Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory Monitoring from Mobile Device Built-In Cameras
Abstract
:1. Introduction
2. Measuring System: Description and Working Principle
2.1. Remote Photoplethysmography: Principle of Work
2.2. Hardware for Video Data Recording
2.3. Algorithm for the Video Preprocessing
2.3.1. Identification of Regions of Interest (ROIs) on Face and Torso
2.3.2. Respiratory Signal from the ROI Torso
2.3.3. r-PPG Signal from the ROIs Face
Green Channel Analysis
Modwtmra
Chrominance-Based Signal Processing Method (CHROM)
Plane Orthogonal to Skin (POS)
Blind Source Separation Analysis
3. Tests and Experimental Trials
Participants and Tests
4. Data Analysis
- (1)
- Single-ROI approach: HR values were separately estimated from the r-PPG signals extracted from the three identified ROIs (i.e., LCheek, RCheek, and FHead) per each post-processing technique.
- (2)
- Multi-ROI approach: HR values were estimated by averaging the HR values gathered from all the ROIs as the following equation:
- (3)
- SNR-based approach: per each post-processing technique, the signal that better represents the pulsatile waveform was identified by evaluating the signal-to-noise ratio (i.e., SNR) according to [35]. Only the signal with the highest SNR value was used for HR estimation.
5. Results
5.1. Respiratory Rate Estimation
5.2. Heart Rate Estimation
5.2.1. Single-ROI Approach
5.2.2. Multi-ROI Approach
5.2.3. SNR-Based Approach
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Pinho Ferreira, N.; Gehin, C.; Massot, B. A Review of Methods for Non-Invasive Heart Rate Measurement on Wrist. IRBM 2021, 42, 4–18. [Google Scholar] [CrossRef]
- Jain, P.K.; Tiwari, A.K. Heart Monitoring Systems—A Review. Comput. Biol. Med. 2014, 54, 1–13. [Google Scholar] [CrossRef]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, N.; Schena, E.; Silvestri, S.; Bonotti, F.; Aguzzi, D.; Viola, E.; Buccolini, F.; Massaroni, C. Contactless Vital Signs Monitoring from Videos Recorded with Digital Cameras: An Overview. Front. Physiol. 2022, 13, 801709. [Google Scholar] [CrossRef] [PubMed]
- Boric-Lubecke, O.; Lubecke, V.M.; Mostafanezhad, I.; Park, B.-K.; Massagram, W.; Jokanovic, B. Doppler Radar Architectures and Signal Processing for Heart Rate Extraction. Mikrotalasna Rev. 2009, 15, 12–17. [Google Scholar]
- Garbey, M.; Sun, N.; Merla, A.; Pavlidis, I. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans. Biomed. Eng. 2004, 54, 1418–1426. [Google Scholar] [CrossRef]
- Hassan, M.A.; Malik, A.S.; Fofi, D.; Saad, N.; Karasfi, B.; Ali, Y.S.; Meriaudeau, F. Heart Rate Estimation Using Facial Video: A Review. Biomed. Signal Process. Control 2017, 38, 346–360. [Google Scholar] [CrossRef]
- Bernardi, L.; Porta, C.; Gabutti, A.; Spicuzza, L.; Sleight, P. Modulatory Effects of Respiration. Auton. Neurosci. Basic Clin. 2001, 90, 47–56. [Google Scholar] [CrossRef]
- Han, B.; Ivanov, K.; Yan, Y.; Wang, L. Exploration of the Optimal Skin-Camera Distance for Facial Photoplethysmographic Imaging Measurement Using Cameras of Different Types. In Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare, London, UK, 14–16 October 2015. [Google Scholar] [CrossRef] [Green Version]
- Tayibnapis, I.R.; Yang, Y.M.; Lim, K.M. Blood Volume Pulse Extraction for Non-Contact Heart Rate Measurement by Digital Camera Using Singular Value Decomposition and Burg Algorithm. Energies 2018, 11, 1076. [Google Scholar] [CrossRef] [Green Version]
- Yin, R.-N.; Jia, R.-S.; Cui, Z.; Yu, J.-T.; Du, Y.-B.; Gao, L.; Sun, H.-M. Heart Rate Estimation Based on Face Video under Unstable Illumination. Appl. Intell. 2021, 51, 5388–5404. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Lu, F. Assessment of Deep Learning-Based Heart Rate Estimation Using Remote Photoplethysmography under Different Illuminations. arXiv 2021, arXiv:2107.13193. [Google Scholar]
- Song, R.; Zhang, S.; Cheng, J.; Li, C.; Chen, X. New Insights on Super-High Resolution for Video-Based Heart Rate Estimation with a Semi-Blind Source Separation Method. Comput. Biol. Med. 2020, 116, 103535. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Kim, H.; Park, K.S. Validation of Heart Rate Extraction Using Video Imaging on a Built-in Camera System of a Smartphone. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 2174–2177. [Google Scholar] [CrossRef]
- Datcu, D.; Cidota, M.; Lukosch, S.; Rothkrantz, L. Noncontact Automatic Heart Rate Analysis in Visible Spectrum by Specific Face Regions. In Proceedings of the 14th International Conference on Computer Systems and Technologies, Ruse, Bulgaria, 28–29 June 2013. [Google Scholar]
- Lin, Y.-C.; Lin, Y.-H. A Study of Color Illumination Effect on the SNR of RPPG Signals. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 4301–4304. [Google Scholar]
- Kwon, S.; Kim, J.; Lee, D.; Park, K. ROI Analysis for Remote Photoplethysmography on Facial Video. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 4938–4941. [Google Scholar]
- Lamba, P.S.; Virmani, D. Contactless Heart Rate Estimation from Face Videos. J. Stat. Manag. Syst. 2020, 23, 1275–1284. [Google Scholar] [CrossRef]
- Shoushan, M.M.; Reyes, B.A.; Rodriguez, A.M.; Chong, J.W. Non-Contact HR Monitoring via Smartphone and Webcam during Different Respiratory Maneuvers and Body Movements. IEEE J. Biomed. Health Inform. 2021, 25, 602–612. [Google Scholar] [CrossRef]
- van der Kooij, K.M.; Naber, M. An Open-Source Remote Heart Rate Imaging Method with Practical Apparatus and Algorithms. Behav. Res. Methods 2019, 51, 2106–2119. [Google Scholar] [CrossRef] [PubMed]
- Al-Naji, A.; Gibson, K.; Lee, S.H.; Chahl, J. Monitoring of Cardiorespiratory Signal: Principles of Remote Measurements and Review of Methods. IEEE Access 2017, 5, 15776–15790. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Durand, F.; Guttag, J. Detecting Pulse from Head Motions in Video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3430–3437. [Google Scholar] [CrossRef] [Green Version]
- Park, K.S.; Yoon, H. Ballistocardiography. In Seamless Healthcare Monitoring; Springer: Berlin/Heidelberg, Germany, 2018; pp. 127–155. [Google Scholar]
- Massaroni, C.; Schena, E.; Silvestri, S.; Taffoni, F.; Merone, M. Measurement System Based on RBG Camera Signal for Contactless Breathing Pattern and Respiratory Rate Monitoring. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Massaroni, C.; Lo Presti, D.; Formica, D.; Silvestri, S.; Schena, E. Non-Contact Monitoring of Breathing Pattern and Respiratory Rate via Rgb Signal Measurement. Sensors 2019, 19, 2758. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Prathosh, A.P.; Praveena, P. Real-Time Respiration Rate Measurement from Thoracoabdominal Movement with a Consumer Grade Camera. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2708–2711. [Google Scholar] [CrossRef]
- Shao, D.; Yang, Y.; Liu, C.; Tsow, F.; Yu, H.; Tao, N. Noncontact Monitoring Breathing Pattern, Exhalation Flow Rate and Pulse Transit Time. IEEE Trans. Biomed. Eng. 2014, 61, 2760–2767. [Google Scholar] [CrossRef]
- Hassan, M.A.; Malik, A.S.; Fofi, D.; Saad, N.; Meriaudeau, F. Novel Health Monitoring Method Using an RGB Camera. Biomed. Opt. Express 2017, 8, 4838. [Google Scholar] [CrossRef] [Green Version]
- Chari, P.; Kabra, K.; Karinca, D.; Lahiri, S.; Srivastava, D.; Kulkarni, K.; Chen, T.; Cannesson, M.; Jalilian, L.; Kadambi, A. Diverse R-PPG: Camera-based heart rate estimation for diverse subject skin-tones and scenes. arXiv 2020, arXiv:2010.12769. [Google Scholar]
- Allen, J. Photoplethysmography and Its Application in Clinical Physiological Measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davila, M.I.; Lewis, G.F.; Porges, S.W. The PhysioCam: A Novel Non-Contact Sensor to Measure Heart Rate Variability in Clinical and Field Applications. Front. Public Health 2017, 5, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poh, M.-Z.; McDuff, D.J.; Picard, R.W. Non-Contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation. Opt. Express 2010, 18, 10762. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Nowak, J. Measuring Pulse Rate with a Webcam. J. Med. Imaging Health Inform. 2012, 2, 87–92. [Google Scholar] [CrossRef]
- Wang, W.; Den Brinker, A.C.; Stuijk, S.; De Haan, G. Algorithmic Principles of Remote PPG. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Haan, G.; Jeanne, V. Robust Pulse Rate from Chrominance-Based RPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef]
- Schrumpf, F.; Frenzel, P.; Aust, C.; Osterhoff, G.; Fuchs, M. Assessment of Non-Invasive Blood Pressure Prediction from PPG and RPPG Signals Using Deep Learning. Sensors 2021, 21, 6022. [Google Scholar] [CrossRef]
- Chaichulee, S.; Villarroel, M.; Jorge, J.O.; Arteta, C.; McCormick, K.; Zisserman, A.; Tarassenko, L. Cardio-Respiratory Signal Extraction from Video Camera Data for Continuous Non-Contact Vital Sign Monitoring Using Deep Learning. Physiol. Meas. 2019, 40, 115001. [Google Scholar] [CrossRef] [Green Version]
- Viola, P.; Jones, M. Rapid Object Detection Using a Boosted Cascade of Simple Features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1, pp. I-511–I-518. [Google Scholar]
- Massaroni, C.; Lopes, D.S.; Lo Presti, D.; Schena, E.; Silvestri, S. Contactless Monitoring of Breathing Patterns and Respiratory Rate at the Pit of the Neck: A Single Camera Approach. J. Sens. 2018, 2018, 4567213. [Google Scholar] [CrossRef]
- von Arx, T.; Tamura, K.; Yukiya, O.; Lozanoff, S. The Face—A Vascular Perspective. A Literature Review. Swiss Dent. J. 2018, 128, 382–392. [Google Scholar]
- Horn, B.K.; Schunck, B.G. Determining Optical Flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Mateu-Mateus, M.; Guede-Fernandez, F.; Garcia-Gonzalez, M.A.; Ramos-Castro, J.J.; Fernandez-Chimeno, M. Camera-Based Method for Respiratory Rhythm Extraction from a Lateral Perspective. IEEE Access 2020, 8, 154924–154939. [Google Scholar] [CrossRef]
- Romano, C.; Schena, E.; Silvestri, S.; Massaroni, C. Non-Contact Respiratory Monitoring Using an RGB Camera for Real-World Applications. Sensors 2021, 21, 5126. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Tomari, R.; Nurshazwani Wan Zakaria, W.; Othman, N. Analysis of Non-Invasive Video Based Heart Rate Monitoring System Obtained from Various Distances and Different Facial Spot. In Proceedings of the International PostGraduate Conference on Applied Science & Physics, Johor, Malaysia, 7 December 2017; Institute of Physics Publishing: Bristol, UK, 2018; Volume 1049. [Google Scholar]
- Krolak, A. Influence of Skin Tone on Efficiency of Vision-Based Heart Rate Estimation. In Proceedings of the Polish Conference on Biocybernetics and Biomedical Engineering, Kraków, Poland, 20–22 September 2017. [Google Scholar]
- Tarvainen, M.P.; Ranta-aho, P.O.; Karjalainen, P.A. An Advanced Detrending Method with Application to HRV Analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Poh, M.Z.; McDuff, D.J.; Picard, R.W. Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam. IEEE Trans. Biomed. Eng. 2011, 58, 7–11. [Google Scholar] [CrossRef] [Green Version]
- McDuff, D.; Gontarek, S.; Picard, R.W. Remote Detection of Photoplethysmographic Systolic and Diastolic Peaks Using a Digital Camera. IEEE Trans. Biomed. Eng. 2014, 61, 2948–2954. [Google Scholar] [CrossRef]
- Tasli, H.E.; Gudi, A.; Den Uyl, M. Remote PPG based vital sign measurement using adaptive facial regions. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; Vicarious Perception Technologies Intelligent Systems Lab Amsterdam, University of Amsterdam: Amsterdam, The Netherlands, 2014; pp. 1410–1414. [Google Scholar]
- Lempe, G.; Zaunseder, S.; Wirthgen, T.; Zipster, S.; Malberg, H. ROI Selection for Remote Photoplethysmography. In Bildverarbeitung für die Medizin; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Stricker, R.; Müller, S.; Gross, H. Non-Contact Video-Based Pulse Rate Measurement on a Mobile Service Robot. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 1056–1062. [Google Scholar]
- Li, X.; Chen, J.; Zhao, G.; Pietikäinen, M. Remote Heart Rate Measurement From Face Videos under Realistic Situations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014. [Google Scholar]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote Plethysmographic Imaging Using Ambient Light. Opt. Express 2008, 16, 21434. [Google Scholar] [CrossRef] [Green Version]
- Unursaikhan, B.; Tanaka, N.; Sun, G.; Watanabe, S.; Yoshii, M.; Funahashi, K.; Sekimoto, F.; Hayashibara, F.; Yoshizawa, Y.; Choimaa, L.; et al. Development of a Novel Web Camera-Based Contact-Free Major Depressive Disorder Screening System Using Autonomic Nervous Responses Induced by a Mental Task and Its Clinical Application. Front. Physiol. 2021, 12, 642986. [Google Scholar] [CrossRef]
- Naik, G.R.; Kumar, D.K. An Overview of Independent Component Analysis and Its Applications. Informatica 2011, 35, 63r81. [Google Scholar]
- Choi, H.; Park, J.; Lim, W.; Yang, Y.M. Active-Beacon-Based Driver Sound Separation System for Autonomous Vehicle Applications. Appl. Acoust. 2021, 171, 107549. [Google Scholar] [CrossRef]
- Cardoso, J.-F. High-Order Contrasts for Independent Component Analysis. Neural Comput. 1999, 11, 157–192. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Scebba, G.; Da Poian, G.; Karlen, W. Multispectral Video Fusion for Non-Contact Monitoring of Respiratory Rate and Apnea. IEEE Trans. Biomed. Eng. 2020, 68, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Holton, B.D.; Mannapperuma, K.; Lesniewski, P.J.; Thomas, J.C. Signal Recovery in Imaging Photoplethysmography. Physiol. Meas. 2013, 34, 1499. [Google Scholar] [CrossRef]
Trial | User-Camera Distance [m] | Light Source | Illumination [lx] |
---|---|---|---|
0.5—Off | 0.5 | Natural Light | Median: 76.5; Range: 41–271 |
0.5—On | 0.5 | Light ring | Median: 180.5; Range: 148–288 |
1—Off | 1.0 | Natural Light | Median: 87.5; Range: 41–272 |
1—On | 1.0 | Light ring | Median: 149.5; Range: 114–289 |
Trial | MAE [Breaths·min−1] | RMSE [Breaths·min−1] |
---|---|---|
0.5—off | 0.47 | 1.74 |
0.5—on | 0.68 | 1.76 |
1—off | 0.62 | 2.50 |
1—on | 0.42 | 1.89 |
Light on, Light off | Light on, Light off | ||||
---|---|---|---|---|---|
r-PPG Post-Processing Techniques | ROI | d = 0.5 m | d = 1.0 m | d = 0.5 m | d = 1.0 m |
MOD ± LOAs [bpm] | MOD ± LOAs [bpm] | MOD ± LOAs [bpm] | MOD ± LOAs [bpm] | ||
Green Channel | LCheek | −0.11 ± 4.01 | −0.36 ± 8.74 | −0.18 ± 6.33 | −0.28 ± 7.24 |
FHead | −0.07 ± 8.92 | −0.20 ± 5.78 | 0.03 ± 6.15 | −0.30 ± 8.65 | |
RCheek | −0.04 ± 4.45 | −0.56 ± 7.81 | −0.04 ± 3.79 | −0.56 ± 8.15 | |
ROImean | −0.07 ± 4.06 | −0.37 ± 4.91 | −0.06 ± 3.65 | −0.38 ± 5.22 | |
modwtmra | LCheek | 0.27 ± 3.31 | 0.57 ± 6.29 | 0.20 ± 4.49 | 0.64 ± 5.49 |
FHead | 0.34 ± 4.10 | 0.88 ± 6.78 | 0.48 ± 4.59 | 0.74 ± 6.49 | |
RCheek | 0.31 ± 5.00 | 0.31 ± 7.46 | 0.43 ± 5.47 | 0.19 ± 7.12 | |
ROImean | 0.31 ± 3.03 | 0.59 ± 5.73 | 0.37 ± 3.95 | 0.52 ± 5.15 | |
ICA | LCheek | −0.06 ± 3.32 | −0.04 ± 12.98 | 0.24 ± 9.20 | −0.35 ± 9.70 |
FHead | −0.008 ± 7.06 | 0.30 ± 7.62 | −0.10 ± 3.86 | 0.39 ± 9.63 | |
RCheek | −0.03 ± 3.71 | 0.26 ± 11.38 | 0.09 ± 4.41 | 0.13 ± 11.14 | |
ROImean | −0.03 ± 3.47 | 0.17 ± 6.72 | 0.08 ± 3.95 | 0.06 ± 6.45 | |
PCA | LCheek | 0.68 ± 16.67 | 1.15 ± 19.44 | 0.76 ± 18.51 | 1.06 ± 17.71 |
FHead | 0.54 ± 16.52 | 3.02 ± 19.92 | 1.40 ± 20.35 | 2.16 ± 16.33 | |
RCheek | 0.43 ± 15.56 | 1.62 ± 22.36 | 1.19 ± 15.16 | 0.86 ± 22.69 | |
ROImean | 0.55 ± 10.36 | 1.93 ± 12.57 | 1.12 ± 11.69 | 1.36 ± 11.50 | |
POS | LCheek | 0.07 ± 3.63 | 0.23 ± 11.95 | −0.07 ± 3.97 | 0.37 ± 11.83 |
FHead | 0.19 ± 4.83 | 0.65 ± 9.68 | 0.05 ± 2.89 | 0.79 ± 10.40 | |
RCheek | −0.03 ± 2.96 | −0.06 ± 6.84 | 0.05 ± 2.91 | −0.14 ± 6.85 | |
ROImean | 0.07 ± 2.67 | 0.27 ± 6.29 | 0.009 ± 2.45 | 0.34 ± 6.36 | |
CHROM | LCheek | −0.32 ± 6.32 | 3.15 ± 19.41 | 0.62 ± 7.06 | 2.21 ± 19.62 |
FHead | 0.07 ± 5.81 | 3.38 ± 18.95 | 0.74 ± 12.47 | 2.71 ± 15.84 | |
RCheek | −0.17 ± 4.70 | 3.05 ± 19.20 | 1.02 ± 9.03 | 1.86 ± 18.11 | |
ROImean | −0.14 ± 3.71 | 3.19 ± 12.51 | 0.79 ± 6.20 | 2.26 ± 12.21 |
Trial | MAE [bpm] | RMSE [bpm] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r-PPG Post-Processing Techniques | r-PPG Post-Processing Techniques | |||||||||||
GC | modwtmra | ICA | PCA | POS | CHROM | GC | modwtmra | ICA | PCA | POS | CHROM | |
0.5—off | 0.85 | 0.94 | 1.04 | 4.21 | 0.69 | 2.32 | 1.85 | 2.40 | 2.43 | 6.84 | 1.20 | 4.34 |
0.5—on | 0.80 | 0.80 | 0.76 | 3.44 | 0.65 | 0.84 | 1.87 | 1.62 | 1.49 | 5.17 | 1.30 | 1.55 |
1—off | 1.63 | 1.93 | 2.25 | 4.56 | 2.71 | 5.91 | 3.07 | 3.46 | 4.20 | 6.54 | 4.39 | 9.11 |
1—on | 0.82 | 0.74 | 0.90 | 3.54 | 0.77 | 1.21 | 2.25 | 1.53 | 2.01 | 5.45 | 1.43 | 2.19 |
Light On, Light Off | Light On, Light Off | |||
---|---|---|---|---|
r-PPG Post-Processing Techniques | d = 0.5 m | d = 1.0 m | d = 0.5 m | d = 1.0 m |
MOD ± LOAs [bpm] | MOD ± LOAs [bpm] | MOD ± LOAs [bpm] | MOD ± LOAs [bpm] | |
Green Channel | −0.04 ± 3.31 | −0.38 ± 6.30 | −0.07 ± 2.72 | −0.35 ± 6.58 |
modwtmra | 0.31 ± 5.00 | 0.31 ± 7.46 | 0.43 ± 5.47 | 0.19 ± 7.12 |
ICA | 0.22 ± 19.28 | 0.71 ± 13.39 | −0.42 ± 10.80 | 1.35 ± 20.72 |
PCA | 0.85 ± 16.39 | 0.57 ± 18.25 | 1.40 ± 13.63 | 0.02 ± 20.31 |
POS | −0.03 ± 2.96 | −0.06 ± 6.84 | 0.05 ± 2.91 | −0.14 ± 6.85 |
CHROM | −0.17 ± 4.70 | 3.05 ± 19.20 | 1.02 ± 9.03 | 1.86 ± 18.11 |
Trial | MAE [bpm] | RMSE [bpm] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r-PPG Post-Processing Techniques | r-PPG Post-Processing Techniques | |||||||||||
GC | modwtmra | ICA | PCA | POS | CHROM | GC | modwtmra | ICA | PCA | POS | CHROM | |
0.5—off | 0.60 | 0.84 | 0.91 | 3.59 | 0.68 | 2.64 | 1.27 | 2.55 | 2.05 | 8.81 | 1.44 | 6.47 |
0.5—on | 0.73 | 1.10 | 2.83 | 1.82 | 0.74 | 0.82 | 1.49 | 3.07 | 7.54 | 4.79 | 1.53 | 1.63 |
1—off | 1.77 | 2.31 | 4.76 | 5.31 | 2.44 | 6.71 | 4.40 | 4.76 | 9.49 | 9.81 | 4.72 | 12.98 |
1—on | 0.80 | 0.84 | 5.49 | 4.82 | 0.78 | 1.40 | 1.86 | 1.94 | 11.69 | 10.87 | 1.49 | 2.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinaro, N.; Schena, E.; Silvestri, S.; Massaroni, C. Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory Monitoring from Mobile Device Built-In Cameras. Sensors 2022, 22, 2539. https://doi.org/10.3390/s22072539
Molinaro N, Schena E, Silvestri S, Massaroni C. Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory Monitoring from Mobile Device Built-In Cameras. Sensors. 2022; 22(7):2539. https://doi.org/10.3390/s22072539
Chicago/Turabian StyleMolinaro, Nunzia, Emiliano Schena, Sergio Silvestri, and Carlo Massaroni. 2022. "Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory Monitoring from Mobile Device Built-In Cameras" Sensors 22, no. 7: 2539. https://doi.org/10.3390/s22072539
APA StyleMolinaro, N., Schena, E., Silvestri, S., & Massaroni, C. (2022). Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory Monitoring from Mobile Device Built-In Cameras. Sensors, 22(7), 2539. https://doi.org/10.3390/s22072539