The Surface Velocity Response of a Tropical Glacier to Intra and Inter Annual Forcing, Cordillera Blanca, Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. SAR Offset Tracking
2.2. Satellite Image Analysis
2.3. Statistical Analysis of Time Series
- Period > 2000 days (beyond the observation time; no periods below Nyquist frequency)
- Amplitude <–20 and >20 (beyond the data range)
- Phase: no obvious outliers
- Offset <–4 and >4 (beyond the data range)
2.4. Cluster Analysis of the Time Series
3. Results
3.1. Spatio-Temporal Distribution of Glacier Velocities
3.2. Velocity Variations
3.3. Spatial Correlation and Cluster Analysis
4. Discussion
4.1. Intra-Annual Dominant Cluster
4.2. Inter-Annual Dominant Cluster
4.3. Implications for Avalanching Glacier Instabilities
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Kaser, G.; Georges, C. Changes of the equilibrium-line altitude in the tropical Cordillera Blanca, Peru, 1930–1950, and their spatial variations. Ann. Glaciol. 1997, 24, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Gascoin, S.; Kinnard, C.; Ponce, R.; Lhermitte, S.; MacDonell, S.; Rabatel, A. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 2011, 5, 1099–1113. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Georges, C. 20th-Century Glacier Fluctuations in the Tropical Cordillera Blanca, Perú. Arctic, Antarct. Alp. Res. 2004, 36, 100–107. [Google Scholar] [CrossRef]
- Kaser, G.; Ames, A.; Zamora, M. Glacier Fluctuations and Climate in the Cordillera Blanca, Peru. Ann. Glaciol. 1990, 14, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Hooke, R.L.; Pohjola, V.A.; Jansson, P.; Kohler, J. Intra-seasonal changes in deformation profiles revealed by borehole studies, Storglaciären, Sweden. J. Glaciol. 1992, 38, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Faillettaz, J.; Funk, M.; Vincent, C. Avalanching glacier instabilities: Review on processes and early warning perspectives. Rev. Geophys. 2015, 53, 203–224. [Google Scholar] [CrossRef] [Green Version]
- Vincent, C.; Morceau, L.U. Sliding velocity fluctuations and subglacial hydrology over the last two decades on Argentière glacier, Mont Blanc area. J. Glaciol. 2016, 62, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Iken, A.; Bindschadler, R.A. Combined measurements of Subglacial Water Pressure and Surface Velocity of Findelengletscher, Switzerland: Conclusions about Drainage System and Sliding Mechanism. J. Glaciol. 1986, 32, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Bindschadler, R. The Importance of Pressurized Subglacial Water in Separation and Sliding at the Glacier Bed. J. Glaciol. 1983, 29, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, H.F. Water in glaciers: Observations and theory of the behaviour of water levels in boreholes. Z. Gletsch. Glaziologie 1978, 14, 35–60. [Google Scholar]
- Weertman, J. The Theory of Glacier Sliding. J. Glaciol. 1964, 5, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Agassiz, L. Système Glaciaire, ou Recherches sur les Glaciers: Pt. 1. Novelles Études et Expériences sur les Glaciers Actuels. Mason, V., Ed.; 1847. Available online: http://www.google.cat/books?id=MdQWAAAAQAAJ&printsec=frontcover&vq=froid&hl=ca&output=html_text&source=gbs_ge_summary_r&cad=0 (accessed on 10 June 2021).
- Fountain, A.G.; Walder, J.S. Water flow through temperate glaciers. Rev. Geophys. 1998, 36, 299–328. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Jacquemart, M.; Gilbert, A.; Leinss, S.; Girod, L.; Huggel, C.; Falaschi, D.; Ugalde, F.; Petrakov, D.; Chernomorets, S.; et al. Sudden large-volume detachments of low-angle mountain glaciers–more frequent than thought? Cryosphere 2021, 15, 1751–1785. [Google Scholar] [CrossRef]
- Harper, J.T.; Humphrey, N.; Pfeffer, W.T.; Lazar, B. Two modes of accelerated glacier sliding related to water. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; pp. 4803–4805, ISBN 0-7803-9050-4. [Google Scholar]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Gray, A.L.; Mattar, K.E.; Vachon, P.W.; Bindschadler, R.; Jezek, K.C.; Forster, R.; Crawford, J.P. InSAR results from the RADARSAT Antarctic Mapping Mission data: Estimation of glacier motion using a simple registration procedure. In Proceedings of the IGARSS ‘98, Sensing and Managing the Environment, IEEE International Geoscience and Remote Sensing, Symposium, Seattle, WA, USA, 6–10 July 1998; Volume 3, pp. 1638–1640, ISBN 0-7803-4403-0. [Google Scholar]
- Friedl, P.; Seehaus, T.; Braun, M. Global time series and temporal mosaics of glacier surface velocities, derived from Sentinel-1 data. Earth Syst. Sci. Data Discuss. 2021. in review. [Google Scholar]
- Mohr, J.J.; Reeh, N.; Madsen, S.N. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 1998, 391, 273–276. [Google Scholar] [CrossRef]
- Strozzi, T.; Paul, F.; Wiesmann, A.; Schellenberger, T.; Kääb, A. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sens. 2017, 9, 947. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef] [Green Version]
- Pellikka, P.K.E.; Rees, G. Remote Sensing of Glaciers: Techniques for Topographic, Spatial and Thematic Mapping of Glaciers; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780367384647. [Google Scholar]
- Wang, H.; Wellmann, J.F.; Li, Z.; Wang, X.; Liang, R.Y. A Segmentation Approach for Stochastic Geological Modeling Using Hidden Markov Random Fields. Math. Geol. 2017, 49, 145–177. [Google Scholar] [CrossRef]
- Wellmann, J.F.; Regenauer-Lieb, K. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models. Tectonophysics 2012, 526–529, 207–216. [Google Scholar] [CrossRef]
- Wang, H.; Wellmann, F.; Zhang, T.; Schaaf, A.; Kanig, R.M.; Verweij, E.; Hebel, C.; Kruk, J. Pattern Extraction of Topsoil and Subsoil Heterogeneity and Soil-Crop Interaction Using Unsupervised Bayesian Machine Learning: An Application to Satellite-Derived NDVI Time Series and Electromagnetic Induction Measurements. J. Geophys. Res. Biogeosci. 2019, 124, 1524–1544. [Google Scholar] [CrossRef]
- Herbert, C.; Camps, A.; Wellmann, F.; Vall-Llossera, M. Bayesian Unsupervised Machine Learning Approach to Segment Arctic Sea Ice Using SMOS Data. Geophys. Res. Lett. 2021, 48, e2020GL091285. [Google Scholar] [CrossRef]
- Millan, R.; Mouginot, J.; Rabatel, A.; Jeong, S.; Cusicanqui, D.; Derkacheva, A.; Chekki, M. Mapping Surface Flow Velocity of Glaciers at Regional Scale Using a Multiple Sensors Approach. Remote Sens. 2019, 11, 2498. [Google Scholar] [CrossRef] [Green Version]
- Blake, W.; Fischer, U.H.; Bentley, C.R.; Clarke, G.K.G. Instruments and Methods: Direct measurement of sliding at the glacier bed. J. Glaciol. 1994, 40, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W.S.B. The physics of Glaciers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978-0-123-69461-4. [Google Scholar]
- Pralong, A.; Funk, M. On the instability of avalanching glaciers. J. Glaciol. 2006, 52, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Vimeux, F.; Ginot, P.; Schwikowski, M.; Vuille, M.; Hoffmann, G.; Thompson, L.G.; Schotterer, U. Climate variability during the last 1000 years inferred from Andean ice cores: A review of methodology and recent results. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 281, 229–241. [Google Scholar] [CrossRef]
- Favier, V. One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. J. Geophys. Res. 2004, 109, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sagredo, E.A.; Rupper, S.; Lowell, T.V. Sensitivities of the equilibrium line altitude to temperature and precipitation changes along the Andes. Quat. Res. 2014, 81, 355–366. [Google Scholar] [CrossRef]
- Gurgiser, W.; Marzeion, B.; Nicholson, L.; Ortner, M.; Kaser, G. Modeling energy and mass balance of Shallap Glacier, Peru. Cryosphere 2013, 7, 1787–1802. [Google Scholar] [CrossRef] [Green Version]
- Maussion, F.; Gurgiser, W.; Großhauser, M.; Kaser, G.; Marzeion, B. ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. Cryosphere 2015, 9, 1663–1683. [Google Scholar] [CrossRef] [Green Version]
- Francou, B. New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0°28′S. J. Geophys. Res. 2004, 109, 1–17. [Google Scholar] [CrossRef]
- Frey, H.; Huggel, C.; Chisolm, R.E.; Baer, P.; McArdell, B.; Cochachin, A.; Portocarrero, C. Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru. Front. Earth Sci. 2018, 6, 1–16. [Google Scholar] [CrossRef]
- Somos-Valenzuela, M.A.; Chisolm, R.E.; Rivas, D.S.; Portocarrero, C.; McKinney, D.C. Modeling a glacial lake outburst flood process chain: The case of Lake Palcacocha and Huaraz, Peru. Hydrol. Earth Syst. Sci. 2016, 20, 2519–2543. [Google Scholar] [CrossRef]
- Vilímek, V.; Zapata, M.L.; Klimeš, J.; Patzelt, Z.; Santillán, N. Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2005, 2, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yao, T.; Gao, Y.; Yang, X.; Kattel, D.B. A First-order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau. Mt. Res. Dev. 2011, 31, 122. [Google Scholar] [CrossRef]
- Bolch, T.; Peters, J.; Yegorov, A.; Pradhan, B.; Buchroithner, M.; Blagoveshchensky, V. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 2011, 59, 1691–1714. [Google Scholar] [CrossRef] [Green Version]
- Emmer, A.; Vilímek, V. Review Article: Lake and breach hazard assessment for moraine-dammed lakes: An example from the Cordillera Blanca (Peru). Nat. Hazards Earth Syst. Sci. 2013, 13, 1551–1565. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.; Huggel, C.; Cochachin, A.; Guillén, S.; García, J. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv. Geosci. 2014, 35, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Huggel, C.; Haeberli, W.; Kääb, A.; Bieri, D.; Richardson, S. An assessment procedure for glacial hazards in the Swiss Alps. Can. Geotech. J. 2004, 41, 1068–1083. [Google Scholar] [CrossRef]
- Alean, J. Ice Avalanches: Some Empirical Information about their Formation and Reach. J. Glaciol. 1985, 31, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Röthlisberger, H. (Translated from German) Ice Avalanches and Outburst Floods of Glacial Lakes: Offprint, Yearbook of the Swiss Natural Research Society, Scientific Section; 1978. [Google Scholar]
- Alean, J. (Translated from German) Studies on the Conditions of Formation and Range of Ice Avalanches. Communications of the Laboratory of Hydraulics. Hydrology and Glaciology; ETH Zurich, 1984; Volume 74. [Google Scholar]
Scene | Image Pair | Date | Days | Perpendicular Baseline | Resolution |
---|---|---|---|---|---|
1 | 6 April 2020 | 3 m | |||
2 | 1 | 15 March 2020 | 22 | 74.4 | 3 m |
3 | 2 | 31 January 2020 | 44 | 1.5 | 3 m |
4 | 3 | 9 January 2020 | 22 | −146.8 | 3 m |
5 | 4 | 18 December 2019 | 22 | 104.7 | 3 m |
6 | 5 | 26 November 2019 | 22 | −112.4 | 3 m |
7 | 6 | 24 October 2019 | 33 | −44.6 | 3 m |
8 | 7 | 02 October 2019 | 22 | 136.4 | 3 m |
9 | 8 | 10 September 2019 | 22 | −137.0 | 3 m |
10 | 9 | 19 August 2019 | 22 | 203.5 | 3 m |
11 | 10 | 28 July 2019 | 22 | −125.7 | 3 m |
12 | 11 | 14 June 2019 | 44 | 46.0 | 3 m |
13 | 12 | 23 May 2019 | 22 | −14.1 | 3 m |
14 | 13 | 1 May 2019 | 22 | 29.9 | 3 m |
15 | 14 | 9 April 2019 | 22 | −4.2 | 3 m |
16 | 15 | 29 March 2019 | 11 | −103.0 | 3 m |
17 | 16 | 07 March 2019 | 22 | 6.1 | 3 m |
18 | 17 | 13 February 2019 | 22 | −78.5 | 3 m |
19 | 18 | 22 January 2019 | 22 | 174.7 | 3 m |
20 | 19 | 31 December 2018 | 22 | −88.2 | 3 m |
21 | 20 | 09 December 2018 | 22 | 84.8 | 3 m |
22 | 21 | 17 November 2018 | 22 | −25.8 | 3 m |
23 | 22 | 26 October 2018 | 22 | 71.4 | 3 m |
24 | 23 | 4 October 2018 | 22 | −222.0 | 3 m |
25 | 24 | 12 September 2018 | 22 | 280.1 | 3 m |
26 | 25 | 21 August 2018 | 22 | −164.2 | 3 m |
27 | 26 | 30 July 2018 | 22 | 148.7617 | 3 m |
28 | 27 | 8 July 2018 | 22 | 26.9 | 3 m |
29 | 28 | 16 June 2018 | 22 | −17.8 | 3 m |
30 | 29 | 25 May 2018 | 22 | 4.0 | 3 m |
31 | 30 | 3 May 2018 | 22 | −66.2 | 3 m |
32 | 31 | 11 April 2018 | 22 | 106.8 | 3 m |
33 | 32 | 20 March 2018 | 22 | −220.7 | 3 m |
34 | 33 | 26 February 2018 | 22 | −65.0 | 3 m |
35 | 34 | 13 January 2018 | 44 | 133.6 | 3 m |
36 | 35 | 2 January 2018 | 11 | −149.4 | 3 m |
37 | 36 | 11 December 2017 | 22 | 30.0 | 3 m |
38 | 37 | 19 November 2017 | 22 | −74.9 | 3 m |
39 | 38 | 28 October 2017 | 22 | 169.1 | 3 m |
40 | 39 | 14 September 2017 | 44 | −5.5 | 3 m |
41 | 40 | 23 August 2017 | 22 | 246.2 | 3 m |
42 | 41 | 1 August 2017 | 22 | 133.1 | 3 m |
43 | 42 | 10 July 2017 | 22 | −206.8 | 3 m |
44 | 43 | 18 June 2017 | 22 | 182.6 | 3 m |
45 | 44 | 27 May 2017 | 22 | −90.0 | 3 m |
46 | 45 | 5 May 2017 | 22 | −87.2 | 3 m |
47 | 46 | 13 April 2017 | 22 | 107.1 | 3 m |
48 | 47 | 22 March 2017 | 22 | 139.4 | 3 m |
49 | 48 | 28 February 2017 | 22 | −111.8 | 3 m |
50 | 49 | 6 February 2017 | 22 | −297.0 | 3 m |
51 | 50 | 15 January 2017 | 22 | 291.0 | 3 m |
Image Capture Date | Image Source | Resolution (m) | Accuracy (m) |
---|---|---|---|
3 July 2020 | Google Earth | ||
24 February 2020 | Pleiades | ||
22 June 2019 | Google earth | ||
08 June 2019 | Pleiades | ||
24 June 2018 | Maxar/DigitalGlobe (WV02) * | 0.5 | 8.47 |
18 June 2017 | Google Earth | ||
30 May 2016 | Google Earth | ||
30 May 2016 | Pleiades | ||
01 June 2016 | DigitalGlobe (WV02) * | 0.5 | 10.2 |
28 April 2013 | Google Earth | ||
28 July 2013 | Google Earth | ||
5 May 2012 | Google Earth | ||
15 January 1999 | Earthstar Geographic (Terracolor) * | 15 | 50 |
31 December 1985 | Google Earth | ||
1 January 1970 | Google Earth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kos, A.; Amann, F.; Strozzi, T.; Osten, J.; Wellmann, F.; Jalali, M.; Dufresne, A. The Surface Velocity Response of a Tropical Glacier to Intra and Inter Annual Forcing, Cordillera Blanca, Peru. Remote Sens. 2021, 13, 2694. https://doi.org/10.3390/rs13142694
Kos A, Amann F, Strozzi T, Osten J, Wellmann F, Jalali M, Dufresne A. The Surface Velocity Response of a Tropical Glacier to Intra and Inter Annual Forcing, Cordillera Blanca, Peru. Remote Sensing. 2021; 13(14):2694. https://doi.org/10.3390/rs13142694
Chicago/Turabian StyleKos, Andrew, Florian Amann, Tazio Strozzi, Julian Osten, Florian Wellmann, Mohammadreza Jalali, and Anja Dufresne. 2021. "The Surface Velocity Response of a Tropical Glacier to Intra and Inter Annual Forcing, Cordillera Blanca, Peru" Remote Sensing 13, no. 14: 2694. https://doi.org/10.3390/rs13142694
APA StyleKos, A., Amann, F., Strozzi, T., Osten, J., Wellmann, F., Jalali, M., & Dufresne, A. (2021). The Surface Velocity Response of a Tropical Glacier to Intra and Inter Annual Forcing, Cordillera Blanca, Peru. Remote Sensing, 13(14), 2694. https://doi.org/10.3390/rs13142694