Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Calculation of the Flood Inundation Area
2.3. Conversion of the SMAP/SMOS-Derived Brightness Temperature
3. Results and Discussion
3.1. Overall Evaluations during the Typhoon Season
3.2. Flood Inundation During Typhoon Events Nasha and Haitang
3.3. Flood Inundation in Poyang Lake Basin During the Extreme Precipitation Event
3.4. Limitations of the Data and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- China Meteorological Administration. China Climate Bulletin 2017; China Meteorological Administration: Beijing, China, 2017; pp. 30–33.
- Zhang, Q.; Gu, X.; Singh, V.P.; Shi, P.; Luo, M. Timing of floods in southeastern China: Seasonal properties and potential causes. J. Hydrol. 2017, 552, 732–744. [Google Scholar] [CrossRef]
- Klemas, V. Remote Sensing of Floods and Flood-Prone Areas: An Overview. J. Coast. Res. 2014, 1005–1013. [Google Scholar] [CrossRef]
- Masters, D.; Axelrad, P.; Katzberg, S. Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sens. Environ. 2004, 92, 507–520. [Google Scholar] [CrossRef]
- Ruf, C.S.; Chew, C.; Lang, T.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation. Sci. Rep. 2018, 8, 8782. [Google Scholar] [CrossRef] [PubMed]
- Chew, C.; Reager, J.T.; Small, E. CYGNSS data map flood inundation during the 2017 Atlantic hurricane season. Sci. Rep. 2018, 8, 9336. [Google Scholar] [CrossRef] [PubMed]
- Chew, C.C.; Small, E.E. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of Cyclone Global Navigation Satellite System (CyGNSS) Observations for Estimation of Soil Moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Lake Level and Surface Topography Measured With Spaceborne GNSS-Reflectometry From CYGNSS Mission: Example for the Lake Qinghai. Geophys. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Mayers, D.; Ruf, C. Measuring Ice Thickness with Cygnss Altimetry. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8535–8538. [Google Scholar]
- Lavalle, M.; Morris, M.; Shah, R.; Zuffada, C.; Nghiem, S.V.; Chew, C.; Zavorotny, V.U. Bistatic Scattering Modeling for Dynamic Mapping of Tropical Wetlands with Cygnss. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 239–242. [Google Scholar]
- Carreno-Luengo, H.; Luzi, G.; Crosetto, M. Sensitivity of CyGNSS Bistatic Reflectivity and SMAP Microwave Radiometry Brightness Temperature to Geophysical Parameters Over Land Surfaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 107–122. [Google Scholar] [CrossRef]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef]
- Rius, A.; Cardellach, E.; Fabra, F.; Li, W.; Ribó, S.; Hernández-Pajares, M. Feasibility of GNSS-R Ice Sheet Altimetry in Greenland Using TDS-1. Remote Sens. 2017, 9, 742. [Google Scholar] [CrossRef]
- Roo, R.D.D.; Ulaby, F.T. Bistatic specular scattering from rough dielectric surfaces. IEEE Trans. Antennas Propag. 1994, 42, 220–231. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Brakenridge, G.R.; Kettner, A.J.; Beck, H.E.; De Groeve, T.; Schellekens, J. River gauging at global scale using optical and passive microwave remote sensing. Water Resour. Res. 2016, 52, 6404–6418. [Google Scholar] [CrossRef]
- Wan, W.; Larson, K.M.; Small, E.E.; Chew, C.C.; Braun, J.J. Using geodetic GPS receivers to measure vegetation water content. GPS Solut. 2015, 19, 237–248. [Google Scholar] [CrossRef]
- Khouakhi, A.; Villarini, G.; Vecchi, G.A. Contribution of Tropical Cyclones to Rainfall at the Global Scale. J. Clim. 2016, 30, 359–372. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Zuffada, C.; Shah, R.; Chew, C.; Lowe, S.T.; Mannucci, A.J.; Cardellach, E.; Brakenridge, G.R.; Geller, G.; Rosenqvist, A. Wetland monitoring with Global Navigation Satellite System reflectometry. Earth Space Sci. 2017, 4, 16–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, R.; Ruf, C.; Loria, E.; Brien, A.O. Comparison of Wide Bandwidth Conventional and Interferometric GNSS-R Techniques for Possible CYGNSS Follow-On Mission. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4277–4280. [Google Scholar]
- Martín-Neira, M.; Li, W.; Andrés-Beivide, A.; Ballesteros-Sels, X. “Cookie”: A Satellite Concept for GNSS Remote Sensing Constellations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4593–4610. [Google Scholar] [CrossRef]
Name | Landfall Time | Landfall Location | Maximum Wind Speed When Landing (m/s) | |
---|---|---|---|---|
Typhoon | Luoke | Jul. 23 | Hongkang (22.4 N, 114.3 E) | 20 |
Nasha | Jul. 29 Jul. 30 | Yilan, Taiwan (24.7 N, 121.8 E) Fuqing, Fujian (25.5 N, 119.6 E) | 40 33 | |
Haitang | Jul. 30 Jul. 31 | Pingdong, Taiwan (22.5 N, 120.5 E) Fuqing, Fujian (25.5 N, 119.6 E) | 23 18 | |
Tiange | Aug. 23 | Zhuhai, Guangdong (22.0 N, 113.2 E) | 45 | |
Paka | Aug. 27 | Taishan, Guangdong (22.0 N, 113 E) | 33 | |
Mawa | Sep. 3 | Shanwei, Guangdong (22.9 N, 115.9 E) | 20 | |
Extreme precipitation | Southeast China (20–31 N, 100–122 E), lasting for 11 days from Jun. 22 (DOY 173) to Jul. 2 (DOY 183) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, W.; Liu, B.; Zeng, Z.; Chen, X.; Wu, G.; Xu, L.; Chen, X.; Hong, Y. Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017. Remote Sens. 2019, 11, 854. https://doi.org/10.3390/rs11070854
Wan W, Liu B, Zeng Z, Chen X, Wu G, Xu L, Chen X, Hong Y. Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017. Remote Sensing. 2019; 11(7):854. https://doi.org/10.3390/rs11070854
Chicago/Turabian StyleWan, Wei, Baojian Liu, Ziyue Zeng, Xi Chen, Guiping Wu, Liwen Xu, Xiuwan Chen, and Yang Hong. 2019. "Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017" Remote Sensing 11, no. 7: 854. https://doi.org/10.3390/rs11070854
APA StyleWan, W., Liu, B., Zeng, Z., Chen, X., Wu, G., Xu, L., Chen, X., & Hong, Y. (2019). Using CYGNSS Data to Monitor China’s Flood Inundation during Typhoon and Extreme Precipitation Events in 2017. Remote Sensing, 11(7), 854. https://doi.org/10.3390/rs11070854