Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing
Abstract
:1. Introduction
- (i)
- Breaks For Additive Season and Trend (BFAST) [40] implemented for seasonal trends analysis;
- (ii)
- Continuous Change Detection and Classification (CCDC) [41], which was found to be worthwhile for long-term and gradual change detection;
- (iii)
- Time-Weighted Dynamic Time Warping (TWDTW) [42], which consists of comparing temporal similarities of known seasonality of a land cover event with unknown time series, and finding optimal alignment between them through dynamic space-time classification;
- (iv)
- Vegetation Change Tracker (VCT) mainly designed for historical forest change processes based on the spectral–temporal properties [43];
- (v)
- TimeSat designed for seasonal trends monitoring of land surface processes taking into account the seasonal parameters [17]; and
- (vi)
- LandTrendr involving the spectral-temporal segmentation of Landsat time series and the complex statistical analysis allowing the extraction of spatial patterns of land cover change magnitude, change duration, and year of change [44].
2. LandTrendr-Google Earth Engine for Analysis of Land Cover Change Trajectories
3. Study Area and Data Description
4. Methods
4.1. Image Pre-Processing
4.2. Baseline Land Cover Classification
4.3. Processing Chain in GEE
4.4. Spectral-Temporal Segmentation and Analysis
4.5. Progressive Land Cover Reconstruction
4.6. Results Validation and Quality Assessment
- n is the number of samples;
- Wh are the stratum weight corresponding to the weight of each of the proposed land cover classed;
- SDh are the stratum area standard deviations;
- is the target standard error of the stratum area estimate
- i: Mapped category represented in row
- j: Reference category represented in column
- q: number of considered categories
- : User’s Accuracy in class i
- : Producer Accuracy in category j
- : Overall Accuracy
5. Results
5.1. Baseline Urban Land Cover Classification
5.2. LT-GEE Parameter Configurations and Spectral Indices’ Characterization
5.3. Progressive Land Cover Reconstruction Based on the LT-GEE Framework
6. Discussion
6.1. Benefits from LT-GEE in Continuous Land Cover Reconstruction
6.2. Methodology Transferability and Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs Population Division. World Urbanization Prospects: The 2014 Revision; United Nations, Department of Economics and Social Affairs, Population Division: New York, NY, USA, 2018. [Google Scholar]
- United Nations. UN SDG Indicators Global Database. 2018. Available online: https://unstats.un.org/sdgs/indicators/database/ (accessed on 14 June 2020).
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- McGee, J.A.; York, R. Asymmetric relationship of urbanization and CO2 emissions in less developed countries. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Dhakal, S. GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr. Opin. Environ. Sustain. 2010, 2, 277–283. [Google Scholar] [CrossRef]
- Didenko, N.; Skripnuk, D.; Mirolyubova, O. Urbanization and greenhouse gas emissions from industry. IOP Conf. Ser. Earth Environ. Sci. 2017, 72, 012014. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2011, 70, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, S.U. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Gu, C.; Hu, L.; Zhang, X.; Wang, X.; Guo, J. Climate change and urbanization in the Yangtze River Delta. Habitat Int. 2011, 35, 544–552. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Song, X.M.; Zhang, J.Y.; AghaKouchak, A.; Sen Roy, S.; Xuan, Y.Q.; Wang, G.Q.; He, R.M.; Wang, X.J.; Liu, C.S. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. J. Geophys. Res. Atmos. 2014, 119, 11250–11271. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Observ. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Ban, Y.; Haas, J. Urban land cover dynamics and their impact on ecosystem services in Kigali, Rwanda using multi-temporal Landsat data. Remote Sens. Appl. Soci. Environ. 2019, 13, 234–246. [Google Scholar] [CrossRef]
- Weng, Q. Global Urban Monitoring and Assessment through Earth Ebservation, 1st ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2014. [Google Scholar]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Eklundh, L.; Jönsson, P. TIMESAT for processing time-series data from satellite sensors for land surface monitoring. In Multitemporal Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 177–194. [Google Scholar]
- Taylor-Sakyi, K. Big data: Understanding big data. arXiv 2016, preprint. arXiv:1601.04602. [Google Scholar]
- Chen, Z.; Chen, N.; Yang, C.; Di, L. Cloud computing enabled web processing service for earth observation data processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1637–1649. [Google Scholar] [CrossRef]
- Camara, G.; Assis, L.F.; Ribeiro, G.; Ferreira, K.R.; Llapa, E.; Vinhas, L. Big earth observation data analytics: Matching requirements to system architectures. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, San Francisco, CA, USA, 31 October 2016; pp. 1–6. [Google Scholar]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Raja, R.A.; Anand, V.; Kumar, A.S.; Maithani, S.; Kumar, V.A. Wavelet based post classification change detection technique for urban growth monitoring. J. Indian Soc. Remote. Sens. 2013, 41, 35–43. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Réjichi, S.; Chaabane, F. Satellite image time series classification and analysis using an adapted graph labeling. In Proceedings of the 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France, 22–24 July 2015; pp. 1–4. [Google Scholar]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, pre-processing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- NASA. 2019, 28 February 2020. Advanced Webinar: Investigating Time Series of Satellite Imagery. Available online: https://arset.gsfc.nasa.gov/land/webinars/time-series-19 (accessed on 15 August 2020).
- Immerzeel, W.W.; Droogers, P.; De Jong, S.; Bierkens, M. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Davranche, A.; Lefebvre, G.; Poulin, B. Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens. Environ. 2010, 114, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Yang, J.; Li, P.; Zhang, L. Seasonal inundation monitoring and vegetation pattern mapping of the Erguna floodplain by means of a RADARSAT-2 fully polarimetric time series. Remote Sens. Environ. 2014, 152, 426–440. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, J.; Ju, W.; Xu, K.; Zhou, Y.; Zhao, Y. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 2016, 11, 094010. [Google Scholar] [CrossRef]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Franks, S.; Masek, J.G.; Turner, M.G. Monitoring forest regrowth following large scale fire using satellite data-A case study of Yellowstone National Park, USA. Eur. J. Remote Sens. 2013, 46, 551–569. [Google Scholar] [CrossRef] [Green Version]
- Margono, B.A.; Turubanova, S.; Zhuravleva, I.; Potapov, P.; Tyukavina, A.; Baccini, A.; Goetz, S.; Hansen, M.C. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ. Res. Lett. 2012, 7, 034010. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J. Applications of NDVI for land degradation assessment. In Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales; Springer: Berlin/Heidelberg, Germany, 2015; pp. 17–25. [Google Scholar]
- Zhao, F.R.; Meng, R.; Huang, C.; Zhao, M.; Zhao, F.A.; Gong, P.; Yu, L.; Zhu, Z. Long-term post-disturbance forest recovery in the greater Yellowstone ecosystem analyzed using Landsat time series stack. Remote Sens. 2016, 8, 898. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Zhu, Z.; Liang, L.; Yu, B.; Cao, W. Mapping annual urban dynamics (1985–2015) using time series of Landsat data. Remote Sens. Environ. 2018, 216, 674–683. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; De Queiroz, G.R. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr algorithm on google earth engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E. How similar are forest disturbance maps derived from different Landsat time series algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations-application to MODIS LAI products. Biogeosciences 2013, 10, 4055. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Chatenoux, B.; Piller, T.; Moser, F.; Lacroix, P. Data Cube on Demand (DCoD): Generating an earth observation Data Cube anywhere in the world. Int. J. Appl. Earth Observ. 2020, 87, 102035. [Google Scholar] [CrossRef]
- Gomes, V.C.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Sidhu, N.; Pebesma, E.; Câmara, G. Using Google Earth Engine to detect land cover change: Singapore as a use case. Eur. J. Remote Sens. 2018, 51, 486–500. [Google Scholar] [CrossRef]
- Cohen, W.B.; Fiorella, M.; Gray, J.; Helmer, E.; Anderson, K. An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using Landsat imagery. Photogramm. Eng. Remote Sens. 1998, 64, 293–299. [Google Scholar]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Fragal, E.H.; Silva, T.S.F.; de Moraes Novo, E.M.L. Reconstructing historical forest cover change in the Lower Amazon floodplains using the LandTrendr algorithm. Acta Amazon. 2016, 46, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, L.Z.; Xulu, S. Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data. Sustainability 2019, 11, 6916. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wei, Y.; Liu, C.; Li, X.; Fang, H. A Scheme for the Long-Term Monitoring of Impervious—Relevant Land Disturbances Using High Frequency Landsat Archives and the Google Earth Engine. Remote Sens. 2019, 11, 1891. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Chen, Z.; Zhu, A.; Hao, Y.; Xu, C. Multi-Level Classification Based on Trajectory Features of Time Series for Monitoring Impervious Surface Expansions. Remote Sens. 2019, 11, 640. [Google Scholar] [CrossRef] [Green Version]
- Sekertekin, A.; Abdikan, S.; Marangoz, A.M. The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: A comparative analysis. Environ. Monit. Assess. 2018, 190, 381. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 2067–2088. [Google Scholar] [CrossRef] [Green Version]
- Sirven, P. La Sous-Urbanisation et les villes du Rwanda et du Burundi. Thèse de Doctorat d’Etat en Géographie, Université Michel Montaigne—Bordeaux III, Bourdeaux, France, 1984. [Google Scholar]
- Republic of Rwanda. Kigali City, Kigali Economic Development Strategy; Republic of Rwanda: Kigali, Rwanda, 2002.
- National Institute of Statistics of Rwanda. Fourth Population and Housing Census; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2012.
- Joshi, H.; Ng, J.; Lauwa, L. Kigali City Analysis, Benchmarking and Vision Report; City of Kigali: Kigali, Rwanda, 2013.
- Kigali City. Kigali City Master Plan Report; Kigali City: Kigali, Rwanda, 2013.
- Rwanda Environment Management Authority (REMA). State of Environment and Outlook Report; REMA: Kigali, Rwanda, 2013.
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. Syst. 1973, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Moran, E.; Dutra, L.; Batistella, M. The roles of textural images in improving land-cover classification in the Brazilian Amazon. Int. J. Remote Sens. 2014, 35, 8188–8207. [Google Scholar] [CrossRef] [Green Version]
- Shaban, M.; Dikshit, O. Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh. Int. J. Remote Sens. 2001, 22, 565–593. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [Google Scholar] [CrossRef]
- Mishra, V.N.; Prasad, R.; Rai, P.K.; Vishwakarma, A.K.; Arora, A. Performance evaluation of textural features in improving land use/land cover classification accuracy of heterogeneous landscape using multi-sensor remote sensing data. Earth Sci. Inform. 2019, 12, 71–86. [Google Scholar] [CrossRef]
- Wu, F.; Wang, C.; Zhang, H. Residential area information extraction by combining china airborne SAR and optical images. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 2568–2570. [Google Scholar]
- Haas, J.; Furberg, D.; Ban, Y.F. Satellite monitoring of urbanization and environmental impacts-A comparison of Stockholm and Shanghai. Int. J. Appl. Earth Observ. 2015, 38, 138–149. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, S.; Janz, A.; Waske, B.; Eiden, M.; Hostert, P. Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. J. Appl. Remote Sens. 2007, 1, 013543. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L.; Carlin, L. A novel technique for subpixel image classification based on support vector machine. IEEE Trans. Image Process. 2010, 19, 2983–2999. [Google Scholar] [CrossRef] [PubMed]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Song, X.; Duan, Z.; Jiang, X. Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image. Int. J. Remote Sens. 2012, 33, 3301–3320. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Townshend, J.R.; Goff, T.E. African land-cover classification using satellite data. Science 1985, 227, 369–375. [Google Scholar] [CrossRef]
- Bhandari, A.; Kumar, A.; Singh, G. Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur city. Proc. Technol. 2012, 6, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Song, G.; Liujun, Z.; Yanan, Z.; Di, L. Urban vegetation phenology analysis using high spatio-temporal NDVI time series. Urban For. Urban Green. 2017, 25, 43–57. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Klemas, V.; Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Kauth, R.; Crist, E. The tasseled cap de-mystified. Photogramm. Eng. Remote Sens. 1986, 52, 81–86. [Google Scholar]
- Kauth, R.J.; Thomas, G. The Tasselled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. LARS Symposia; Purdue University: West Lafayette, Indiana, 1976; p. 159. [Google Scholar]
- Seto, K.C.; Woodcock, C.; Song, C.; Huang, X.; Lu, J.; Kaufmann, R. Monitoring land-use change in the Pearl River Delta using Landsat TM. Int. J. Remote Sens. 2002, 23, 1985–2004. [Google Scholar] [CrossRef]
- Torbick, N.; Corbiere, M. Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades. GISci. Remote Sens. 2015, 52, 746–764. [Google Scholar] [CrossRef]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Stehman, S.V. Estimating area from an accuracy assessment error matrix. Remote Sens. Environ. 2013, 132, 202–211. [Google Scholar] [CrossRef]
- Republic of Rwanda. Vision 2020; Government of the Republic of Rwanda: Kigali, Rwanda, 2000.
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Kohli, D.; Warwadekar, P.; Kerle, N.; Sliuzas, R.; Stein, A. Transferability of object-oriented image analysis methods for slum identification. Remote Sens. 2013, 5, 4209–4228. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, P.; Blaschke, T.; Strobl, J. Quantifying the robustness of fuzzy rule sets in object-based image analysis. Int. J. Remote Sens. 2011, 32, 7359–7381. [Google Scholar] [CrossRef]
Land Cover Type | Description |
---|---|
Urban | Areas composed of high and low-density built-up areas, sealed surfaces, including paved road networks, airport, and parking lots |
Open land | Areas occupied by cultivated lands, glass land, urban green spaces, and bare land |
Forest | Areas covered by mature vegetation of height > 5 m with ≥ 60 % ground surface covered by trees and canopy with evergreen foliage. This class includes native montane forests, secondary (derived) forests, and forest plantations |
Wetland | Low land zone characterized either by permanent flooded zones with vegetated cover or seasonally flooded low land occupied by cropland and surrounded by highlands with a steep and moderate slope |
Water | Permanent water bodies such as lakes, fish ponds, water table in irrigated land, and water channels mainly composed of permanent watercourses |
1987 | ||||||
Land Cover Classes | Urban | Open Land | Forest | Wetland | Water | |
Class area proportion | 0.078 | 0.736 | 0.071 | 0.11 | 0.005 | |
Standard error | 0.005 | 0.008 | 0.004 | 0.005 | 0 | |
Area (ha) | 4782.99 | 44884.99 | 4321.57 | 6688.63 | 279.45 | |
95% CI (ha) | 642.49 | 957.88 | 491.72 | 547.26 | 18.85 | |
User’s accuracy | 0.94 ± 0.02 | 0.94 ± 0.02 | 0.90 ± 0.036 | 0.97 ± 0.037 | 0.93 ± 0.062 | |
Producer’s accuracy | 0.73 ± 0.13 | 0.98 ± 0.021 | 0.84 ± 0.114 | 0.88 ± 0.082 | 1 ± 0.067 | |
Overall Accuracy ( ± 95% CI) 0.942 ± 0.016 | ||||||
2019 | ||||||
Class area proportion | 0.234 | 0.587 | 0.067 | 0.106 | 0.006 | |
Standard error | 0.006 | 0.008 | 0.003 | 0.004 | 0 | |
Area (ha) | 14432.05 | 36224.59 | 4142.24 | 6518.98 | 389.95 | |
95% CI (ha) | 760.10 | 977.79 | 406.24 | 506.06 | 12.53 | |
User’s accuracy | 0.94 ± 0.022 | 0.92 ± 0.022 | 0.95 ± 0.026 | 0.89 ± 0.058 | 0.98 ± 0.032 | |
Producer’s accuracy | 0.85 ± 0.53 | 0.95 ± 0.027 | 0.85 ± 0.098 | 0.93 ± 0.078 | 1 ± 0.032 | |
Overall Accuracy ( ± 95% CI) 0.92 ± 0.016 |
Parameters | Data Type | Proposed Value |
---|---|---|
Max segments | Integer | 8 |
Spike threshold | Float | 0.9 |
Vertex count overshoot | Integer | 3 |
Prevent one-year recovery | Boolean | True |
Recovery threshold | Float | 0.25 |
p-value threshold | Float | 0.05 |
Best model proportion | Float | 0.75 |
Min observations needed | Integer | 6 |
Time series collection | L5-TM, L7-ETM+, and L8-OLI |
Area (in ha) | ||||||
---|---|---|---|---|---|---|
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | |
Urban | 4233.51 | 4779.62 | 5813.57 | 8099.01 | 9892.77 | 11648.29 |
Open land | 46397.33 | 45851.02 | 44832.81 | 42696.50 | 41071.18 | 39473.76 |
Forest | 3869.73 | 3856.78 | 3821.85 | 3677.54 | 3493.34 | 3328.13 |
Wetland | 6142.25 | 6153.15 | 6167.05 | 6158.47 | 6165.54 | 6164.07 |
Water | 307.99 | 310.23 | 315.51 | 319.29 | 327.98 | 336.55 |
2015 | ||||||||||||
Reference class | ||||||||||||
Ur | OL | For | Wet | WT | Total | Wi | SE | PA | UA | OA | ||
Map class | Ur | 238 | 13 | 0 | 1 | 0 | 252 | 0.217 | 0.0076 | 0.82 ± 0.069 | 0.94 ± 0.028 | 0.92± 0.02 |
OL | 28 | 437 | 4 | 6 | 0 | 475 | 0.632 | 0.0095 | 0.96 ± 0.030 | 0.92 ± 0.024 | ||
For | 0 | 6 | 52 | 0 | 0 | 58 | 0.047 | 0.0033 | 0.88 ± 0.140 | 0.90 ± 0.079 | ||
Wet | 0 | 7 | 0 | 65 | 0 | 72 | 0.100 | 0.0050 | 0.91 ± 0.097 | 0.90 ± 0.069 | ||
WT | 0 | 0 | 0 | 1 | 40 | 41 | 0.005 | 0.0001 | 1 ± 0.049 | 0.98 ± 0.048 | ||
Total | 266 | 463 | 56 | 73 | 40 | 1 | ||||||
2010 | ||||||||||||
Reference class | ||||||||||||
Ur | OL | For | Wet | WT | Total | Wi | SE | PA | UA | OA | ||
Map class | Ur | 227 | 11 | 0 | 1 | 0 | 239 | 0.205 | 0.0077 | 0.81 ± 0.074 | 0.95 ± 0.028 | 0.92 ± 0.02 |
OL | 28 | 436 | 4 | 6 | 0 | 474 | 0.643 | 0.0096 | 0.97 ± 0.029 | 0.92 ± 0.024 | ||
For | 0 | 6 | 52 | 0 | 0 | 58 | 0.048 | 0.0034 | 0.88 ± 0.140 | 0.90 ± 0.079 | ||
Wet | 0 | 7 | 0 | 65 | 0 | 72 | 0.100 | 0.0050 | 0.91 ± 0.098 | 0.90 ± 0.069 | ||
WT | 0 | 0 | 0 | 1 | 37 | 38 | 0.005 | 0.0001 | 1 ± 0.053 | 0.97 ± 0.052 | ||
Total | 255 | 460 | 56 | 73 | 37 | 1 | ||||||
2005 | ||||||||||||
Ur | OL | For | Wet | WT | Total | Wi | SE | PA | UA | OA | ||
Map class | Ur | 222 | 7 | 0 | 1 | 0 | 230 | 0.199 | 0.0078 | 0.79 ± 0.077 | 0.97 ± 0.024 | 0.92 ± 0.02 |
OL | 29 | 435 | 4 | 6 | 0 | 474 | 0.649 | 0.0097 | 0.97 ± 0.029 | 0.92 ± 0.025 | ||
For | 0 | 6 | 51 | 0 | 0 | 57 | 0.048 | 0.0035 | 0.88 ± 0.142 | 0.90 ± 0.080 | ||
Wet | 0 | 7 | 0 | 65 | 0 | 72 | 0.099 | 0.0050 | 0.90 ± 0.099 | 0.90 ± 0.069 | ||
WT | 0 | 0 | 0 | 1 | 32 | 33 | 0.005 | 0.0001 | 1 ± 0.061 | 0.97 ± 0.059 | ||
Total | 251 | 455 | 55 | 73 | 32 | 1 | ||||||
2000 | ||||||||||||
Ur | OL | For | Wet | WT | Total | Wi | SE | PA | UA | OA | ||
Map class | Ur | 383 | 3 | 0 | 0 | 0 | 386 | 0.104 | 0.0057 | 0.81 ± 0.109 | 0.99 ± 0.009 | 0.95 ± 0.02 |
OL | 12 | 431 | 4 | 6 | 0 | 453 | 0.735 | 0.0086 | 0.98 ± 0.023 | 0.95 ± 0.020 | ||
For | 0 | 6 | 49 | 0 | 0 | 55 | 0.054 | 0.0040 | 0.88 ± 0.146 | 0.89 ± 0.083 | ||
Wet | 0 | 5 | 0 | 65 | 0 | 70 | 0.103 | 0.0051 | 0.90 ± 0.097 | 0.93 ± 0.061 | ||
WT | 0 | 0 | 0 | 1 | 23 | 24 | 0.004 | 0.0002 | 1 ± 0.085 | 0.96 ± 0.082 | ||
Total | 395 | 445 | 53 | 72 | 23 | 1 | ||||||
1995 | ||||||||||||
Ur | OL | For | Wet | WT | Total | Wi | SE | PA | UA | OA | ||
Map class | Ur | 78 | 3 | 0 | 0 | 0 | 81 | 0.072 | 0.0023 | 0.98 ± 0.064 | 0.96 ± 0.041 | 0.96 ± 0.01 |
OL | 1 | 428 | 5 | 5 | 0 | 439 | 0.766 | 0.0071 | 0.98 ± 0.018 | 0.98 ± 0.015 | ||
For | 0 | 6 | 46 | 0 | 0 | 52 | 0.057 | 0.0046 | 0.85 ± 0.159 | 0.89 ± 0.088 | ||
Wet | 0 | 5 | 0 | 65 | 0 | 70 | 0.102 | 0.0050 | 0.91 ± 0.096 | 0.93 ± 0.061 | ||
WT | 0 | 0 | 0 | 1 | 20 | 21 | 0.004 | 0.0002 | 1 ± 0.098 | 0.95 ± 0.093 | ||
Total | 79 | 442 | 51 | 71 | 20 | 1 | ||||||
1990 | ||||||||||||
Ur | OL | For | Wet | WT | Total | Wi | SE | PA | UA | OA | ||
Map class | Ur | 76 | 3 | 0 | 0 | 0 | 79 | 0.069 | 0.0023 | 0.97 ± 0.066 | 0.96 ± 0.042 | 0.96 ± 0.01 |
OL | 1 | 426 | 5 | 5 | 0 | 437 | 0.768 | 0.0072 | 0.98 ± 0.018 | 0.98 ± 0.015 | ||
For | 0 | 6 | 47 | 0 | 0 | 53 | 0.058 | 0.0046 | 0.85 ± 0.157 | 0.89 ± 0.086 | ||
Wet | 0 | 5 | 0 | 64 | 0 | 69 | 0.101 | 0.0050 | 0.91 ± 0.097 | 0.93 ± 0.062 | ||
WT | 0 | 0 | 0 | 1 | 20 | 21 | 0.004 | 0.0002 | 1 ± 0.098 | 0.95 ± 0.093 | ||
Total | 77 | 440 | 52 | 70 | 20 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sens. 2020, 12, 2883. https://doi.org/10.3390/rs12182883
Mugiraneza T, Nascetti A, Ban Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sensing. 2020; 12(18):2883. https://doi.org/10.3390/rs12182883
Chicago/Turabian StyleMugiraneza, Theodomir, Andrea Nascetti, and Yifang Ban. 2020. "Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing" Remote Sensing 12, no. 18: 2883. https://doi.org/10.3390/rs12182883
APA StyleMugiraneza, T., Nascetti, A., & Ban, Y. (2020). Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sensing, 12(18), 2883. https://doi.org/10.3390/rs12182883