Physical Investigations on Bias-Free, Photo-Induced Hall Sensors Based on Pt/GaAs and Pt/Si Schottky Junctions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Schottky Rectifying Behaviors
3.2. Photo-Induced Hall Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hall, E.H. On a New Action of the Magnet on Electric Currents. Am. J. Math. 1879, 2, 287. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Van Dau, F.N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.K.; Akkulu, P.; Padmanabhan, S.V.; Radhika, S. Automatic Condition Monitoring of Industrial Machines Using FSA-Based Hall-Effect Transducer. IEEE Sens. J. 2021, 21, 1072–1081. [Google Scholar] [CrossRef]
- Morvic, M.; Betko, J. Planar Hall effect in Hall sensors made from InP/InGaAs heterostructure. Sens. Actuators A Phys. 2005, 120, 130–133. [Google Scholar] [CrossRef]
- Ishibashi, K.; Okada, I. High-sensitivity Hybrid Hall Effect ICs with Thin Film Hall Elements. Sens. Mater. 2002, 14, 253–261. [Google Scholar]
- Jiai, N. Ultra-sensitive Anomalous Hall Effect Sensors Based on Cr-doped Bi2Te3 Topological Insulator Thin Films. J. Phys. D Appl. Phys. 2020, 53, 505001. [Google Scholar]
- Dowling, K.M.; Liu, T.Y. Low Offset and Noise in High Biased GaN 2DEG Hall-Effect Plates Investigated with Infrared Microscopy. J. Microelectromech. Syst. 2020, 29, 669–676. [Google Scholar] [CrossRef]
- Nhalil, H.; Das, P.T.; Schultz, M.; Amrusi, S.; Grosz, A.; Klein, L. Thickness dependence of elliptical planar Hall effect magnetometers. Appl. Phys. Lett. 2020, 117, 262403. [Google Scholar] [CrossRef]
- Lu, L.; Xie, H.; Luo, Z.; Muthu, N.; Chen, X.; Li, X.; Hua, Y.; Wu, Y. Frequency selectivity of spin Hall magnetoresistance sensor and its applications in eddy current testing. Appl. Phys. Lett. 2021, 118, 012403. [Google Scholar] [CrossRef]
- Hurd, C.M. The Hall Effect in Metals and Alloys; Springer Science and Business Media LLC: New York, NY, USA, 1972. [Google Scholar]
- Schmidt, B.; Ross, R. Position-sensitive photodetectors made with standard silicon-planar technology. Sens. Actuators 1983, 4, 439–446. [Google Scholar] [CrossRef]
- Li, D.; Ruotolo, A. Photo-induced Hall effect in metals. Sci. Rep. 2018, 8, 1–5. [Google Scholar] [CrossRef]
- Blanchard, H.; De Montmollin, F.; Hubin, J.; Popovic, R. Highly sensitive Hall sensor in CMOS technology. Sens. Actuators A Phys. 2000, 82, 144–148. [Google Scholar] [CrossRef]
- Okeil, H.; Wachutka, G. Design and Simulation of a Novel Vertical Hall Sensor With High Negative Differential Sensitivity. IEEE Magn. Lett. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Nam, K. PMSM Control Based on Edge-Field Hall Sensor Signals through ANF-PLL Processing. IEEE Trans. Ind. Electron. 2011, 58, 5121–5129. [Google Scholar] [CrossRef]
- Bilotti, A.; Monreal, G.; Vig, R. Monolithic magnetic Hall sensor using dynamic quadrature offset cancellation. IEEE J. Solid-State Circuits 1997, 32, 829–836. [Google Scholar] [CrossRef]
- Fasasi, T.; Ruotolo, A.; Zhao, X.; Leung, C.; Lin, K. Photo-induced anomalous Hall effect in nickel thin films. J. Magn. Magn. Mater. 2019, 485, 82–84. [Google Scholar] [CrossRef]
- Apicella, V.; Fasasi, T.A.; Ruotolo, A. A Multilayer-Graphene/Silicon Infrared Schottky Photo-Diode. Adv. Electron. Mater. 2019, 5, 1900594. [Google Scholar] [CrossRef]
- Apicella, V.; Fasasi, T.A.; Wong, H.F.; Leung, D.C.; Ruotolo, A. Extending the near-infrared band-edge absorption spectrum of silicon by proximity to a 2D semiconductor. Appl. Surf. Sci. 2021, 538, 147803. [Google Scholar] [CrossRef]
- Kim, S.Y. Generalized Schottky Anomaly. J. Korean Phys. Soc. 2014, 65, 970–972. [Google Scholar] [CrossRef]
- Li, F. High-Temperature Current Conduction through Three Kinds of Schottky Diodes. Chin. Phys. B 2009, 11, 5029–5033. [Google Scholar]
- Badila, M.; Brezeanu, G.; Millán, J.; Godignon, P.; Banu, V. Silicon carbide Schottky and ohmic contact process dependence. Diam. Relat. Mater. 2002, 11, 1258–1262. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Lin, P.-T.; Cheng, H.-C.; Lo, F.-C.; Lee, P.-S.; Huang, Y.-W.; Huang, Q.-Y.; Kuo, Y.-C.; Lin, S.-W.; Liu, Y.-R. Rectified Schottky diodes that use low-cost carbon paste/InGaZnO junctions. Org. Electron. 2019, 68, 212–217. [Google Scholar] [CrossRef]
- Ghimire, S.; Dho, J. Current–voltage characteristics and photovoltaic effect of a Au/ZnFe2O4/GaN Schottky junction. J. Phys. D Appl. Phys. 2021, 54, 095103. [Google Scholar] [CrossRef]
- Rhoderick, E.H.; Williams, R.H. Metal-Semiconductor Contacts, 2nd ed.; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Quimby, R.S. Photonics and Lasers: An Introduction; Wiley-Interscience Press: Hoboken, NJ, USA, 2006. [Google Scholar]
- Griffiths, D.J. Introduction to Electrodynamics; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Popović, R. Hall-effect devices. Sens. Actuators 1989, 17, 39–53. [Google Scholar] [CrossRef]
- Hadjoub, Z.; Cheikh, K.; Zouyed, A.; Khoualdia, A.; Doghmane, A. Quantification of surface state effects in GaAs MESFETs. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2012; Volume 28, p. 012036. [Google Scholar]
- Chellu, A.; Koivusalo, E.; Raappana, M.; Ranta, S.; Polojärvi, V.; Tukiainen, A.; Lahtonen, K.; Saari, J.; Valden, M.; Seppänen, H.; et al. GaAs surface passivation for InAs/GaAs quantum dot based nanophotonic devices. Nanotechnology 2021, 32, 130001. [Google Scholar] [CrossRef]
- Bartolomeo, D.A. Graphene Schottky Diodes: An Experimental Review of the Rectifying Graphene/Semiconductor HeteroJunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Neamen, D.A. Semiconductor Physics and Devices, 3rd ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Shimizu, T.; Okushi, H. Intrinsic Electrical Properties of Au/SrTiO3 Schottky Junctions. J. Appl. Phys. 1999, 85, 7244. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Sun, X.; Cui, S.; Yang, Q.; Zhai, T.; Zhao, J.; Deng, J.; Ruotolo, A. Physical Investigations on Bias-Free, Photo-Induced Hall Sensors Based on Pt/GaAs and Pt/Si Schottky Junctions. Sensors 2021, 21, 3009. https://doi.org/10.3390/s21093009
Wang X, Sun X, Cui S, Yang Q, Zhai T, Zhao J, Deng J, Ruotolo A. Physical Investigations on Bias-Free, Photo-Induced Hall Sensors Based on Pt/GaAs and Pt/Si Schottky Junctions. Sensors. 2021; 21(9):3009. https://doi.org/10.3390/s21093009
Chicago/Turabian StyleWang, Xiaolei, Xupeng Sun, Shuainan Cui, Qianqian Yang, Tianrui Zhai, Jinliang Zhao, Jinxiang Deng, and Antonio Ruotolo. 2021. "Physical Investigations on Bias-Free, Photo-Induced Hall Sensors Based on Pt/GaAs and Pt/Si Schottky Junctions" Sensors 21, no. 9: 3009. https://doi.org/10.3390/s21093009
APA StyleWang, X., Sun, X., Cui, S., Yang, Q., Zhai, T., Zhao, J., Deng, J., & Ruotolo, A. (2021). Physical Investigations on Bias-Free, Photo-Induced Hall Sensors Based on Pt/GaAs and Pt/Si Schottky Junctions. Sensors, 21(9), 3009. https://doi.org/10.3390/s21093009