Detecting Climate Effects on Vegetation in Northern Mixed Prairie Using NOAA AVHRR 1-km Time-Series NDVI Data
Abstract
:1. Introduction
2. Field Site and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Applicability of AVHRR/NDVI Data
3.2. Vegetation Phenology
3.3. Relationships between NDVI and Climate Variables
3.4. Trend Detection
3.5. NDVI Baselines
4. Results and Discussion
4.1. Applicability of AVHRR NDVI
4.2. Relationships between NDVI and Climate Variables
4.3. Trends of Phenology
4.4. Trends of NDVI, Temperature, and Precipitation
4.5. NDVI Baselines
5. Conclusions
Acknowledgments
References
- Burke, I.C.; Yonker, C.M.; Parton, W.J.; Cole, C.V.; Flach, K.; Schimel, D.S. Texture, climate, and cultivation effects on soil organic matter content in US grassland sites. Soil Sci. Soc. Am. J 1989, 53, 800–850. [Google Scholar]
- Zhang, C.; Guo, X.; Wilmshurst, J.F.; Crump, S. Monitoring temporal heterogeneity in a protected mixed prairie ecosystem using 10-day NDVI composite. Prairie Forum 2008, 33, 145–166. [Google Scholar]
- Wang, W.; Fang, J. Soil respiration and human effects on global grasslands. Global Planet. Change 2009, 67, 20–28. [Google Scholar]
- Lawton, D.; Leahy, P.; Keily, G.; Bryne, K.A.; Calanca, P. Modeling of net ecosystem exchange and its components for a humid grassland ecosystem. J. Geophys. Res 2006, 111, G04013. [Google Scholar] [CrossRef]
- Chimner, R.A.; Welker, J.M.; Morgan, J.; LeCain, D.; Reeder, J. Experimental manipulations of winter snow and summer rain influence ecosystem carbon cycling in a mixed-grass prairie, Wyoming, USA. Ecohydrology 2010, 3, 284–293. [Google Scholar]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol Soc 2000, 81, 417–425. [Google Scholar]
- IPCC, Climate Change 2007: The Physical Science Basis-Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Cambridge University Press: Cambridge, UK, 2007; p. 996.
- Heady, H.F.; Bartolome, J.W.; Pitt, M.D.; Savelle, G.D.; Stroud, M.C. Mixed prairie. In Natural Grasslands: Introduction and Western Hemisphere; Coupland, R.T., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 8A, pp. 151–179. [Google Scholar]
- Mitchell, S.W.; Csillag, F. Assessing the stability and uncertainty of predicted vegetation growth under climatic variability: Northern mixed grass prairie. Ecol. Model 2001, 139, 101–121. [Google Scholar]
- Wang, S.; Davidson, A. Impact of climate variations on surface albedo of a temperate grassland. Agr. Forest Meteorol 2007, 142, 133–142. [Google Scholar]
- Davidson, A.; Csillag, F. A comparison of three approaches for predicting C4 species cover of northern mixed grass prairie. Remote Sens. Environ 2003, 86, 70–82. [Google Scholar]
- Wylie, B.K.; Meyer, D.J.; Tieszen, L.L.; Mannel, S. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study. Remote Sens. Environ 2002, 79, 266–278. [Google Scholar]
- He, Y.; Guo, X.; Wilmshurst, J. Studying mixed grassland ecosystems I: Suitable hyperspectral vegetation indices. Can. J. Remote Sens 2006, 32, 98–107. [Google Scholar]
- Guo, X.; Wilmshurst, J.; McCanny, S.; Fargey, P.; Richard, P. Measuring spatial and vertical heterogeneity of grasslands using remote sensing techniques. J. Environ. Inform 2004, 3, 24–32. [Google Scholar]
- Black, S.C.; Guo, X. Estimation of grassland CO2 exchange rates using hyperspectral remote sensing techniques. Int. J. Remote Sens 2008, 29, 145–155. [Google Scholar]
- Piwowar, J.M. An environmental normal of vegetation vigour for the Northern Great Plains. IEEE J. Sel. Top. Appl. Earth Obs 2011, 4, 292–302. [Google Scholar]
- Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Gruhier, C.; Chehbouni, A. Analysis of vegetation behavior in a North African semi-arid region, using SPOT-VEGETATION NDVI data. Remote Sens 2011, 3, 2568–2590. [Google Scholar]
- Weiss, J.L.; Gutzler, D.S.; Coonrod, J.E.A.; Dahm, C.N. Seasonal and inter-annual relationships between vegetation and climate in central New Mexico, USA. J. Arid Environ 2007, 57, 507–534. [Google Scholar]
- Asrar, G.; Myneni, R.B.; Choudhury, B.J. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: A modeling study. Remote Sens. Environ 1992, 43, 85–103. [Google Scholar]
- Anyamba, A.; Tucker, C.J.; Eastman, J.R. NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int. J. Remote Sens 2001, 22, 1847–1859. [Google Scholar]
- Anyamba, A.; Tucker, C.J.; Mahoney, R. From El Niño to La Nina: Vegetation response patterns over east and southern Africa during the 1997–2000 period. J. Climate 2002, 15, 3096–3130. [Google Scholar]
- Lotsch, A.; Friedl, M.A.; Anderson, B.T.; Tucker, C.J. Coupled vegetation-precipitation variability observed from satellite and climate records. Geophys. Res. Lett 2003, 14, 1774–1777. [Google Scholar]
- Nicholson, S.E.; Farrar, T.J. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens. Environ 1994, 50, 107–120. [Google Scholar]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens 2001, 22, 3827–3844. [Google Scholar]
- Eklundh, L.; Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett 2003, 30, 1430–1433. [Google Scholar]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar]
- Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol 2001, 45, 184–190. [Google Scholar]
- Al-Bakri, J.T.; Taylor, J.C. Application of NOAA AVHRR for monitoring vegetation conditions and biomass in Jordan. J. Arid Environ 2003, 54, 579–593. [Google Scholar]
- Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens 1986, 7, 1395–1416. [Google Scholar]
- Yang, X.; Guo, X.; Fitzsimmons, M. Assessing light to moderate grazing effects on grasslands production using satellite imagery. Int. J. Remote Sens 2011, in press.. [Google Scholar]
- Adair, M.; Cihlar, J.; Park, B.; Fedosejeves, G.; Erickson, A.; Keeping, R.; Stanley, D.; Hurlburt, P. GeoComp-n, an advanced system for generating products from coarse-and medium-resolution optical satellite data. Part 1: System characterization. Can. J. Remote Sens 2002, 28, 1–20. [Google Scholar]
- Cihlar, J.; Chen, J.; Li, Z.; Latifovic, R.; Fedosejeves, G.; Adair, M.; Park, W.; Fraser, R.; Trishchencko, A.; Guindon, B.; Stanley, D.; Morse, D. GeoComp-N, an advanced system for the processing of coarse and medium resolution satellite data. Part 2: Biophysical products for northern ecosystems. Can. J. Remote Sens 2002, 28, 21–44. [Google Scholar]
- Justice, C.O.; Eck, T.F.; Tanre, D.; Holben, B. The effect of water vapor on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data. Int. J. Remote Sens 1991, 12, 1165–1187. [Google Scholar]
- Vermote, E.; Saleous, N.E.; Kaufman, Y.J.; Dutton, E. Data preprocessing: stratospheric aerosol perturbing effect on the remote sensing of vegetation: correction method for the composite NDVI after the Pinatubo eruption. Remote Sens. Rev 1997, 15, 7–21. [Google Scholar]
- Farrar, T.J.; Nicholson, S.E.; Lare, A.R. The influences of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil moisture. Remote Sens. Environ 1994, 50, 121–133. [Google Scholar]
- Huete, A.R.; Tucker, C.J. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Int. J. Remote Sens 1991, 12, 1223–1242. [Google Scholar]
- Kaufmann, R.K.; Zhou, L.; Knyazikhin, Y.; Shabanov, N.; Myneni, R.; Tucker, C.J. Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data. IEEE Trans. Geosci. Remote Sens 2000, 38, 2584–2597. [Google Scholar]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ 2003, 84, 471–475. [Google Scholar]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens 2003, 24, 2345–2364. [Google Scholar]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res 1982, 18, 107–112. [Google Scholar]
- Gliner, J.A.; Morgan, G.A. Research Methods in Applied Settings: An Integrated Approach to Design and Analysis; Lawrence Erlbaum Associates, Inc: Mahwah, NJ, USA, 2000; p. 135. [Google Scholar]
- Thaim, A.K. The causes and spatial pattern of land degradation risk in southern mauritania using multitemporal AVHRR-NDVI imagery and field data. Land Degrad. Dev 2003, 14, 133–142. [Google Scholar]
- Li, J.; Lewisa, J.; Rowland, J.; Tappan, G.; Tieszen, L.L. Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. J. Arid Environ 2004, 59, 463–480. [Google Scholar]
- Anyamba, A.; Eastman, J.R. Interannual variability of NDVI over Africa and its relationship to El Ninõ/Southern Oscillation. Int. J. Remote Sens 1996, 17, 2533–2548. [Google Scholar]
- Kogan, F.N. Global drought watch from space. Bull. Am. Meteorol. Soc 1997, 78, 621–636. [Google Scholar]
- Frank, A.B. Evapotranspiration from northern semiarid grasslands. Agron. J 2003, 95, 1504–1509. [Google Scholar]
- Magagi, R.D.; Kerr, Y.H. Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas. J. Hydrol 1997, 188, 361–384. [Google Scholar]
- Bindlish, R.; Jackson, T.J.; Gasiewski, A.; Stankov, B.; Klein, M.; Cosh, M.H.; Mladenova, I.; Watts, C.; Vivoni, E.; Lakshmi, V.; Bolten, J.; Keefer, T. Aircraft based soil moisture retrievals under mixed vegetation and topographic conditions. Remote Sens. Environ 2008, 112, 375–390. [Google Scholar]
- Coughenour, M.B. Graminoid response to grazing by large herbivores: Adaptations, exaptations, and interacting processes. Ann. Missouri Bot. Gard 1985, 72, 852–863. [Google Scholar]
- Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 1996, 382, 146–149. [Google Scholar]
- Randerson, J.T.; Field, C.B.; Fung, I.Y.; Tans, P.P. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett 1999, 26, 2765–2769. [Google Scholar]
- Zhang, X.; Vincent, L.A.; Hogg, W.D.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmos. Ocean 2000, 38, 395–429. [Google Scholar]
- Akinremi, O.O.; McGinn, S.M.; Cutforth, H.W. Precipitation trends on the Canadian prairies. J. Climate 1999, 12, 2996–3003. [Google Scholar]
- McPhaden, M.J. Genesis and evolution of the 1997–98 El Ninõ. Science 1999, 283, 950–954. [Google Scholar]
Duration | Lag | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
1 | 0 | 1 | 2 | 3 | 4 |
2 | 1_0 | 2_1 | 3_2 | 4_3 | 5_4 |
3 | 2_0 | 3_1 | 4_2 | 5_3 | 6_4 |
4 | 3_0 | 4_1 | 5_2 | 6_3 | 7_4 |
5 | 4_0 | 5_1 | 6_2 | 7_3 | 8_4 |
Phenology | Green-up | Peak Growth | Senescence |
---|---|---|---|
Z value | −0.79* | 1.75* | 0.16* |
Variables | Temperature | Precipitation | NDVI | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Annual | Apr | May | Jun | Jul | Aug | Sept | Oct | |||
Z values | 0.03** | 0.08* | 0.18* | 0.03* | 0.08* | 0.18* | 0.13* | 0.08* | 0.03* | 0.03* |
NDVI Baselines | Years out of Baselines | |||
---|---|---|---|---|
Time Period | Low Limit | Upper Limit | Below Low Baseline | Above Upper Baseline |
April | 0.02 | 0.22 | 1986, 2000 | / |
May | 0.09 | 0.30 | / | 1999 |
June | 0.12 | 0.40 | / | 1999 |
July | 0.13 | 0.39 | / | 1999 |
August | 0.08 | 0.34 | / | / |
September | 0.07 | 0.27 | / | / |
October | 0.06 | 0.20 | / | / |
Annual | 0.13 | 0.32 | / | 1999 |
Share and Cite
Li, Z.; Guo, X. Detecting Climate Effects on Vegetation in Northern Mixed Prairie Using NOAA AVHRR 1-km Time-Series NDVI Data. Remote Sens. 2012, 4, 120-134. https://doi.org/10.3390/rs4010120
Li Z, Guo X. Detecting Climate Effects on Vegetation in Northern Mixed Prairie Using NOAA AVHRR 1-km Time-Series NDVI Data. Remote Sensing. 2012; 4(1):120-134. https://doi.org/10.3390/rs4010120
Chicago/Turabian StyleLi, Zhaoqin, and Xulin Guo. 2012. "Detecting Climate Effects on Vegetation in Northern Mixed Prairie Using NOAA AVHRR 1-km Time-Series NDVI Data" Remote Sensing 4, no. 1: 120-134. https://doi.org/10.3390/rs4010120
APA StyleLi, Z., & Guo, X. (2012). Detecting Climate Effects on Vegetation in Northern Mixed Prairie Using NOAA AVHRR 1-km Time-Series NDVI Data. Remote Sensing, 4(1), 120-134. https://doi.org/10.3390/rs4010120