A Bibliometric Profile of the Remote Sensing Open Access Journal Published by MDPI between 2009 and 2018
Abstract
:1. Introduction
- (1)
- What are the dynamics and trends of RS OAJ publications over last 10-years?
- (2)
- What are the journal impact factor, total cites, eigenfactor score, normalized eigenfactor, CiteScore of RS OAJ and the publications speed of various remote sensing journals?
- (3)
- What is the h-index of RS OAJ, and how are the h-classic publications distributed?
- (4)
- What are the major institutions and countries (or territories) according to number of publications, and the cooperation patterns among them?
- (5)
- What are the main research themes?
- (6)
- What are the citation impact of co-occurrences keywords?
- (7)
- What is the intellectual structure analysis about RS OAJ? and
- (8)
- What is the knowledge commutation analysis about RS OAJ?
2. Materials and Methods
3. Results
3.1. Dynamics and Trends of Publications
3.2. Journal Impact Factor, Total Cites, Eigenfactor Score, Normalized Eigenfactor and the Publication Speed of Various Remote Sensing Journals
3.3. H-Index and H-Classic Publicaitons
3.4. Most Productive Countries (Territories) and Institutions
3.5. Number of Publications by a Country and Co-Authorship Collaboration amongst Countries and\or Territories
3.6. Remote Sensing Research Theme Analysis
3.7. Citation Impact of Publications
3.8. Intellectual Structure Analysis
3.9. Knowledge Commutation Analysis: To and from Remote Sensing Open Access Journal (RS OAJ) of MDPI
4. Comparison with Two Best Remote Sensing Journals
5. Discussion
Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef]
- Suomalainen, J.; Anders, N.; Iqbal, S.; Roerink, G.; Franke, J.; Wenting, P.; Hünniger, D.; Bartholomeus, H.; Becker, R.; Kooistra, L. A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens. 2014, 6, 11013–11030. [Google Scholar] [CrossRef]
- Yavuz, M.E.; Teixeira, F.L. Ultrawideband microwave sensing and imaging using time-reversal techniques: A review. Remote Sens. 2009, 1, 466–495. [Google Scholar] [CrossRef]
- Gao, F.; Kustas, W.P.; Anderson, M.C. A data mining approach for sharpening thermal satellite imagery over land. Remote Sens. 2012, 4, 3287–3319. [Google Scholar] [CrossRef]
- Colgan, M.S.; Baldeck, C.A.; Féret, J.-B.; Asner, G.P. Mapping Savanna tree species at ecosystem scales using support vector machine classification and BRDF correction on airborne hyperspectral and LiDAR data. Remote Sens. 2012, 4, 3462–3480. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef]
- Hasan, R.C.; Ierodiaconou, D.; Monk, J. Evaluation of four supervised learning methods for Benthic habitat mapping using backscatter from multi-beam sonar. Remote Sens. 2012, 4, 3427–3443. [Google Scholar] [CrossRef]
- Zwieback, S.; Paulik, C.; Wagner, W. Frozen soil detection based on advanced scatterometer observations and air temperature data as part of soil moisture retrieval. Remote Sens. 2015, 7, 3206–3231. [Google Scholar] [CrossRef]
- Bosch, W.; Dettmering, D.; Schwatke, C. Multi-mission cross-calibration of satellite altimeters: Constructing a long-term data record for global and regional sea level change studies. Remote Sens. 2014, 6, 2255–2281. [Google Scholar] [CrossRef]
- Meyer, R.; Winer, R.S. Introduction to the JMR 50th anniversary special section. J. Mark. Res. 2014, 51, 83. [Google Scholar] [CrossRef]
- Schwert, G.W. The journal of financial economics: A retrospective evaluation (1974–1991). J. Financ. Econ. 1993, 33, 369–424. [Google Scholar] [CrossRef]
- Heck, J.L.; Bremser, W.G. Six decades of the accounting review: A summary of author and institutional contributors. Account. Rev. 1986, 61, 735–744. [Google Scholar]
- Shugan, S.M. Editorial: Fifty years of marketing science. Mark. Sci. 2006, 25, 551–555. [Google Scholar] [CrossRef]
- Van Fleet, D.D.; Ray, D.F.; Hunt, J.G.; Vecchio, R.P.; Bedeian, A.G.; Griffin, R.W.; Kacmar, K.M.; Downey, H.K.; Dalton, D.; Feldman, D.C. The journal of management’s first 30 years. J. Manag. 2006, 32, 477–506. [Google Scholar] [CrossRef]
- Merigó, J.M.; Mas-Tur, A.; Roig-Tierno, N.; Ribeiro-Soriano, D. A bibliometric overview of the journal of business research between 1973 and 2014. J. Bus. Res. 2015, 68, 2645–2653. [Google Scholar] [CrossRef]
- Cancino, C.A.; Merigó, J.M.; Coronado, F.; Dessouky, Y.; Dessouky, M. Forty years of computers and industrial engineering: A bibliometric analysis. Comput. Ind. Eng. 2017, 113, 614–629. [Google Scholar] [CrossRef]
- Merigó, J.M.; Blanco-Mesa, F.; Gil-Lafuente, A.M.; Yager, R.R. Thirty years of the international journal of intelligent systems: A bibliometric review. Int. J. Intell. Syst. 2017, 32, 526–554. [Google Scholar] [CrossRef]
- Valenzuela, L.; Merigó, J.M.; Johnston, W.J.; Nicolás, C.; Jaramillo, J.F. Thirty years of the journal of business and industrial marketing: A bibliometric analysis. J. Bus. Ind. Mark. 2017, 32, 1–18. [Google Scholar] [CrossRef]
- Tang, M.; Liao, H.C.; Wan, Z.J.; Herrera-Viedma, E.; Rosen, M.A. Ten years of sustainability (2009 to 2018): A bibliometric overview. Sustainability 2018, 10, 1655. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Butler, L.; Mcallister, I. Evaluating university research performance using metrics. Eur. Polit. Sci. 2011, 10, 44–58. [Google Scholar] [CrossRef]
- Costas, R.; Bordons, M. The H-index: Advantages, limitations and its relation with other bibliometric indicators at the micro level. J. Informetr. 2007, 1, 193–203. [Google Scholar] [CrossRef]
- Bornmann, L.; Daniel, H.D. Does the H-index for ranking of scientists really work? Scientometrics 2005, 65, 391–392. [Google Scholar] [CrossRef]
- Braun, T.; Schubert, A. A quantitative view on the coming of age of interdisciplinarity in the sciences 1980–1999. Scientometrics 2003, 58, 183–189. [Google Scholar] [CrossRef]
- Garfield, E. Citation analysis as a tool in journal evaluation. Science 1972, 178, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Broadus, R.N. Toward a definition of “Bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E.; Herrera, F. H-index: A review focused on its variants, computation and standardization for different scientific fields. J. Informetr. 2009, 3, 273–289. [Google Scholar] [CrossRef]
- Franceschini, F.; Maisano, D.A. The hirsch index in manufacturing and quality engineering. Qual. Reliab. Eng. Int. 2010, 25, 987–995. [Google Scholar] [CrossRef]
- Small, H. Co-citation context analysis and the structure of paradigms. J. Doc. 1980, 36, 183–196. [Google Scholar] [CrossRef]
- Small, H. The relationship of information science to the social sciences: A co-citation analysis. Inf. Process. Manag. 1981, 17, 39–50. [Google Scholar] [CrossRef]
- Small, H. Tracking and predicting growth areas in science. Scientometrics 2006, 68, 595–610. [Google Scholar] [CrossRef]
- Boyack, K.W.; Klavans, R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J. Am. Soc. Inf. Sci. Technol. 2014, 61, 2389–2404. [Google Scholar] [CrossRef]
- White, H.D.; Griffith, B.C. Author co-citation: A literature measure of intellectual structure. J. Am. Soc. Inf. Sci. Technol. 2014, 32, 163–171. [Google Scholar] [CrossRef]
- Nerur, S.P.; Rasheed, A.A.; Natarajan, V. The intellectual structure of the strategic management field: An author co-citation analysis. Strateg. Manag. J. 2010, 29, 319–336. [Google Scholar] [CrossRef]
- Chen, C.M.; Ibekwe-SanJuan, F.; Hou, J.H. The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Garfield, E. Journal impact factor: A brief review. Can. Med. Assoc. J. 1999, 161, 979–980. [Google Scholar]
- Garfield, E. The history and meaning of the journal impact factor. Jama 2006, 295, 90–93. [Google Scholar] [CrossRef]
- Total Cites. Available online: http://ipscience-help.thomsonreuters.com/incitesLiveJCR/glossaryAZgroup/g13/7411-TRS.html (accessed on 5 October 2018).
- Fersht, A. The most influential journals: Impact factor and eigenfactor. Proc. Natl. Acad. Sci. USA 2009, 106, 6883–6884. [Google Scholar] [CrossRef]
- Bergstrom, C.T.; West, J.D.; Wiseman, M.A. The eigenfactor metrics. J. Neurosci. 2008, 28, 11433–11434. [Google Scholar] [CrossRef]
- Gu, H. Normalized Eigenfactor, normalized article influence score and SNIP in interdisciplinary evaluation: A correlation analysis. J. Intell. 2017, 8, 120–123. [Google Scholar]
- Da Silva, J.A.T.; Memon, A.R. CiteScore: A cite for sore eyes, or a valuable, transparent metric? Scientometrics 2017, 111, 1–4. [Google Scholar]
- Van Eck, N.J.; Waltman, L.; Noyons, E.C.M.; Buter, R.K. Automatic term identification for bibliometric mapping. Scientometrics 2010, 82, 581–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, C.A.; Merigó, J.M.; Torres-Abad, C. Economics in Latin America: A bibliometric analysis. Scientometrics 2015, 105, 1239–1252. [Google Scholar] [CrossRef]
- Ding, Y.; Rousseau, R.; Wolfram, D. Measuring Scholarly Impact; Springer International Publishing: Basel, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10376-1. [Google Scholar]
- Todorov, R.; Glanzel, W. Journal citation measures: A concise review. J. Inf. Sci. 1988, 14, 47–56. [Google Scholar] [CrossRef]
- Garfield, E. Citation indexes to science: A new dimension in documentation through association of ideas. Science 1955, 122, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.A.; Herrera, M.; Contreras, E.; Ruiz, A.; Herrera-Viedma, E. Characterizing highly cited papers in social work through H-classics. Scientometrics 2015, 102, 1713–1729. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Meng, X.L.; Currit, N.; Zhao, K.G. Ground filtering algorithms for airborne LIDAR data: A review of critical issues. Remote Sens. 2010, 2, 833–860. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SFM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Kaartinen, H.; Hyyppa, J.; Yu, X.W.; Vastaranta, M.; Hyyppa, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 2012, 4, 950–974. [Google Scholar] [CrossRef]
- Rudorff, B.F.T.; de Aguiar, D.A.; da Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using landsat data. Remote Sens. 2010, 2, 1057–1076. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- Hunt, E.R.J.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Akerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-wiki.org: The use of crowdsourcing to improve global land cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef]
- Hu, F.; Xia, G.S.; Hu, J.W.; Zhang, L.P. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Boesch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission. Remote Sens. 2011, 3, 270–304. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L.; Van Raan, A.F.J.; Klautz, R.J.M.; Peul, W.C. Citation analysis may severely underestimate the impact of clinical research as compared to basic research. PLoS ONE 2013, 8, e62395. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using sentinel-2 and landsat-8 data on Google Earth engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.; Poehnelt, J.; Yadav, K.; Rao, M.; Massey, R. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data. Int. J. Digit. Earth 2017, 10, 944–977. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Knox, J.W.; Ozdogan, M.; Gumma, M.K.; Congalton, R.G.; Wu, Z.T.; Milesi, C.; Finkral, A.; Marshall, M.; Mariotto, I.; et al. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogramm. Eng. Remote Sens. 2012, 78, 773–782. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed date. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Sevinc, A. Manipulating impact factor: An unethical issue or an editor’s choice? Swiss Med. Wkly. 2004, 134, 410. [Google Scholar] [PubMed]
- Fassoulaki, A.; Paraskeva, A.; Papilas, K.; Karabinis, G. Self-citations in six anaesthesia journals and their significance in determining the impact factor. Br. J. Anaesth. 2000, 84, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Martyn, C. Advice to a new editor. BMJ Br. Med. J. 2007, 334, 586. [Google Scholar] [CrossRef]
- Vosner, H.B.; Kokol, P.; Bobek, S.; Zeleznik, D.; Zavrsnik, J. A bibliometric retrospective of the journal computers in human behavior (1991–2015). Comput. Hum. Behav. 2016, 65, 46–58. [Google Scholar] [CrossRef]
- Merigó, J.M.; Cobo, M.J.; Laengle, S.; Rivas, D.; Herrera-Viedma, E. Twenty years of soft computing: A bibliometric overview. Soft Comput. 2018, 1–21. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Garfield, E.; Sher, I.H. New factors in the evaluation of scientific literature through citation indexing. J. Am. Soc. Inf. Sci. Technol. 1963, 14, 195–201. [Google Scholar] [CrossRef]
- Garfield, E. How can impact factors be improved? BMJ Br. Med. J. 1996, 313, 411–413. [Google Scholar] [CrossRef]
- Brown, L.D.; Gardner, J.C. Using citation analysis to assess the impact of journals and articles on contemporary accounting research (CAR). J. Account. Res. 1985, 23, 84–109. [Google Scholar] [CrossRef]
Rank | Full Journal Title | Journal Impact Factor 1 | Total Cites 2 | Eigenfactor Score 3 | Normalized Eigenfactor 4 | Total Publications Numbers |
---|---|---|---|---|---|---|
1 | Remote Sensing of Environment | 6.4570 | 44,168 | 0.0529 | 6.1678 | 385 |
2 | ISPRS Journal of Photogrammetry and Remote Sensing | 5.9940 | 8535 | 0.0159 | 1.8500 | 198 |
3 | IEEE Geoscience and Remote Sensing Magazine | 4.9320 | 480 | 0.0020 | 0.2389 | 45 |
4 | IEEE Transactions on Geoscience and Remote Sensing | 4.6620 | 34,522 | 0.0434 | 5.0591 | 562 |
5 | International Journal of Applied Earth Observation and Geoinformation | 4.0030 | 5507 | 0.0125 | 1.4582 | 160 |
6 | Remote Sensing | 3.4060 | 13,600 | 0.0342 | 3.9902 | 1335 |
7 | Photogrammetric Engineering and Remote Sensing | 3.1500 | 6196 | 0.0030 | 0.3489 | 94 |
8 | IEEE Geoscience and Remote Sensing Letters | 2.8920 | 9069 | 0.0206 | 2.3991 | 493 |
9 | GIScience & Remote Sensing | 2.8520 | 812 | 0.0014 | 0.1657 | 47 |
10 | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2.7770 | 6846 | 0.0213 | 2.4768 | 481 |
11 | International Journal of Digital Earth | 2.7460 | 1132 | 0.0027 | 0.3095 | 70 |
12 | Canadian Journal of Remote Sensing | 2.0000 | 1986 | 0.0019 | 0.2175 | 44 |
13 | Photogrammetric Record | 1.9170 | 722 | 0.0006 | 0.0730 | 33 |
14 | International Journal of Remote Sensing | 1.7820 | 18,675 | 0.0139 | 1.6155 | 391 |
15 | Geocarto International | 1.7590 | 1017 | 0.0013 | 0.1538 | 90 |
16 | ISPRS International Journal of Geo-Information | 1.7230 | 1183 | 0.0025 | 0.2857 | 405 |
17 | Remote Sensing Letters | 1.5240 | 1227 | 0.0036 | 0.4169 | 126 |
18 | European Journal of Remote Sensing | 1.1220 | 346 | 0.0009 | 0.1076 | 50 |
19 | Photogrammetrie Fernerkundung Geoinformation | 1.0850 | 235 | 0.0004 | 0.0518 | 73 |
20 | Journal of Applied Remote Sensing | 0.9760 | 1771 | 0.0041 | 0.4821 | 275 |
21 | Journal of the Indian Society of Remote Sensing | 0.8100 | 863 | 0.0010 | 0.1207 | 101 |
Rank | Full Journal Title | Average Review Speed (Days) | Average Publication Time (Days) |
---|---|---|---|
1 | Remote Sensing of Environment | 166 | 180 |
2 | ISPRS Journal of Photogrammetry and Remote Sensing | 166 | 175 |
3 | International Journal of Applied Earth Observation and Geoinformation | 126 | 155 |
4 | Remote Sensing | 40 | 67 |
5 | Photogrammetric Engineering and Remote Sensing | 196 | 364 |
6 | GIScience & Remote Sensing | 158 | 178 |
7 | International Journal of Digital Earth | 200 | 218 |
8 | Canadian Journal of Remote Sensing | 166 | 256 |
9 | International Journal of Remote Sensing | 169 | 211 |
10 | Geocarto International | 150 | 164 |
11 | ISPRS International Journal of Geo-Information | 54 | 99 |
12 | Remote Sensing Letters | 159 | 184 |
13 | European Journal of Remote Sensing | 301 | 325 |
14 | Photogrammetrie Fernerkundung Geoinformation | 221 | 266 |
15 | Journal of Applied Remote Sensing | 101 | 130 |
16 | Journal of the Indian Society of Remote Sensing | 262 | 276 |
Rank | Authors | Year, Volume (Issue), Page | Document Type | Citations |
---|---|---|---|---|
1 | Zhu, Z.C.; Bi, J.; Pan, Y.Z. et al. | 2013, 5(2), 927–948 [49] | Article | 249 |
2 | Pinzon, J.E.; Tucker, C.J. | 2014, 6(8), 6929–6960 [50] | Article | 216 |
3 | Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. | 2012, 4(6), 1671–1692 [51] | Article | 213 |
4 | Meng, X.; Currit, N.; Zhao, K.G. | 2010, 2(3), 833–860 [52] | Review | 196 |
5 | Turner, D.; Lucieer, A.; Watson, C. | 2012, 4(5), 1392–1410 [53] | Article | 186 |
6 | Atzberger, C. | 2013, 5(2), 949–981 [54] | Review | 184 |
7 | Kaartinen, H.; Hyyppa, J.; Yu, X.W. et al. | 2012, 4(4), 950–974 [55] | Article | 169 |
8 | Rudorff, B.F.T.; De Aguiar, D.A.; Da Silva, W.F. et al. | 2010, 2(4), 1057–1076 [56] | Article | 169 |
9 | Harwin, S.; Lucieer, A. | 2012, 4(6), 1573–1599 [57] | Article | 168 |
10 | Hunt, E.R.; Hively, W.D.; Fujikawa, S.J. et al. | 2010, 2(1), 290–305 [58] | Article | 166 |
11 | Mancini, F.; Dubbini, M.; Gattelli, M. et al. | 2013, 5(12), 6880–6898 [59] | Article | 157 |
12 | Raumonen, P.; Kaasalainen, M.; Akerblom, M. et al. | 2013, 5(2), 491–520 [60] | Article | 157 |
13 | Immitzer, M.; Atzberger, C.; Koukal, T. | 2012, 4(9), 2661–2693 [61] | Article | 151 |
14 | Remondino, F. | 2011, 3(6), 1104–1138 [62] | Article | 148 |
15 | Fritz, S.; McCallum, I.; Schill, C. et al. | 2009, 1(3), 345–354 [63] | Article | 148 |
16 | Hu, F.; Xia, G.S.; Hu, J.W. et al. | 2015, 7(11), 14680–14707 [64] | Article | 143 |
17 | D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. | 2012, 4(11), 3390–3416 [65] | Article | 143 |
18 | Wallace, L.; Lucieer, A.; Watson, C. et al. | 2012, 4(6), 1519–1543 [66] | Article | 141 |
19 | Kuenzer, C.; Bluemel, A.; Gebhardt, S. et al. | 2011, 3(5), 878–928 [67] | Review | 129 |
20 | Boesch, H.; Baker, D.; Connor, B. et al. | 2011, 3(2), 270–304 [68] | Article | 111 |
Rank | Authors | Title | Title Keywords |
---|---|---|---|
1 | Zhu, Z.C.; Bi, J.; Pan, Y.Z. et al. | Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR) 3 g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011 [49] | LAI; FPAR; GIMMS; NDVI3g |
2 | Pinzon, J.E.; Tucker, C.J. | A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series [50] | AVHRR NDVI3g |
3 | Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. | Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use [51] | Unmanned Aircraft Systems |
4 | Meng, X.; Currit, N.; Zhao, K.G. | Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues [52] | LiDAR; Fround filtering; |
5 | Turner, D.; Lucieer, A.; Watson, C. | An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds [53] | UAV; SfM; Rectify; Georeferencing; Mosaicking; Point cloud |
6 | Atzberger, C. | Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs [54] | Agriculture: Context Description; Existing Operational Monitoring Systems; Information Needs |
7 | Kaartinen, H.; Hyyppa, J.; Yu, X.W. et al. | An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning [55] | Tree detection; Tree extraction; Airborne laser scanning; EuroSDR; ISPRS |
8 | Rudorff, B.F.T.; De Aguiar, D.A.; Da Silva, W.F. et al. | Studies on the Rapid Expansion of Sugarcane for Ethanol Production in Sao Paulo State (Brazil) Using Landsat Data [56] | Sugarcane; Ethanol; Using Landsat Data |
9 | Harwin, S.; Lucieer, A. | Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery [57] | UAV; Multi-view stereopsis; 3D point cloud |
10 | Hunt, E.R.; Hively, W.D.; Fujikawa, S.J. et al. | Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring [58] | UAV; Green NDVI; Leaf area index |
11 | Mancini, F.; Dubbini, M.; Gattelli, M. et al. | Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments [59] | UAV; Structure from motion; Terrestrial laser scanning; Digital surface model; Beach dunes system |
12 | Raumonen, P.; Kaasalainen, M.; Akerblom, M. et al. | Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data [60] | Terrestrial laser scanning; Automatic tree modeling; Precision tree models |
13 | Immitzer, M.; Atzberger, C.; Koukal, T. | Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data [61] | Tree species classification; WorldView-2; Random Forest |
14 | Remondino, F. | Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning [62] | Sensors; 3D modeling; Photogrammetry; 3D scanning; |
15 | Fritz, S.; McCallum, I.; Schill, C. et al. | Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover [63] | Land cover; Crowdsourcing; Validating land cover |
16 | Hu, F.; Xia, G.S.; Hu, J.W. et al. | Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery [64] | CNN; Scene classification; Feature representation |
17 | D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. | Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco [65] | UAV; SFAP; Soil erosion; Monitoring |
18 | Wallace, L.; Lucieer, A.; Watson, C. et al. | Development of a UAV-LiDAR System with Application to Forest Inventory [66] | Unmanned Aerial Vehicles; LiDAR |
19 | Kuenzer, C.; Bluemel, A.; Gebhardt, S. et al. | Remote Sensing of Mangrove Ecosystems: A Review [67] | Mangrove Ecosystems |
20 | Boesch, H.; Baker, D.; Connor, B. et al. | Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission [68] | CO2; Trace gases; Remote sensing; Inverse theory |
Authors | h-Index | h-Index First Author | h-Index Second Author | h-Index Third Author | h-Index n-Author | h-Index Correspondence Authorship |
---|---|---|---|---|---|---|
Zhu, Z.C. (Zhu, Zaichun) | 17 | 2 | 0 | 2 | 13 | 1 |
Gao, B.C. (Gao, Bo-Cai) | 34 | 16 | 6 | 4 | 8 | 14 |
Hansen, M.C. (Hansen, Matthew C.) | 47 | 16 | 9 | 4 | 8 | 15 |
Blaschke, T. (Blaschke, Thomas) | 29 | 5 | 9 | 9 | 7 | 4 |
Bioucas-Dias, J.M. (Bioucas-Dias, Jose M.) | 41 | 11 | 21 | 5 | 4 | 10 |
Lefsky, M.A. (Lefsky, Michael A.) | 30 | 12 | 5 | 2 | 11 | 12 |
Melgani, F. (Melgani, Farid) | 31 | 8 | 16 | 4 | 3 | 9 |
Tarabalka, Y. (Tarabalka, Yuliya) | 14 | 7 | 6 | 0 | 1 | 6 |
Chavez, P.S. (Chavez, PS) | 15 | 12 | 2 | 0 | 1 | 12 |
Liu, D.S. (Liu, Desheng) | 21 | 7 | 4 | 5 | 5 | 11 |
Authors | Total Citations (Publications) | Total Citations First Author (Publications) | Total Citations Second Author (Publications) | Total Citations Third Author (Publications) | Total Citations n-Author (Publications) | Total Citations Correspondence Authorship (Publications) |
---|---|---|---|---|---|---|
Zhu, Z.C. (Zhu, Zaichun) | 1120 (39) | 471 (7) | 19 (3) | 51 (2) | 579 (27) | 271 (1) |
Gao, B.C. (Gao, Bo-Cai) | 6261 (124) | 3645 (61) | 544 (15) | 405 (19) | 1667 (29) | 3316 (49) |
Hansen, M.C. (Hansen, Matthew C.) | 11,527 (127) | 5900 (26) | 1190 (32) | 851 (8) | 3586 (61) | 5695 (26) |
Blaschke, T. (Blaschke, Thomas) | 4771 (125) | 2275 (19) | 1459 (48) | 641 (33) | 396 (25) | 2320 (19) |
Bioucas-Dias, J.M. (Bioucas-Dias, Jose Mario.) | 10,109 (207) | 3439 (43) | 5435 (96) | 552 (36) | 683 (32) | 2582 (38) |
Lefsky, M.A. (Lefsky, Michael A.) | 5712 (55) | 3039 (15) | 703 (13) | 165 (7) | 1805 (20) | 3124 (16) |
Melgani, F. (Melgani, Farid) | 4503 (160) | 2050 (25) | 1499 (86) | 664 (30) | 290 (19) | 2207 (40) |
Tarabalka, Y. (Tarabalka, Yuliya) | 2266 (39) | 1430 (18) | 785 (16) | 24 (3) | 27 (2) | 1394 (17) |
Chavez, P.S. (Chavez, PS) | 3677 (25) | 3461 (14) | 147 (4) | 26 (5) | 43 (2) | 3482 (13) |
Liu, D.S. (Liu, Desheng) | 1229 (46) | 429 (11) | 276 (15) | 275 (12) | 249 (8) | 636 (18) |
Rank | Country | Number of Publications | Million Populations | Publications /Million Populations | Percentage/5588 |
---|---|---|---|---|---|
1 | China | 2012 | 1386 | 1.45 | 36.0 |
2 | USA | 1563 | 326 | 4.79 | 28.1 |
3 | Germany | 610 | 83 | 7.35 | 10.9 |
4 | Italy | 382 | 61 | 6.26 | 6.8 |
5 | France | 304 | 67 | 4.54 | 5.4 |
6 | Spain | 301 | 47 | 6.40 | 5.4 |
7 | Canada | 279 | 36 | 7.75 | 5.0 |
8 | England | 262 | 66 | 3.97 | 4.7 |
9 | Australia | 253 | 25 | 10.12 | 4.5 |
10 | Netherlands | 200 | 17 | 11.76 | 3.6 |
11 | Japan | 179 | 127 | 1.41 | 3.2 |
12 | Switzerland | 151 | 8 | 18.88 | 2.7 |
13 | Austria | 142 | 9 | 15.78 | 2.5 |
14 | Belgium | 132 | 11 | 12.00 | 2.4 |
15 | Finland | 128 | 6 | 21.33 | 2.3 |
16 | Brazil | 124 | 209 | 0.59 | 2.2 |
17 | South Korea | 103 | 51 | 2.02 | 1.8 |
18 | Norway | 80 | 5 | 16.00 | 1.4 |
19 | Sweden | 71 | 10 | 7.10 | 1.3 |
20 | Denmark | 64 | 6 | 10.67 | 1.1 |
Rank | Institutions | Country | Number of Publications | Total Citations | Total Citations/Publications | Percentage/5588 |
---|---|---|---|---|---|---|
1 | Chinese Academy of Science | China | 763 | 4229 | 5.54 | 13.65 |
2 | Wuhan University | China | 352 | 1731 | 4.92 | 6.30 |
3 | University of Chinese Academy of Science | China | 337 | 1550 | 4.60 | 6.03 |
4 | Beijing Normal University | China | 198 | 1541 | 7.78 | 3.54 |
5 | The university of Maryland | USA | 151 | 1313 | 8.70 | 2.70 |
6 | National Aeronautics and Space Administration | USA | 148 | 2353 | 15.90 | 2.65 |
7 | National Oceanic and Atmospheric Administration | USA | 86 | 635 | 7.38 | 1.54 |
8 | China University of Geosciences | China | 85 | 262 | 3.08 | 1.52 |
9 | United States Geological Survey | USA | 83 | 1080 | 13.01 | 1.49 |
10 | German Aerospace Centre (DLR) | Germany | 79 | 790 | 10.00 | 1.41 |
11 | University of Twente | Netherlands | 76 | 576 | 7.58 | 1.36 |
12 | California Institute of Technology | USA | 75 | 627 | 8.36 | 1.34 |
13 | Peking University | China | 73 | 730 | 10.00 | 1.31 |
14 | Tsinghua University | China | 67 | 467 | 6.97 | 1.20 |
15 | Nanjing University | China | 56 | 335 | 5.98 | 1.00 |
16 | Nanjing University of Information Science and Technology | China | 55 | 185 | 3.36 | 0.98 |
17 | Consiglio Nazionale delle Ricerche | Italy | 53 | 369 | 6.96 | 0.95 |
18 | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application | China | 53 | 246 | 4.64 | 0.95 |
19 | China University of Mining and Technology | China | 47 | 281 | 5.98 | 0.84 |
20 | Central South University | China | 45 | 198 | 4.40 | 0.81 |
21 | The University of Queensland | Australia | 45 | 730 | 16.22 | 0.81 |
22 | Chinese Academy of Agricultural Sciences | China | 45 | 395 | 8.78 | 0.81 |
23 | Collaborative Innovation Center of Geospatial Technology | China | 45 | 124 | 2.76 | 0.81 |
24 | University of Helsinki | Finland | 44 | 891 | 20.25 | 0.79 |
25 | Boston University | USA | 42 | 845 | 20.12 | 0.75 |
26 | Joint Center for Global Change Studies | China | 42 | 284 | 6.76 | 0.75 |
27 | Université de Toulouse | France | 42 | 269 | 6.40 | 0.75 |
28 | Finnish Geodetic Institute | Finland | 41 | 1593 | 38.85 | 0.73 |
29 | The Hong Kong Polytechnic University | China | 41 | 164 | 4.00 | 0.73 |
30 | Hohai University | China | 39 | 263 | 6.74 | 0.70 |
31 | The University of Arizona | USA | 38 | 535 | 14.08 | 0.68 |
32 | University of Valencia | Spain | 38 | 266 | 7.00 | 0.68 |
33 | Colorado State University | USA | 37 | 484 | 13.08 | 0.66 |
34 | Tongji University | China | 36 | 264 | 7.33 | 0.64 |
35 | Instituto Nacional de Pesquisas Espaciais (INPE) | Brazil | 34 | 564 | 16.59 | 0.61 |
36 | University of Colorado | USA | 34 | 379 | 11.15 | 0.61 |
37 | The Chinese University of Hong Kong | China | 34 | 329 | 9.68 | 0.61 |
38 | Consejo Superior de Investigaciones Cientificas (CSIC) | Spain | 34 | 293 | 8.62 | 0.61 |
39 | Science Systems and Applications, Inc. | USA | 34 | 183 | 5.38 | 0.61 |
40 | United States Forest Service | USA | 33 | 581 | 17.61 | 0.59 |
41 | University of Wisconsin | USA | 33 | 358 | 10.85 | 0.59 |
42 | Delft University of Technology | Netherlands | 33 | 243 | 7.36 | 0.59 |
43 | University of Electronic Science and Technology of China | China | 33 | 145 | 4.39 | 0.59 |
44 | University of Copenhagen | Denmark | 32 | 429 | 13.41 | 0.57 |
45 | GFZ German Research Centre for Geosciences | Germany | 32 | 387 | 12.09 | 0.57 |
46 | Centre National de la Recherche Scientifique (CNRS) | France | 32 | 240 | 7.50 | 0.57 |
47 | European Commission Joint Research Centre | Belgium | 31 | 546 | 17.61 | 0.55 |
48 | The University of Tokyo | Japan | 31 | 131 | 4.23 | 0.55 |
49 | Vienna University of Technology | Austria | 30 | 525 | 17.50 | 0.54 |
50 | Wageningen University and Research | Netherlands | 30 | 451 | 15.03 | 0.54 |
Rank | China with Other Countries | Publications | USA with Other Countries | Publications |
---|---|---|---|---|
1 | China and USA | 443 | USA and China | 443 |
2 | China and France | 54 | USA and Germany | 60 |
3 | China and Germany | 54 | USA and Canada | 57 |
4 | China and England | 46 | USA and Australia | 53 |
5 | China and Australia | 45 | USA and England | 48 |
6 | China and Canada | 45 | USA and Italy | 40 |
7 | China and Netherlands | 38 | USA and France | 35 |
8 | China and Italy | 37 | USA and Spain | 34 |
9 | China and Japan | 35 | USA and Japan | 33 |
10 | China and Taiwan | 18 | USA and Netherlands | 29 |
11 | China and Belgium | 17 | USA and Brazil | 28 |
12 | China and Spain | 15 | USA and South Korea | 23 |
13 | China and Finland | 11 | USA and Belgium | 21 |
14 | USA and India | 19 | ||
15 | USA and Taiwan | 17 | ||
16 | USA and Switzerland | 14 | ||
17 | USA and Austria | 12 | ||
18 | USA and Finland | 12 | ||
19 | USA and Chile | 11 | ||
20 | USA and Mexico | 11 | ||
21 | USA and Scotland | 10 | ||
22 | USA and Sweden | 10 |
Rank | Research Themes | Keywords |
---|---|---|
1: Red Cluster | Multi-spectral and hyperspectral remote sensing | “remote sensing”, “classification”, “hyperspectral”, “change detection”, “land cover”, “random forest”, “Sentinel-2”, “machine learning”, “leaf area index”, “data fusion”, “segmentation”, “monitoring”, “Landsat-8”, “hyperspectral remote sensing”, “imaging spectroscopy”, |
2: Green Cluster | Research on LiDAR scanning and forestry remote sensing monitoring | “Light Detection and Ranging (LiDAR)”, “Unmanned Aerial Vehicle (UAV)”, “biomass”, “photogrammetry”, “terrestrial laser scanning”, “vegetation”, “vegetation indices”, “airborne laser scanning”, “point cloud”, “forest”, “forest inventory”, “accuracy”, “unmanned aerial vehicle”, “forestry”, “aboveground biomass” |
3: Blue Cluster | MODIS and LAI data applications | “Moderate Resolution Imaging Spectroradiometer (MODIS)”, “validation”, “land surface temperature”, “calibration”, “Visible Infrared Imaging Radiometer Suite (VIIRS) ”, “China”, “Leaf Area Index (LAI)”, “atmospheric correction”, “satellite”, “Advanced Very High Resolution Radiometer (AVHRR)”, “uncertainty”, “downscaling”, “chlorophyll-a”, “urbanization”, “Medium Resolution Imaging Spectrometer (MERIS)”, “aerosol optical depth”, “albedo”, “evaluation”, “satellite remote sensing”, “urban heat island”, “aerosol”, “Aerosol Optical Depth (AOD)”, “Leaf Area Index (LAI)”, “air temperature”, “Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)”, “nighttime light”, etc. |
4: Yellow Cluster | Remote sensing applications | “Landsat”, “NDVI”, “phenology”, “evapotranspiration”, “climate change”, “precipitation”, “agriculture”, “drought”, “The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER)”, “Tibetan Plateau”, “land cover change”, “Africa”, “Tropical Rainfall Measuring Mission(TRMM)”, “The Enhanced Vegetation Index (EVI)”, “rainfall”, “deforestation”, “boreal forest”, “Normalized Difference Vegetation Index (NDVI)”, “earth observation”, “irrigation”, etc. |
5: Purple Cluster | Synthetic Aperture Radar (SAR) | “soil moisture”, “SAR”, “time series”, “ Interferometric Synthetic Aperture Radar (InSAR)”, “Synthetic Aperture Radar”, “Sentinel-1”, “TerraSAR-X”, “Arctic”, “Synthetic Aperture Radar (SAR)”, “Geographic Information Systems (GIS)”, “landslide”, “data assimilation”, “wetlands”, “Radarsat-2”, “grace”, “sea ice”, “radar”, “ALOS PALSAR”, “snow”, “l-band”, etc. |
Rank | Authors | Title | Year | Volume (Issue), Page | Source | Citations | Web of Science Citation |
---|---|---|---|---|---|---|---|
1 | Breiman, L. | Random Forests [70] | 2001 | 45(1), 5–32 | Machine Learning | 294 | 19,461 |
2 | Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. | Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices [74] | 2002 | 83(1), 195–213 | Remote Sensing of Environment | 233 | 3057 |
3 | Tucker, C.J. | Red and Photographic Infrared Linear Combinations for Monitoring Vegetation [75] | 1979 | 8(2), 127–150 | Remote Sensing of Environment | 239 | 3728 |
4 | Blaschke, T. | Object Based Image Analysis for Remote Sensing [76] | 2010 | 65(1), 2–16 | ISPRS Journal of Photogrammetry & Remote Sensing | 158 | 1690 |
5 | Congalton, R.G. | A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data [77] | 1991 | 37(1), 35–46 | Remote Sensing of the Environment | 153 | 3224 |
6 | Gao, B.C. | NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space [78] | 1996 | 58(3), 257–266 | Remote Sensing of Environment | 127 | 1658 |
7 | Huete, A.R. | A Soil-Adjusted Vegetation Index (SAVI) [79] | 1988 | 25(3), 295–309 | Remote Sensing of Environment | 122 | 2276 |
8 | Lowe, D.G. | Distinctive Image Features from Scale-Invariant Keypoints [80] | 2004 | 60(2), 91–110 | International Journal of Computer Vision | 121 | 22,527 |
9 | Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. | A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms [81] | 2002 | 40(11), 2375–2383 | IEEE Transactions on Geoscience & Remote Sensing | 117 | 1407 |
10 | Ferretti, A.; Prati, C.; Rocca, F. | Permanent Scatterers in SAR Interferometry [82] | 2001 | 39(1), 8–20 | IEEE Transactions on Geoscience & Remote Sensing | 114 | 1956 |
Rank | Journal Title | Times |
---|---|---|
1 | RS OAJ (Remote Sens.) | 3363 |
2 | Remote Sensing of Environment (Remote Sens. Environ.) | 634 |
3 | International Journal of Remote Sensing (Int. J. Remote Sens.) | 449 |
4 | Sensors | 376 |
5 | ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS-J. Photogramm. Remote Sens.) | 311 |
6 | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.) | 303 |
7 | International Journal of Applied Earth Observation and Geoinformation (Int. J. Appl. Earth Obs. Geoinf.) | 256 |
8 | Proceedings of SPIE (Proc. SPIE) | 241 |
9 | ISPRS International Journal of Geo-Information (ISPRS Int. Geo-Inf.) | 219 |
10 | Journal of Applied Remote Sensing (J. Appl. Remote Sens.) | 219 |
11 | IEEE Transactions on Geoscience and Remote Sensing (IEEE Trans. Geosci. Remote Sensing) | 214 |
12 | Forests | 183 |
13 | Water | 137 |
14 | PLOS ONE | 134 |
15 | Sustainability | 124 |
Rank | Journal Title | Times |
---|---|---|
1 | Remote Sensing of Environment is the most important journal (Remote Sens. Environ.) | 6610 |
2 | IEEE Transactions on Geoscience and Remote Sensing (IEEE Trans. Geosci. Remote Sensing) | 3868 |
3 | RS OAJ (Remote Sens.) | 3363 |
4 | International Journal of Remote Sensing (Int. J. Remote Sens.) | 2347 |
5 | ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS-J. Photogramm. Remote Sens.) | 1227 |
6 | Journal of Geophysical Research-Atmospheres (J. Geophys. Res.-Atmos.) | 1181 |
7 | Geophysical Research Letters (Geophys. Res. Lett.) | 937 |
8 | IEEE Geoscience and Remote Sensing Letters (IEEE Geosci. Remote Sens. Lett.) | 906 |
9 | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.) | 892 |
10 | International Journal of Applied Earth Observation and Geoinformation (Int. J. Appl. Earth Obs. Geoinf.) | 726 |
11 | Photogrammetric Engineering and Remote Sensing (Photogramm. Eng. Remote Sens.) | 640 |
12 | Agricultural and Forest Meteorology (Agric. For. Meteorol.) | 528 |
13 | Journal of Geophysical Research-Oceans (J. Geophys. Res.-Oceans) | 486 |
14 | Science | 467 |
15 | International Geoscience and Remote Sensing Symposium (IGARSS) | 438 |
Rank | Full Journal Title | Self-Citation Rate (%) |
---|---|---|
1 | Remote Sensing of Environment | 12.92 |
2 | ISPRS Journal of Photogrammetry and Remote Sensing | 8.22 |
3 | IEEE Geoscience and Remote Sensing Magazine | 2.41 |
4 | IEEE Transactions on Geoscience and Remote Sensing | 12.73 |
5 | International Journal of Applied Earth Observation and Geoinformation | 6.54 |
6 | Remote Sensing | 24.10 |
7 | Photogrammetric Engineering and Remote Sensing | 8.67 |
8 | IEEE Geoscience and Remote Sensing Letters | 8.04 |
9 | GIScience & Remote Sensing | 18.97 |
10 | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 15.44 |
11 | International Journal of Digital Earth | 11.43 |
12 | Canadian Journal of Remote Sensing | 6.27 |
13 | Photogrammetric Record | 12.59 |
14 | International Journal of Remote Sensing | 8.19 |
15 | Geocarto International | 9.50 |
16 | ISPRS International Journal of Geo-Information | 24.61 |
17 | Remote Sensing Letters | 5.81 |
18 | European Journal of Remote Sensing | 13.74 |
19 | Photogrammetrie Fernerkundung Geoinformation | 6.23 |
20 | Journal of Applied Remote Sensing | 11.12 |
21 | Journal of the Indian Society of Remote Sensing | 8.72 |
Remote Sensing | ||||
Total Doc of 2016 in WoS | 1037 | |||
Editorial Materials | 22 | |||
Corrected Value | 1015 | |||
Range of Citations | No of Papers | Percent | Citations | Contribution to Citations |
0 | 73 | 7.19% | 0 | 0.00% |
1–2 | 226 | 22.27% | 344 | 5.51% |
3–10 | 574 | 56.55% | 3139 | 50.24% |
11–20 | 136 | 13.40% | 1922 | 30.76% |
>21 | 28 | 2.76% | 843 | 13.49% |
Sum of Times Cited | 6248 | 6248 | ||
Average citations per item | 6.03 | |||
h-index | 22 | |||
IEEE Transactions on Geoscience and Remote Sensing | ||||
Total Doc of 2016 in WoS | 573 | |||
Editorial Materials | 1 | |||
Corrected Value | 572 | |||
Range of Citations | No of Papers | Percent | Citations | Contribution to Citations |
0 | 28 | 4.90% | 0 | 0.00% |
1–2 | 107 | 18.71% | 174 | 3.03% |
3–10 | 284 | 49.65% | 1708 | 29.76% |
11–20 | 92 | 16.08% | 1346 | 23.45% |
>21 | 62 | 10.84% | 2512 | 43.76% |
Sum of Times Cited | 5740 | 5740 | ||
Average citations per item | 10.02 | |||
h-index | 29 | |||
Remote Sensing of Environment | ||||
Total Doc of 2016 in WoS | 448 | |||
Editorial Materials | 5 | |||
Corrected Value | 443 | |||
Range of Citations | No of Papers | Percent | Citations | Contribution to Citations |
0 | 11 | 2.48% | 0 | 0.00% |
1–2 | 37 | 8.35% | 56 | 0.96% |
3–10 | 203 | 45.82% | 1316 | 22.48% |
11–20 | 114 | 25.73% | 1667 | 28.48% |
>21 | 83 | 18.74% | 2815 | 48.09% |
Sum of Times Cited | 5854 | 5854 | ||
Average citations per item | 13.07 | |||
h-index | 33 |
Remote Sensing | |||||||||||
The following % percentile of articles with n citations | Articles < 3 citations | ||||||||||
Year | Media citations number | 5% | 15% | 25% | 50% | 75% | 85% | 95% | Number | Percentage (%) | Total publications |
2010 | 15 | 3 | 7 | 9 | 15 | 30 | 41 | 92 | 6 | 4.20 | 143 |
2011 | 20 | 2 | 6 | 9 | 20 | 33 | 46 | 75 | 8 | 5.67 | 141 |
2012 | 18 | 2 | 5 | 9 | 18 | 34 | 43 | 71 | 10 | 5.35 | 187 |
2013 | 16 | 2 | 6 | 9 | 16 | 28 | 38 | 73 | 18 | 5.61 | 321 |
2014 | 12 | 1 | 4 | 6 | 12 | 21 | 28 | 44 | 50 | 8.61 | 581 |
2015 | 9 | 1 | 3 | 4 | 9 | 14 | 19 | 32 | 95 | 12.18 | 780 |
2016 | 5 | 0 | 1 | 2 | 5 | 9 | 12 | 18 | 261 | 25.17 | 1037 |
2017 | 2 | 0 | 0 | 1 | 2 | 4 | 5 | 9 | 766 | 57.38 | 1335 |
IEEE Transactions on Geoscience and Remote Sensing | |||||||||||
The following % percentile of articles with n citations | Articles < 3 citations | ||||||||||
Year | Media citations number | 5% | 15% | 25% | 50% | 75% | 85% | 95% | Number | Percentage (%) | Total publications |
2010 | 23 | 3 | 7 | 11 | 23 | 44 | 63 | 112 | 18 | 4.70 | 383 |
2011 | 19 | 2 | 6 | 10 | 19 | 38 | 61 | 107 | 22 | 5.15 | 427 |
2012 | 17 | 2 | 5 | 8 | 17 | 34 | 49 | 88 | 33 | 7.91 | 417 |
2013 | 13 | 1 | 4 | 7 | 13 | 26 | 36 | 66 | 40 | 9.05 | 442 |
2014 | 13 | 1 | 4 | 6 | 13 | 25 | 37 | 58 | 48 | 7.59 | 632 |
2015 | 11 | 1 | 4 | 5 | 11 | 20 | 29 | 56 | 60 | 11.43 | 525 |
2016 | 6 | 0 | 2 | 3 | 6 | 11 | 17 | 26 | 135 | 23.56 | 573 |
2017 | 2 | 0 | 0 | 1 | 2 | 6 | 8 | 15 | 283 | 50.36 | 562 |
Remote Sensing of Environment | |||||||||||
The following % percentile of articles with n citations | Articles <3 citations | ||||||||||
Year | Media citations number | 5% | 15% | 25% | 50% | 75% | 85% | 95% | Number | Percentage (%) | Total articles |
2010 | 42 | 7 | 15 | 23 | 42 | 74 | 99 | 186 | 0 | 0 | 244 |
2011 | 35 | 5 | 15 | 21 | 35 | 60 | 87 | 141 | 8 | 2.52 | 318 |
2012 | 31 | 6 | 12 | 18 | 31 | 58 | 84 | 157 | 4 | 1.02 | 392 |
2013 | 29 | 5 | 10 | 15 | 29 | 49 | 63 | 95 | 7 | 2.28 | 307 |
2014 | 19 | 2 | 7 | 11 | 19 | 35 | 50 | 82 | 21 | 5.37 | 391 |
2015 | 16 | 3 | 6 | 9 | 16 | 29 | 38 | 58 | 16 | 3.70 | 433 |
2016 | 10 | 1 | 3 | 5 | 10 | 18 | 25 | 41 | 42 | 9.38 | 448 |
2017 | 5 | 0 | 2 | 2 | 5 | 9 | 13 | 20 | 103 | 26.75 | 385 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Thenkabail, P.S.; Wang, P. A Bibliometric Profile of the Remote Sensing Open Access Journal Published by MDPI between 2009 and 2018. Remote Sens. 2019, 11, 91. https://doi.org/10.3390/rs11010091
Zhang Y, Thenkabail PS, Wang P. A Bibliometric Profile of the Remote Sensing Open Access Journal Published by MDPI between 2009 and 2018. Remote Sensing. 2019; 11(1):91. https://doi.org/10.3390/rs11010091
Chicago/Turabian StyleZhang, YuYing, Prasad S. Thenkabail, and Peng Wang. 2019. "A Bibliometric Profile of the Remote Sensing Open Access Journal Published by MDPI between 2009 and 2018" Remote Sensing 11, no. 1: 91. https://doi.org/10.3390/rs11010091
APA StyleZhang, Y., Thenkabail, P. S., & Wang, P. (2019). A Bibliometric Profile of the Remote Sensing Open Access Journal Published by MDPI between 2009 and 2018. Remote Sensing, 11(1), 91. https://doi.org/10.3390/rs11010091