol. 2014, 56, 323–328. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, T.M. Diagnosis, treatment, and prevention of cerebral palsy. Clin. Obstet. Gynecol. 2008, 51, 816–828. [Google Scholar] [CrossRef] [Green Version]
- Bjornson, K.F.; McLaughlin, J.F. The measurement of health-related quality of life (HRQL) in children with cerebral palsy. Eur. J. Neurol. 2001, 8 (Suppl. 5), 183–193. [Google Scholar] [CrossRef] [PubMed]
- Vargus-Adams, J. Health-related quality of life in childhood cerebral palsy. Arch. Phys. Med. Rehabil. 2005, 86, 940–945. [Google Scholar] [CrossRef]
- Ko, J.; Lee, B.-H.; Kim, M. Relationship between Function and Health-Related Quality of Life of School-Aged Children with Cerebral Palsy. J. Phys. Ther. Sci. 2011, 23, 189–195. [Google Scholar] [CrossRef]
- Booth, A.T.C.; Buizer, A.I.; Meyns, P.; Oude Lansink, I.L.B.; Steenbrink, F.; van der Krogt, M.M. The efficacy of functional gait training in children and young adults with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2018, 60, 866–883. [Google Scholar] [CrossRef]
- Grecco, L.A.; Tomita, S.M.; Christovão, T.C.; Pasini, H.; Sampaio, L.M.; Oliveira, C.S. Effect of treadmill gait training on static and functional balance in children with cerebral palsy: A randomized controlled trial. Braz. J. Phys. Ther. 2013, 17, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.; Pinto, S.M.; Chagas, D.D.V.; Praxedes Dos Santos, J.L.; de Sousa Oliveira, T.; Batista, L.A. Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2017, 98, 2332–2344. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Andersson, G.B.; Fermier, R.W.; Stern, D.; Galante, J.O. A study of lower-limb mechanics during stair-climbing. J. Bone Jt. Surg. Am. 1980, 62, 749–757. [Google Scholar] [CrossRef]
- Jevsevar, D.S.; Riley, P.O.; Hodge, W.A.; Krebs, D.E. Knee kinematics and kinetics during locomotor activities of daily living in subjects with knee arthroplasty and in healthy control subjects. Phys. Ther. 1993, 73, 229–239, discussion 240–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesse, S.; Waldner, A.; Tomelleri, C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 2010, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meseguer-Henarejos, A.B.; Sánchez-Meca, J.; López-Pina, J.A.; Carles-Hernández, R. Inter- and intra-rater reliability of the Modified Ashworth Scale: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 576–590. [Google Scholar] [CrossRef]
- Ansari, N.N.; Naghdi, S.; Arab, T.K.; Jalaie, S. The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: Limb and muscle group effect. NeuroRehabilitation 2008, 23, 231–237. [Google Scholar] [CrossRef]
- Dreher, T.; Brunner, R.; Vegvari, D.; Heitzmann, D.; Gantz, S.; Maier, M.W.; Braatz, F.; Wolf, S.I. The effects of muscle-tendon surgery on dynamic electromyographic patterns and muscle tone in children with cerebral palsy. Gait Posture 2013, 38, 215–220. [Google Scholar] [CrossRef]
- Alotaibi, M.; Long, T.; Kennedy, E.; Bavishi, S. The efficacy of GMFM-88 and GMFM-66 to detect changes in gross motor function in children with cerebral palsy (CP): A literature review. Disabil. Rehabil. 2014, 36, 617–627. [Google Scholar] [CrossRef]
- Song, K.J.; Chun, M.H.; Lee, J.; Lee, C. The effect of robot-assisted gait training on cortical activation in stroke patients: A functional near-infrared spectroscopy study. NeuroRehabilitation 2021, 49, 65–73. [Google Scholar] [CrossRef]
- Koo, K.I.; Hwang, C.H. Five-day rehabilitation of patients undergoing total knee arthroplasty using an end-effector gait robot as a neuromodulation blending tool for deafferentation, weight offloading and stereotyped movement: Interim analysis. PLoS ONE 2020, 15, e0241117. [Google Scholar] [CrossRef]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.Y.; Su, P.F.; Chung, C.H.; Hsia, C.C.; Chang, C.H. Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications. PLoS ONE 2017, 12, e0169151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vette, A.H.; Watt, J.M.; Lewicke, J.; Watkins, B.; Burkholder, L.M.; Andersen, J.; Jhangri, G.S.; Dulai, S. The utility of normative foot floor angle data in assessing toe-walking. Foot 2018, 37, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Seong, Y.J.; Woo, H.; Yoo, B.; Shim, D.; Kim, E.S.; Rha, D.W. Paralysis of the gastrocnemius medial head differentially affects gait patterns and muscle activity during level and stair ascent locomotion. Gait Posture 2019, 72, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Madeleine, P.; Graven-Nielsen, T.; Merletti, R.; Arendt-Nielsen, L. Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle. Eur. J. Appl. Physiol. 2002, 86, 469–478. [Google Scholar] [CrossRef]
- Bilodeau, M.; Schindler-Ivens, S.; Williams, D.M.; Chandran, R.; Sharma, S.S. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J. Electromyogr. Kinesiol. 2003, 13, 83–92. [Google Scholar] [CrossRef]
- Mathiassen, S.E.; Aminoff, T. Motor control and cardiovascular responses during isoelectric contractions of the upper trapezius muscle: Evidence for individual adaptation strategies. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 434–444. [Google Scholar] [CrossRef]
- Winter, D.A.; Yack, H.J. EMG profiles during normal human walking: Stride-to-stride and inter-subject variability. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 402–411. [Google Scholar] [CrossRef]
- Tedroff, K.; Knutson, L.M.; Soderberg, G.L. Synergistic muscle activation during maximum voluntary contractions in children with and without spastic cerebral palsy. Dev. Med. Child Neurol. 2006, 48, 789–796. [Google Scholar] [CrossRef]
- Hodges, P.W.; Bui, B.H. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr. Clin. Neurophysiol. 1996, 101, 511–519. [Google Scholar]
- Solnik, S.; Rider, P.; Steinweg, K.; DeVita, P.; Hortobágyi, T. Teager-Kaiser energy operator signal conditioning improves EMG onset detection. Eur. J. Appl. Physiol. 2010, 110, 489–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hortobágyi, T.; Solnik, S.; Gruber, A.; Rider, P.; Steinweg, K.; Helseth, J.; DeVita, P. Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation. Gait Posture 2009, 29, 558–564. [Google Scholar] [CrossRef]
- Hesse, S.; Uhlenbrock, D.; Sarkodie-Gyan, T. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support. Clin. Rehabil 1999, 13, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Hidler, J.M.; Wall, A.E. Alterations in muscle activation patterns during robotic-assisted walking. Clin. Biomech. 2005, 20, 184–193. [Google Scholar] [CrossRef]
- Schmidt, H. Muscle activation patterns of healthy subjects during floor walking and stair climbing on an end-effector-based gait rehabilitation robot. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007. [Google Scholar]
- Joseph, J.; Watson, R. Telemetering electromyography of muscles used in walking up and down stairs. J. Bone Jt. Surg. Br. 1967, 49, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Close, J.R.; Todd, F.N. The phasic activity of the muscles of the lower extremity and the effect of tendon transfer. J. Bone Jt. Surg. Am. 1959, 41-a, 189–208. [Google Scholar] [CrossRef]
- Lyons, K.; Perry, J.; Gronley, J.K.; Barnes, L.; Antonelli, D. Timing and relative intensity of hip extensor and abductor muscle action during level and stair ambulation. An EMG study. Phys. Ther. 1983, 63, 1597–1605. [Google Scholar] [CrossRef] [Green Version]
- Cappellini, G.; Ivanenko, Y.P.; Martino, G.; MacLellan, M.J.; Sacco, A.; Morelli, D.; Lacquaniti, F. Immature Spinal Locomotor Output in Children with Cerebral Palsy. Front. Physiol. 2016, 7, 478. [Google Scholar] [CrossRef] [Green Version]
- Cappellini, G.; Sylos-Labini, F.; MacLellan, M.J.; Sacco, A.; Morelli, D.; Lacquaniti, F.; Ivanenko, Y. Backward walking highlights gait asymmetries in children with cerebral palsy. J. Neurophysiol. 2018, 119, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Damiano, D.L.; Martellotta, T.L.; Sullivan, D.J.; Granata, K.P.; Abel, M.F. Muscle force production and functional performance in spastic cerebral palsy: Relationship of cocontraction. Arch. Phys. Med. Rehabil. 2000, 81, 895–900. [Google Scholar] [CrossRef]
- Prosser, L.A.; Lee, S.C.; VanSant, A.F.; Barbe, M.F.; Lauer, R.T. Trunk and hip muscle activation patterns are different during walking in young children with and without cerebral palsy. Phys. Ther. 2010, 90, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Lewerenz, A.; Wolf, S.I.; Dreher, T.; Krautwurst, B.K. Performance of stair negotiation in patients with cerebral palsy and stiff knee gait. Gait Posture 2019, 71, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ounpuu, S. Using surface electrodes for the evaluation of the rectus femoris, vastus medialis and vastus lateralis muscles in children with cerebral palsy. Gait Posture 1997, 5, 211–216. [Google Scholar] [CrossRef]
Participants | Age | Gender | Etiology | GMFCS Level | Ankle PF Spasticity * | Hamstring Spasticity * | Hip Adductor Spasticity * | Height (cm) | Weight (kg) | GMFM 88 Score | More Involved Side | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Right | Left | Right | Left | Right | Left | |||||||||
1 † | 9Y6M | Male | PVL | II | 1 | 2 | 1 | 1 | 1 | 1 | 137.0 | 37.4 | 72.0 | Left |
2 | 5Y9M | Male | PVL | I | 1 | 1 | 0 | 0 | 0 | 0 | 110.6 | 18.7 | 98.9 | Right |
3 | 8Y10M | Male | Pachygyria, polymicrogyria | I | 1 | 1 | 0 | 0 | 0 | 0 | 124.7 | 23.4 | 99.7 | Right |
4 | 7Y7M | Female | PVL | II | 1 | 1+ | 0 | 1 | 0 | 0 | 126.7 | 34.8 | 96.0 | Left |
5 † | 11Y11M | Male | PVL | I | 1 | 1 | 0 | 0 | 0 | 0 | 156.8 | 58.9 | 87.9 | Right |
6 | 6Y | Female | PVL | II | 1 | 1+ | 1 | 1 | 1 | 1 | 108.8 | 15.1 | 89.7 | Left |
7 | 12Y1M | Male | PVL | I | 1 | 1 | 0 | 0 | 0 | 0 | 146.1 | 38.0 | 99.2 | Left |
8 | 10Y1M | Male | PVL | I | 1 | 1 | 0 | 0 | 0 | 0 | 142.1 | 31.5 | 91.2 | Left |
9 | 12Y4M | Female | PVL | I | 1 | 1 | 0 | 0 | 0 | 0 | 156.0 | 62.0 | - | Right |
Comparison of %MCRL (%, median [interquartile range]) of the VL between simulated versus real gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
RLevel | 100.0 [79.7, 100.0] | 83.0 [58.0, 100.0] | 22.1 [17.0, 39.9] | 13.6 [10.0, 20.7] | 11.2 [8.8, 19.1] | 16.9 [11.3, 17.6] | 17.9 [7.3, 19.7] | 10.0 [8.6, 16.2] | 11.6 [9.9, 12.6] | 39.2 [29.5, 72.7] |
Slevel | 37.4 [11.7, 113.2] | 35.0 [14.6, 74.4] | 39.0 [20.4, 54.2] | 33.9 [20.0, 45.5] | 39.0 [17.3, 41.1] | 23.8 [21.9, 40.1] | 22.7 [11.7, 29.0] | 21.7 [11.4, 26.8] | 33.0 [13.1, 111.7] | 18.7 [11.7, 88.8] |
p-value | 0.359 | 0.250 | 0.301 | 0.055 | 0.203 | 0.570 | 0.734 | 0.074 | 0.027 † | 0.652 |
Rstair | 113.8 [52.5, 171.5] | 143.5 [75.5, 212.9] | 88.0 [28.2, 103.5] | 53.4 [29.9, 87.0] | 57.7 [20.8, 84.0] | 35.9 [22.8, 61.8] | 13.1 [10.6, 28.6] | 16.6 [14.4, 22.0] | 13.3 [11.7, 27.7] | 26.0 [12.7, 57.4] |
Sstair | 32.9 [20.2, 148.0] | 99.4 [34.3, 146.2] | 72.1 [30.5, 119.6] | 39.4 [26.0, 105.4] | 35.2 [11.8, 84.7] | 28.6 [11.8, 54.9] | 17.9 [11.4, 28.9] | 12.8 [10.2, 21.4] | 19.3 [11.3, 29.5] | 26.3 [12.0, 58.1] |
p-value | 0.074 | 0.020 † | 0.652 | 0.910 | 0.570 | 0.570 | 0.820 | 0.570 | 0.301 | 0.164 |
Comparison of %MCRL (%, median [interquartile range]) of the BF between simulated versus real gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
Rlevel | 86.7 [61.3, 100.0] | 77.0 [49.6, 99.0] | 84.5 [55.7, 91.9] | 37.6 [18.5, 41.1] | 27.8 [16.0, 36.6] | 13.5 [11.7, 29.8] | 27.7 [19.0, 38.9] | 25.6 [8.4, 28.8] | 28.6 [21.0, 52.8] | 92.8 [63.3, 96.3] |
Slevel | 24.6 [15.9, 39.6] | 56.6 [44.4, 65.2] | 71.0 [53.7, 85.4] | 63.2 [60.7, 92.7] | 63.9 [48.2, 73.6] | 38.1 [25.4, 47.9] | 29.4 [15.4, 36.9] | 33.2 [19.4, 35.4] | 22.1 [17.1, 27.7] | 25.5 [20.6, 32.5] |
p-value | 0.004 † | 0.164 | 0.734 | 0.012 † | 0.039 † | 0.008 † | 1.000 | 0.250 | 0.055 | 0.004 † |
Rstair | 73.2 [70.0, 128.0] | 103.7 [86.9, 134.2] | 115.1 [63.8, 142.7] | 92.3 [75.6, 147.5] | 60.2 [58.2, 101.5] | 50.6 [25.8, 113.5] | 51.1 [43.9, 108.4] | 75.5 [32.7, 89.5] | 53.9 [34.6, 65.4] | 47.4 [40.4, 63.6] |
Sstair | 27.8 [24.7, 37.9] | 56.2 [48.4, 98.1] | 92.6 [64.4, 121.3] | 96.2 [68.1, 113.2] | 66.2 [55.3, 83.7] | 33.4 [24.5, 55.6] | 18.9 [15.6, 40.1] | 19.1 [13.0, 38.5] | 25.9 [19.6, 44.1] | 23.7 [20.1, 27.8] |
p-value | 0.020 † | 0.098 | 0.910 | 1.000 | 0.910 | 0.164 | 0.055 | 0.250 | 0.429 | 0.020 † |
Comparison of %MCRL (%, median [interquartile range]) of the TA between simulated versus real gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
Rlevel | 100.0 [89.7, 100.0] | 43.2 [35.1, 52.7] | 25.9 [21.2, 34.0] | 17.5 [12.3, 30.2] | 19.2 [16.6, 31.0] | 24.9 [15.5, 34.8] | 45.5 [37.7, 80.9] | 64.5 [36.3, 73.7] | 44.2 [19.3, 51.2] | 59.2 [20.9, 76.9] |
Slevel | 22.2 [18.2, 34.6] | 31.9 [18.5, 64.2] | 31.1 [22.7, 57.1] | 24.6 [10.9, 47.7] | 26.6 [14.9, 61.2] | 35.2 [13.7, 53.8] | 33.1 [23.0, 44.8] | 28.9 [22.8, 58.3] | 24.3 [17.4, 79.3] | 27.5 [15.8, 60.1] |
p-value | 0.004 † | 0.910 | 0.359 | 0.301 | 0.426 | 0.098 | 0.250 | 0.301 | 0.496 | 0.164 |
Rstair | 103.3 [64.7, 149.4] | 59.8 [33.3, 76.5] | 33.8 [23.3, 71.5] | 29.6 [18.1, 77.8] | 38.9 [28.7, 45.1] | 46.2 [43.9, 56.6] | 72.8 [30.0, 75.4] | 97.9 [81.8, 129.2] | 148.6 [126.1, 155.5] | 99.4 [92.1, 158.8] |
Sstair | 22.5 [19.5, 25.5] | 38.6 [26.2, 64.5] | 66.0 [39.0, 105.9] | 52.8 [36.8, 79.5] | 43.6 [11.5, 63.2] | 38.2 [10.7, 60.2] | 45.2 [30.0, 73.2] | 30.6 [17.1, 77.9] | 38.6 [11.7, 65.9] | 18.2 [12.0, 29.50] |
p-value | 0.004 † | 0.129 | 0.496 | 0.496 | 1.000 | 0.250 | 0.429 | 0.129 | 0.012 † | 0.012 † |
Comparison of %MCRL (%, median [interquartile range]) of medial the GAST between simulated versus real gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
Rlevel | 46.0 [17.7, 83.7] | 68.0 [29.8, 72.7] | 85.8 [48.2, 92.3] | 84. [74.3, 100.0] | 79.5 [56.4, 91.1] | 39.2 [15.0, 45.5] | 9.3 [7.4, 10.2] | 8.7 [4.7, 13.3] | 12.0 [4.6, 17.8] | 17.1 [5.9, 37.0] |
Slevel | 15.3 [11.4, 23.8] | 17.5 [9.3, 25.5] | 30.8 [10.8, 72.2] | 51.7 [10.7, 72.3] | 39.6 [16.0, 67.4] | 33.1 [17.1, 62.1] | 18.1 [12.7, 36.1] | 16.4 [13.1, 37.3] | 13.2 [7.0, 24.2] | 14.4 [12.3, 19.3] |
p-value | 0.074 | 0.074 | 0.020 † | 0.055 | 0.164 | 0.910 | 0.012 † | 0.020 † | 0.359 | 0.652 |
Rstair | 43.1 [12.1, 53.0] | 44.0 [18.3, 56.5] | 71.7 [21.7, 78.8] | 57.6 [26.2, 81.7] | 107.3 [65.0, 185.8] | 123.2 [77.7, 186.3] | 54.9 [45.9, 83.0] | 16.2 [8.6, 24.1] | 12.2 [6.3, 18.6] | 30.8 [13.0, 43.1] |
Sstair | 12.4 [8.2, 30.9] | 21.0 [10.5, 31.2] | 27.0 [11.2, 32.6] | 24.5 [8.1, 65.9] | 37.3 [13.5, 64.4] | 50.9 [17.9, 57.4] | 31.6 [26.1, 41.8] | 20.9 [10.8, 34.8] | 12.0 [8.1, 34.6] | 10.7 [7.1, 30.0] |
p-value | 0.055 | 0.040 † | 0.074 | 0.164 | 0.012 † | 0.008 † | 0.020 † | 0.820 | 0.734 | 0.040 † |
Onset and Offset (% of Gait Cycle, Median [Interquartile Range]) of EMG Activity of Each Muscle | ||||||||
---|---|---|---|---|---|---|---|---|
VL | BF | TA | Medial GAST | |||||
Onset | Offset | Onset | Offset | Onset | Offset | Onset | Offset | |
RLevel | −5 [−10, −5] | 20 [15, 30] | −15 [−15, −10] | 30 [30, 35] | −35 [−40, −35] | 10 [5, 20] | 10 [0, 15] | 55 [50, 60] |
SLevel | −10 [−15, 3] | 48 [39, 59] | 10 [10, 20] | 55 [55, 70] | 8 [−1, 20] | 73 [39, 90] | 20 [20, 20] | 70 [60, 85] |
p-value | 0.798 | 0.036 † | 0.009 † | 0.009 † | 0.030 † | 0.014 † | 0.104 | 0.063 |
RStair | 0 [−5, 0] | 50 [40, 60] | 5 [0, 10] | 50 [45, 55] | −30 [−45, −25] | 30 [10, 50] | 5 [0, 30] | 70 [65, 75] |
SStair | −5 [−10, 5] | 55 [45, 65] | 10 [10, 10] | 55 [50, 60] | 10 [−15, 15] | 75 [35, 90] | 25 [9, 51] | 65 [60, 76] |
p-value | 0.888 | 0.354 | 0.855 | 0.268 | 0.097 | 0.109 | 0.182 | 0.610 |
RLevel | −5 [−10, −5] | 20 [15, 30] | −15 [−15, −10] | 30 [30, 35] | −35 [−40, −35] | 10 [5, 20] | 10 [0, 15] | 55 [50, 60] |
RStair | 0 [−5, 0] | 50 [40, 60] | 5 [0, 10] | 50 [45, 55] | −30 [−45, −25] | 30 [10, 50] | 5 [0, 30] | 70 [65, 75] |
p-value | 0.250 | 0.009 † | 0.022 † | 0.022 † | 0.809 | 0.284 | 0.233 | 0.009 † |
SLevel | −10 [−15, 3] | 48 [39, 59] | 10 [10, 20] | 55 [55, 70] | 8 [−1, 20] | 73 [39, 90] | 20 [20, 20] | 70 [60, 85] |
SStair | −5 [−10, 5] | 55 [45, 65] | 10 [10, 10] | 55 [50, 60] | 10 [−15, 15] | 75 [35, 90] | 25 [9, 51] | 65 [60, 76] |
p-value | 0.099 | 0.672 | 0.071 | 0.444 | 0.583 | 0.674 | 0.581 | 0.854 |
Comparison of %MCRL (%, median [interquartile range]) of the VL between simulated level versus stair gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
SLevel | 37.4 [11.7, 113.2] | 35.0 [14.6, 74.4] | 39.0 [20.4, 54.2] | 33.9 [20.0, 45.5] | 39.0 [17.3, 41.1] | 23.8 [21.9, 40.1] | 22.7 [11.7, 29.0] | 21.7 [11.4, 26.8] | 33.0 [13.1, 111.7] | 18.7 [11.7, 88.8] |
SStair | 32.9 [20.2, 148.0] | 99.4 [34.3, 146.2] | 72.1 [30.5, 119.6] | 39.4 [26.0, 105.4] | 35.2 [11.8, 84.7] | 28.6 [11.8, 54.9] | 17.9 [11.4, 28.9] | 12.8 [10.2, 21.4] | 19.3 [11.3, 29.5] | 26.3 [12.0, 58.1] |
p-value | 0.429 | 0.008 † | 0.040 † | 0.074 | 0.074 | 1.000 | 1.000 | 0.359 | 0.429 | 1.000 |
Comparison of %MCRL (%, median [interquartile range]) of the BF between simulated level versus stair gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
SLevel | 24.6 [15.9, 39.6] | 56.6 [44.4, 65.2] | 71.0 [53.7, 85.4] | 63.2 [60.7, 92.7] | 63.9 [48.2, 73.6] | 38.1 [25.4, 47.9] | 29.4 [15.4, 36.9] | 33.2 [19.4, 35.4] | 22.1 [17.1, 27.7] | 25.5 [20.6, 32.5] |
SStair | 27.8 [24.7, 37.9] | 56.2 [48.4, 98.1] | 92.6 [64.4, 121.3] | 96.2 [68.1, 113.2] | 66.2 [55.3, 83.7] | 33.4 [24.5, 55.6] | 18.9 [15.6, 40.1] | 19.1 [13.0, 38.5] | 25.9 [19.6, 44.1] | 23.7 [20.1, 27.8] |
p-value | 0.820 | 0.164 | 0.098 | 0.040 † | 0.910 | 0.429 | 0.820 | 0.910 | 0.359 | 0.429 |
Comparison of %MCRL (%, median [interquartile range]) of the TA between simulated level versus stair gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
SLevel | 22.2 [18.2, 34.6] | 31.9 [18.5, 64.2] | 31.1 [22.7, 57.1] | 24.6 [10.9, 47.7] | 26.6 [14.9, 61.2] | 35.2 [13.7, 53.8] | 33.1 [23.0, 44.8] | 28.9 [22.8, 58.3] | 24.3 [17.4, 79.3] | 27.5 [15.8, 60.1] |
SStair | 22.5 [19.5, 25.5] | 38.6 [26.2, 64.5] | 66.0 [39.0, 105.9] | 52.8 [36.8, 79.5] | 43.6 [11.5, 63.2] | 38.2 [10.7, 60.2] | 45.2 [30.0, 73.2] | 30.6 [17.1, 77.9] | 38.6 [11.7, 65.9] | 18.2 [12.0, 29.50] |
p-value | 0.910 | 0.820 | 0.429 | 0.098 | 0.652 | 0.496 | 0.820 | 0.734 | 1.000 | 0.203 |
Comparison of %MCRL (%, median [interquartile range]) of the medial GAST between simulated level versus stair gait conditions | ||||||||||
phase 1 | phase 2 | phase 3 | phase 4 | phase 5 | phase 6 | phase 7 | phase 8 | phase 9 | phase 10 | |
SLevel | 15.3 [11.4, 23.8] | 17.5 [9.3, 25.5] | 30.8 [10.8, 72.2] | 51.7 [10.7, 72.3] | 39.6 [16.0, 67.4] | 33.1 [17.1, 62.1] | 18.1 [12.7, 36.1] | 16.4 [13.1, 37.3] | 13.2 [7.0, 24.2] | 14.4 [12.3, 19.3] |
SStair | 12.4 [8.2, 30.9] | 21.0 [10.5, 31.2] | 27.0 [11.2, 32.6] | 24.5 [8.1, 65.9] | 37.3 [13.5, 64.4] | 50.9 [17.9, 57.4] | 31.6 [26.1, 41.8] | 20.9 [10.8, 34.8] | 12.0 [8.1, 34.6] | 10.7 [7.1, 30.0] |
p-value | 0.910 | 1.000 | 0.652 | 0.570 | 0.496 | 0.570 | 0.496 | 0.820 | 1.000 | 0.734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, Y.; Hong, J.; Shim, D.; Choi, J.-o.; Rha, D.-w. Comparing the Lower-Limb Muscle Activation Patterns of Simulated Walking Using an End-Effector-Type Robot with Real Level and Stair Walking in Children with Spastic Bilateral Cerebral Palsy. Sensors 2023, 23, 6579. https://doi.org/10.3390/s23146579
Ahn Y, Hong J, Shim D, Choi J-o, Rha D-w. Comparing the Lower-Limb Muscle Activation Patterns of Simulated Walking Using an End-Effector-Type Robot with Real Level and Stair Walking in Children with Spastic Bilateral Cerebral Palsy. Sensors. 2023; 23(14):6579. https://doi.org/10.3390/s23146579
Chicago/Turabian StyleAhn, Yongjin, Juntaek Hong, Dain Shim, Joong-on Choi, and Dong-wook Rha. 2023. "Comparing the Lower-Limb Muscle Activation Patterns of Simulated Walking Using an End-Effector-Type Robot with Real Level and Stair Walking in Children with Spastic Bilateral Cerebral Palsy" Sensors 23, no. 14: 6579. https://doi.org/10.3390/s23146579
APA StyleAhn, Y., Hong, J., Shim, D., Choi, J. -o., & Rha, D. -w. (2023). Comparing the Lower-Limb Muscle Activation Patterns of Simulated Walking Using an End-Effector-Type Robot with Real Level and Stair Walking in Children with Spastic Bilateral Cerebral Palsy. Sensors, 23(14), 6579. https://doi.org/10.3390/s23146579