Quantifying DOC and Its Controlling Factors in Major Arctic Rivers during Ice-Free Conditions using Sentinel-2 Data
Abstract
:1. Introduction
2. Methods and Datasets
2.1. Field Measured Data
2.2. Remote Sensing Image Processing
2.3. Catchment Characteristic Data
2.4. CDOM Algorithm Development
3. Results
3.1. Correlation between CDOM and DOC in Arctic Rivers
3.2. Spatial-Temporal Distribution of DOC
4. Discussion
4.1. Natural Influence Factors
4.2. Artificial Influence Factors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Le Fouest, V.; Matsuoka, A.; Manizza, M.; Shernetsky, M.; Tremblay, B.; Babin, M. Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling. Biogeosciences 2018, 15, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.M.; McClelland, J.W.; Peterson, B.J.; Tank, S.E.; Bulygina, E.; Eglinton, T.I.; Gordeev, V.V.; Gurtovaya, T.Y.; Raymond, P.A.; Repeta, D.J.; et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the arctic ocean and surrounding seas. Estuaries Coasts 2011, 35, 369–382. [Google Scholar] [CrossRef]
- Herrault, P.A.; Gandois, L.; Gascoin, S.; Tananaev, N.; Le Dantec, T.; Teisserenc, R. Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the arctic river yenisei. Remote Sens. 2016, 8, 803. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent 1967–2008. J. Geophys. Res. Atmos. 2010, 115, D16111. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Smith, S.L.; Christiansen, H.H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafr. Periglac. Process. 2010, 21, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, M.; Billett, M.; Canario, J.; Cory, R.M. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar] [CrossRef] [Green Version]
- Tarnocai, C.; Canadell, J.G.; Schuur, E.A.G.; Kuhry, P.; Mazhitova, G.; Zimov, S. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 2009, 23, GB003327. [Google Scholar] [CrossRef]
- Tank, S.E.; Raymond, P.A.; Striegl, R.G.; McClelland, J.W.; Holmes, R.M.; Fiske, G.J.; Peterson, B.J. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Glob. Biogeochem. Cycles 2012, 26, GB4018. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.M.; McClelland, J.W.; Tank, S.E.; Spencer, R.G.M.; Shiklomanov, A.I. Arctic Great Rivers Observatory. Water Quality Dataset, Version 20181010. 2018. Available online: https://www.arcticgreatrivers.org/data (accessed on 23 June 2019).
- Shiklomanov, A.I.; Holmes, R.M.; McClelland, J.W.; Tank, S.E.; Spencer, R.G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20190618. 2018. Available online: https://www.arcticgreatrivers.org/data (accessed on 24 June 2019).
- Griffin, C.G.; McClelland, J.W.; Frey, K.E.; Fiske, G.; Holmes, R.M. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote Sens. Environ. 2018, 209, 395–409. [Google Scholar] [CrossRef]
- Tank, S.E.; Striegl, R.G.; McClelland, J.W.; Kokelj, S.V. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environ. Res. Lett. 2016, 11, 054015. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Raymond, P.A.; Striegl, R.G.; Zhulidov, A.V.; Zimov, S.A.; Zimov, N.; Tank, S.E.; Spencer, R.G.M.; et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Glob. Biogeochem. Cycles 2016, 30, 629–643. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Dash, P.; Silwal, S.; Feng, G.; Adeli, A.; Moorhead, R.J. Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments. Environ. Sci. Pollut. Res. Int. 2017, 24, 14124–14141. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Amon, R.M.W.; Rinehart, A.J.; Walker, S.A. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar. Chem. 2011, 124, 108–118. [Google Scholar] [CrossRef]
- Amon, R.M.W.; Rinehart, A.J.; Duan, S.; Louchouarn, P.; Prokushkin, A.; Guggenberger, G.; Bauch, D.; Stedmon, C.; Raymond, P.A.; Holmes, R.M.; et al. Dissolved organic matter sources in large Arctic rivers. Geochim. Cosmochim. Acta 2012, 94, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, K.; Canedo-Oropeza, M.; McMahon, R.; Amon, R.M.W. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 2017, 7, 13064. [Google Scholar] [CrossRef] [Green Version]
- Ylöstalo, P.; Kallio, K.; Seppälä, J. Absorption properties of in-water constituents and their variation among various lake types in the boreal region. Remote Sens. Environ. 2014, 148, 190–205. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Frey, K.E.; Sobczak, W.V.; Mann, P.J.; Holmes, R.M. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia. Biogeosciences 2016, 13, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.A.; Aiken, G.R.; Swanson, D.K.; Panda, S.; Butler, K.D.; Baltensperger, A.P. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Glob. Biogeochem. Cycles 2016, 30, 1811–1826. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.G.M.; Butler, K.D.; Aiken, G.R. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J. Geophys. Res. Biogeosci. 2012, 117, G03001. [Google Scholar] [CrossRef]
- Del Castillo, C.E.; Miller, R.L. On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume. Remote Sens. Environ. 2008, 112, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S.B.; Mitchell, B.G.; Bélanger, S.; Bricaud, A. A synthesis of light absorption properties of the Arctic Ocean: Application to semianalytical estimates of dissolved organic carbon concentrations from space. Biogeosciences 2014, 11, 3131–3147. [Google Scholar] [CrossRef] [Green Version]
- Strömbeck, N.; Pierson, D.C. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters. Sci. Total Environ. 2001, 268, 123–137. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and Colored Dissolved Organic Matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Chen, R.F.; Gardner, G.B. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing. J. Geophys. Res. 2011, 116, C02011. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Yu, Q.; Zhu, W. Estimating of chromophoric dissolved organic matter (CDOM) with in-situ and satellite hyperspectral remote sensing technology. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2040–2042. [Google Scholar]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Kutser, T. The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens. Environ. 2012, 123, 334–338. [Google Scholar] [CrossRef]
- Fichot, C.G.; Kaiser, K.; Hooker, S.B.; Amon, R.M.W.; Babin, M.; Bélanger, S.; Walker, S.A.; Benner, R. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, Y.; Yu, Q.; Tian, Y.Q.; Zhu, W.; Chen, J. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements. J. Appl. Remote Sens. 2017, 11, 036007. [Google Scholar]
- Pelevin, V.V.; Zavjalov, P.O.; Belyaev, N.A.; Konovalov, B.V.; Kravchishina, M.D.; Mosharov, S.A. Spatial variability of concentrations of chlorophyll a, dissolved organic matter and suspended particles in the surface layer of the kara sea in september 2011 from lidar data. Oceanology 2017, 57, 165–173. [Google Scholar] [CrossRef]
- Belen Ruescas, A.; Hieronymi, M.; Mateo-Garcia, G.; Koponen, S.; Kallio, K.; Camps-Valls, G. Machine learning regression approaches for Colored Dissolved Organic Matter (CDOM) retrieval with S2-MSI and S3-OLCI simulated data. Remote Sens. 2018, 10, 786. [Google Scholar] [CrossRef] [Green Version]
- Harms, T.K.; Edmonds, J.W.; Genet, H.; Creed, I.F.; Aldred, D.; Balser, A.; Jones, J.B. Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient. J. Geophys. Res. Biogeosci. 2016, 121, 350–369. [Google Scholar] [CrossRef] [Green Version]
- Connolly, C.T.; Khosh, M.S.; Burkart, G.A.; Douglas, T.A.; Holmes, R.M.; Jacobson, A.D.; Tank, S.E.; McClelland, J.W. Watershed slope as a predictor of fluvial dissolved organic matter and nitrate concentrations across geographical space and catchment size in the Arctic. Environ. Res. Lett. 2018, 13, 104015. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Bromwich, D.H.; Clark, M.P.; Etringer, A.J.; Zhang, T.; Lammers, R. Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res. 2002, 108, 8106. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Ye, B.; Shiklomanov, A. Discharge Characteristics and Changes over the Ob River Watershed in Siberia. J. Hydrometeorol. 2004, 5, 595–610. [Google Scholar] [CrossRef] [Green Version]
- McClelland, J.W. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 2004, 109, D18102. [Google Scholar] [CrossRef] [Green Version]
- Raymond, P.A.; McClelland, J.W.; Holmes, R.M.; Zhulidov, A.V.; Mull, K.; Peterson, B.J.; Striegl, R.G.; Aiken, G.R.; Gurtovaya, T.Y. Flux and age of dissolved organic carbon exported to the Arctic Ocean:A carbon isotopic study of the five largest arctic rivers. Glob. Biogeochem. Cycles 2007, 21, GB4011. [Google Scholar] [CrossRef]
- Schiff, S.L.; Devito, K.J.; Elgood, R.J.; McCrindle, P.M.; Spoelstra, J.; Dillon, P. Two adjacent forested catchments: Dramatically different NO3−export. Water Resour. Res. 2002, 38, 1292. [Google Scholar] [CrossRef]
- Inamdar, S.P.; Mitchell, M.J. Hydrologic and topographic controls on storm-event exports of dissolved organic carbon (DOC) and nitrate across catchment scales. Water Resour. Res. 2006, 42, W03421. [Google Scholar] [CrossRef]
- Winn, N.; Williamson, C.E.; Abbitt, R.; Rose, K.; Renwick, W.; Henry, M.; Saros, J. Modeling dissolved organic carbon in subalpine and alpine lakes with GIS and remote sensing. Landsc. Ecol. 2009, 24, 807–816. [Google Scholar] [CrossRef]
- D’Amore, D.V.; Edwards, R.T.; Biles, F.E. Biophysical controls on dissolved organic carbon concentrations of Alaskan coastal temperate rainforest streams. Aquat. Sci. 2015, 78, 381–393. [Google Scholar] [CrossRef]
- Walker, S.A.; Amon, R.M.W.; Stedmon, C.A. Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers. J. Geophys. Res. Biogeosci. 2013, 118, 1689–1702. [Google Scholar] [CrossRef]
- Holmes, R.M.; Coe, M.; Fiske, G.; Gurtovaya, T.; McClelland, J.; Shiklomanov, A.; Spencer, R.; Tank, S.; Zhulidov, A. Climate Change Impacts on the Hydrology and Biogeochemistry of Arctic Rivers, in Global Impacts of Climate Change on Inland Waters; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2013; pp. 3–26. [Google Scholar]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- The ArcticRIMS Website. Available online: http:// rims.unh.edu/data.shtml (accessed on 13 June 2019).
- FROM-GLC (Finer Resolution Observation and Monitoring of Global Land Cover). Available online: http://data.ess.tsinghua.edu.cn (accessed on 16 August 2019).
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- GMTED2010 DEM Data. Available online: https://earthexplorer.usgs.gov/ (accessed on 8 July 2019).
- ORNL’s LandScan™ 2017 Datasets. Available online: https://landscan.ornl.gov/landscan-datasets (accessed on 14 November 2019).
- Joshi, I.; D’Sa, E. Seasonal variation of colored dissolved organic matter in barataria bay, louisiana, using combined landsat and field data. Remote Sens. 2015, 7, 12478–12502. [Google Scholar] [CrossRef] [Green Version]
- Griffin, C.G.; Frey, K.E.; Rogan, J.; Holmes, R.M. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. J. Geophys. Res. 2011, 116, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Osburn, C.L.; Stedmon, C.A. Linking the chemical and optical properties of dissolved organic matter in the Baltic–North Sea transition zone to differentiate three allochthonous inputs. Mar. Chem. 2011, 126, 281–294. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Dunton, K.H.; Macdonald, R.W. The arctic ocean estuary. Estuaries Coasts 2012, 35, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Khosh, M.S.; McClelland, J.W.; Jacobson, A.D.; Douglas, T.A.; Barker, A.J.; Lehn, G.O. Seasonality of dissolved nitrogen from spring melt to fall freezeup in Alaskan Arctic tundra and mountain streams. J. Geophys. Res. Biogeosci. 2017, 122, 1718–1737. [Google Scholar] [CrossRef]
- Mann, P.J.; Spencer, R.G.M.; Hernes, P.J.; Six, J.; Aiken, G.R.; Tank, S.E.; McClelland, J.W.; Butler, K.D.; Dyda, R.Y.; Holmes, R.M. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements. Front. Earth Sci. 2016, 4, 25. [Google Scholar] [CrossRef]
- Le Fouest, V.; Babin, M.; Tremblay, J.É. The fate of riverine nutrients on Arctic shelves. Biogeosciences 2013, 10, 3661–3677. [Google Scholar] [CrossRef] [Green Version]
- Winterdahl, M.; Erlandsson, M.; Futter, M.N.; Weyhenmeyer, G.A.; Bishop, K. Intra-annual variability of organic carbon concentrations in running waters: Drivers along a climatic gradient. Glob. Biogeochem. Cycles 2014, 28, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Petrone, K.; Jones, J.; Hinzman, L.; Boone, R. Correction to “Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost”. J. Geophys. Res 2006, 111, G02020. [Google Scholar] [CrossRef]
- Stubbins, A.; Spencer, R.G.M.; Mann, P.J.; Holmes, R.M.; McClelland, J.W.; Niggemann, J.; Dittmar, T. Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. Front. Earth Sci. 2015, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Jasechko, S.; Kirchner, J.W.; Welker, J.M.; McDonnell, J.J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 2016, 9, 126–129. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J. The role of topography on catchment-scale water residence time. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Kutscher, L.; Mörth, C.-M.; Porcelli, D.; Hirst, C.; Maximov, T.C.; Petrov, R.E.; Andersson, P.S. Spatial variation in concentration and sources of organic carbon in the Lena River, Siberia. J. Geophys. Res. Biogeosci. 2017, 122, 1999–2016. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.G.M.; Hernes, P.J.; Ruf, R.; Baker, A.; Dyda, R.Y.; Stubbins, A.; Six, J. Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. J. Geophys. Res. 2010, 115, G03013. [Google Scholar] [CrossRef] [Green Version]
- Lehn, G.O.; Jacobson, A.D.; Douglas, T.A.; McClelland, J.W.; Barker, A.J.; Khosh, M.S. Constraining seasonal active layer dynamics and chemical weathering reactions occurring in North Slope Alaskan watersheds with major ion and isotope (δ34SSO4, δ13CDIC, 87Sr/86Sr, δ44/40Ca, and δ44/42Ca) measurements. Geochim. et Cosmochim. Acta 2017, 217, 399–420. [Google Scholar] [CrossRef]
- Ågren, A.; Buffam, I.; Berggren, M.; Bishop, K.; Jansson, M.; Laudon, H. Dissolved organic characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. J. Geophys. Res. Biogeosci. 2008, 113, G03031. [Google Scholar] [CrossRef]
- Creed, I.F.; Beall, F.D. Distributed topographic indicators for predicting nitrogen export from headwater catchments. Water Resour. Res. 2009, 45, W10407. [Google Scholar] [CrossRef]
- Smith, L.; Beilman, D.; Kremenetski, K.V.; Sheng, Y.; MacDonald, G.; Lammers, R.; Shiklomanov, A.; Lapshina, E. Influence of permafrost on water storage in West Siberian peatlands revealed from a new database of soil properties. Permafr. Periglac. Process. 2012, 23, 69–79. [Google Scholar] [CrossRef]
- Yi, Y.; Gibson, J.J.; Hélie, J.-F.; Dick, T.A. Synoptic and time-series stable isotope surveys of the Mackenzie River from Great Slave Lake to the Arctic Ocean, 2003 to 2006. J. Hydrol. 2010, 383, 223–232. [Google Scholar] [CrossRef]
- Royer, T.V.; David, M.B. Export of dissolved organic carbon from agricultural streams in Illinois, USA. Aquat. Sci. 2005, 67, 465–471. [Google Scholar] [CrossRef]
- Prokushkin, A.S.; Pokrovsky, O.S.; Korets, M.A.; Rubtsov, A.V.; Titov, S.V.; Tokareva, I.V.; Kolosov, R.A.; Amon, R.M.W. Sources of dissolved organic carbon in rivers of the yenisei river basin. Dokl. Earth Sci. 2018, 480, 763–766. [Google Scholar] [CrossRef]
- Meyer, J.; Tate, C. The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology 1983, 64, 33–44. [Google Scholar] [CrossRef]
- McClelland, J.W.; Townsend-Small, A.; Holmes, R.M.; Feifei Pan4, M.S.; Khosh, M.; Peterson, B.J. River export of nutrients and organic matter from the North Slope of Alaska to the Beaufort Sea. Water Resour. Res. 2014, 50, 1823–1839. [Google Scholar] [CrossRef] [Green Version]
- Pokrovsky, O.S.; Manasypov, R.M.; Loiko, S.; Shirokova, L.S.; Krickov, I.A.; Pokrovsky, B.G.; Kolesnichenko, L.G.; Kopysov, S.G.; Zemtzov, V.A.; Kulizhsky, S.P.; et al. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers. Biogeosciences 2015, 12, 6301–6320. [Google Scholar] [CrossRef] [Green Version]
River | Discharge | Temperature | CDOM | DOC | TSS | SUVA254 | |
---|---|---|---|---|---|---|---|
m3/s | °C | m−1 | mg C/L | mg/L | L mg C−1 m−1 | ||
Yenisey | Min | 5850 | −1.00 | 0.010 | 2.20 | 0.15 | 1.861 |
Max | 98,500 | 18.00 | 0.086 | 12.96 | 26.10 | 4.163 | |
Mean | 26,417 | 7.00 | 0.037 | 6.34 | 5.78 | 3.109 | |
Lena | Min | 2076 | −0.50 | 0.017 | 3.20 | 0.59 | 2.187 |
Max | 163,000 | 19.90 | 0.129 | 23.50 | 221.00 | 4.152 | |
Mean | 34,360 | 7.30 | 0.055 | 9.47 | 29.80 | 3.214 | |
Ob’ | Min | 3350 | −2.00 | 0.013 | 4.00 | 1.57 | 2.019 |
Max | 36,300 | 20.00 | 0.111 | 16.60 | 134.80 | 4.216 | |
Mean | 17,668 | 6.90 | 0.061 | 9.70 | 31.00 | 3.301 | |
Kolyma | Min | 148 | 0.00 | 0.004 | 2.48 | 0.35 | 1.420 |
Max | 24,300 | 15.90 | 0.103 | 18.40 | 394.59 | 3.444 | |
Mean | 5796 | 6.50 | 0.025 | 5.69 | 46.25 | 2.398 | |
Yukon | Min | 1175 | −2.00 | 0.007 | 2.10 | 3.64 | 1.917 |
Max | 33,414 | 19.50 | 0.109 | 15.90 | 863.00 | 3.747 | |
Mean | 9726 | 8.40 | 0.032 | 5.85 | 212.44 | 2.743 | |
Mackenzie | Min | 2960 | −2.00 | 0.008 | 2.27 | 0.80 | 1.529 |
Max | 28,800 | 19.60 | 0.052 | 8.10 | 461.38 | 4.442 | |
Mean | 10,900 | 8.10 | 0.022 | 4.66 | 91.33 | 2.364 |
Rivers | Acquisition Date of Images | Sampling Date of DOC |
---|---|---|
Yenisey | 17 June 2017 | 14 June 2017 |
Lena | 02 August 2016 | 31 July 2016 |
Lena | 29 June 2017 | 03 July 2017 |
Lena | 02 August 2017 | 05 August 2017 |
Ob’ | 18 June 2017 | 25 June 2017 |
Kolyma | 04 October 2016 | 04 October 2016 |
Kolyma | 01 June 2017 | 28 May 2017 |
Kolyma | 08 August 2017 | 16 August 2017 |
Kolyma | 03 October 2017 | 09 October 2017 |
Yukon | 01 September 2016 | 29 August 2016 |
Yukon | 24 August 2017 | 18 August 2017 |
Yukon | 18 October 2017 | 18 October 2017 |
Mackenzie | 02 October 2016 | 05 October 2016 |
Mackenzie | 29 June 2017 | 29 June 2017 |
Mackenzie | 28 August 2017 | 03 September 2017 |
Model | Equation Form | Coefficients | R2 | MRE | P | RMSE | |||
---|---|---|---|---|---|---|---|---|---|
b0 | b1 | b2 | b3 | % | Value | m−1 | |||
K2005 | a440 = exp(b0 + b1 × ln(B3/B4)) | −4.669 | −1.868 | — | — | 0.612 | 27.48 | <0.001 | 0.388 |
G2011 | a440 = exp(b0 + b1×B4 + b2 × (B3/B2)) | −4.759 | −2.676 | 0.265 | — | 0.338 | 69.96 | >0.050 | 0.506 |
H2016 | a440 = b0 + b1×B3 + b2 × (B3/B4) | −2.705 | −5.185 | −1.552 | — | 0.632 | 46.07 | <0.010 | 0.005 |
G2018 | a375 = b0 + b1×B2 + b2×B3 + b3 × (B2/B3) | 0.084 | −0.373 | −0.599 | −0.037 | 0.448 | 60.34 | >0.050 | 0.007 |
This study | a254 = exp(b0 + b1×B2 + b2×B2/B4 + b3 × ln(B3/B4)) | −2.012 | −7.82 | 0.838 | −1.859 | 0.791 | 40.92 | <0.001 | 0.477 |
a375 = b0 × ln(B2) − b1 | −0.014 | −0.01 | — | — | 0.556 | 42.13 | >0.010 | 0.085 | |
a375 = b0 + b1×B2 + b2×B3 + b3 × ln(B3/B4) | 0.016 | 0.098 | −0.163 | −0.025 | 0.732 | 63.21 | >0.001 | 0.123 | |
a375 = b0 + b1 × B2 + b2 × B2/B4 + b3 × ln(B3/B4) | 0.001 | −0.36 | 0.061 | −0.121 | 0.825 | 31.33 | <0.001 | 0.010 | |
a440 = b0 × ln(B3/B4) + b1 | −0.027 | 0.011 | — | — | 0.625 | 53.20 | <0.001 | 0.006 |
Season | Yenisey | Lena | Ob’ | Kolyma | Yukon | Mackenzie | |
---|---|---|---|---|---|---|---|
Spring | Min | 6.60 | 9.78 | 6.94 | 7.66 | 7.41 | 5.46 |
Max | 24.14 | 12.48 | 14.59 | 11.34 | 9.92 | 7.82 | |
Mean | 10.31 | 11.00 | 9.93 | 8.72 | 8.50 | 6.46 | |
Summer | Min | 4.44 | 5.99 | 3.91 | 2.52 | 4.97 | 3.52 |
Max | 9.55 | 10.75 | 7.62 | 7.14 | 7.02 | 6.93 | |
Mean | 6.87 | 8.90 | 6.28 | 4.64 | 5.83 | 5.25 | |
Annual Average | 7.50 | 9.02 | 9.45 | 6.05 | 6.61 | 5.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wu, M.; Cui, T.; Yang, F. Quantifying DOC and Its Controlling Factors in Major Arctic Rivers during Ice-Free Conditions using Sentinel-2 Data. Remote Sens. 2019, 11, 2904. https://doi.org/10.3390/rs11242904
Huang J, Wu M, Cui T, Yang F. Quantifying DOC and Its Controlling Factors in Major Arctic Rivers during Ice-Free Conditions using Sentinel-2 Data. Remote Sensing. 2019; 11(24):2904. https://doi.org/10.3390/rs11242904
Chicago/Turabian StyleHuang, Jue, Ming Wu, Tingwei Cui, and Fanlin Yang. 2019. "Quantifying DOC and Its Controlling Factors in Major Arctic Rivers during Ice-Free Conditions using Sentinel-2 Data" Remote Sensing 11, no. 24: 2904. https://doi.org/10.3390/rs11242904
APA StyleHuang, J., Wu, M., Cui, T., & Yang, F. (2019). Quantifying DOC and Its Controlling Factors in Major Arctic Rivers during Ice-Free Conditions using Sentinel-2 Data. Remote Sensing, 11(24), 2904. https://doi.org/10.3390/rs11242904