Lengths for Which Fourth Degree PP Interleavers Lead to Weaker Performances Compared to Quadratic and Cubic PP Interleavers
Abstract
:1. Introduction
2. Preliminaries
2.1. Notation
- , with L a positive integer, denotes modulo L operation;
- , with a and b positive integers, denotes a dividing b;
- , with a and b positive integers, denotes that a does not divide; b
- , with a and b positive integers, denotes the greatest common divisor of a and b;
- denotes base 10 logarithm;
- is the natural exponential function of variable x.
2.2. Results Regarding 4-PPs
3. Main Results
3.1. Methodology
- (1)
- For the interleaver lengths of the form given in (5), we found all possible values for the coefficients of true different 4-PPs. Thus, every 4-PP will have the coefficients equivalent to these found values.
- (2)
- We proved that for the interleaver lengths in question, every true 4-PP has an inversely true 4-PP, extending the result from [23].
- (3)
- For some 4-PPs with particular minimum distances, we found the interleaver patterns that lead to these minimum distances. There are several methods to find minimum distance of turbo codes with particular interleavers. The method from [24] or its improved version from [25] allow the determination of the true minimum distance (), but their complexity increases rapidly when increasing . Methods based on impulses of high amplitude inserted in the all-zero codeword and then decoding this perturbed codeword to give a decoded codeword of low weigth, are faster for high values of and useful for finding interleaver patterns. Double impulse method (DIM) and triple impulse method (TIM) [26] are more reliable among the impulse based methods. An alternative method of TIM is the full range double impulse method from [27] (denoted DIMK in [28]), wherein the reliability of DIM is improved by a full range for the second impulse, instead of a limited range search. The complexity of impulse based methods can be reduced for structured interleavers (such as 4-PP ones) [29]. We have made use of DIMK method for finding the interleaver patterns from Theorems 1 and 2.
- (4)
- Finally, we proved that these critical interleaver patterns always appear for 4-PPs of the interleaver lengths in question and classes of their coefficients.
3.2. Coefficients of 4-PPs for the Interleaver Lengths of the Form or
- (1)
- , when and ;
- (2)
- , when and or when and ;
- (3)
- , when and or when and .
3.3. Upper Bounds on the Minimum Distances for 4-PP-Based Turbo Codes for Interleaver Lengths of the Form or
4. Remarks and Examples
4.1. Remarks
- (1)
- The PPs can be represented by a parallel linear PP (PLPP) with the minimum number of linear PPs (LPPs) from the PLPP representation equal to two or 14.
- (2)
- The coefficients of the first degree term of LPPs from the PLPP representation are all equal to each other. We denote by the minimum number of LPPs from the PLPP representation fulfilling this condition.
4.2. Examples
- (1)
- The coding gains resulting from FER curves are dB and dB and
- (2)
- The coding gains resulting from curves are dB and dB.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Algorithm 1: Algorithm for computing the nonlinearity degree for a 4-PP for interleaver lengths of the form (5) and the coefficients of 4-PP fulfilling conditions (6) when . |
input: Values for the interleaver length, and , for the 4-PP. output: Nonlinearity degree for the 4-PP. ; |
References
- Shao, S.; Hailes, P.; Wang, Y.-Y.; Wu, J.-Y.; Maunder, R.G.; Al-Hashimi, B.M.; Hanzo, L. Survey of turbo, LDPC, and polar decoder ASIC implementations. IEEE Commun. Surv. Tutor. 2019, 21, 2309–2333. [Google Scholar] [CrossRef] [Green Version]
- Arora, K.; Singh, J.; Randhawa, Y.S. A survey on channel coding techniques for 5G wireless networks. Telecommun. Syst. 2019. [Google Scholar] [CrossRef]
- Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. In Proceedings of the IEEE International Conference on Communications (ICC 1993), Geneva, Switzerland, 23–26 May 1993; pp. 1064–1070. [Google Scholar]
- MacKay, D.J.C.; Neal, R.M. Near Shannon limit performance of low density parity check codes. Electron. Lett. 1996, 32, 457–458. [Google Scholar] [CrossRef]
- Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inform. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Rosnes, E.; i Amat, A.G. Performance analysis of 3-D turbo codes. IEEE Trans. Inform. Theory 2011, 57, 3707–3720. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Chattopadhyay, S. Evaluation of system performance by adding a fourth dimension to turbo code. Int. J. Commun. Syst. 2018, 31, e3450. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyay, S. Performance analysis of four dimensional turbo code (4D-TC) using moment based simplified augmented state diagram (MSASD) approach: Extension to LTE system. Wirel. Person. Commun. 2019, 108, 2077–2102. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyay, S. Superposition modulation-based new structure of four-dimensional turbo code (4D-TC) using modified interleaver and its application in WiMAX & LTE systems. Person. Ubiquitous Comput. 2019, 23, 943–959. [Google Scholar]
- Sun, J.; Takeshita, O.Y. Interleavers for turbo codes using permutation polynomials over integer rings. IEEE Trans. Inform. Theory 2005, 51, 101–119. [Google Scholar]
- Crozier, S.; Guinand, P. High-performance low-memory interleaver banks for turbo-codes. In Proceedings of the IEEE 54th Vehicular Technology Conference, VTC Fall 2001, Atlantic City, NJ, USA, 7–11 October 2001; pp. 2394–2398. [Google Scholar]
- Berrou, C.; Saoter, Y.; Douillard, C.; Kerouedan, S.; Jezequel, M. Designing good permutations for turbo codes: Towards a single model. In Proceedings of the 2004 IEEE International Conference on Communications, Paris, France, 20–24 June 2004; pp. 341–345. [Google Scholar]
- 3GPP TS 36.212 V8.3.0, 3rd Generation Partnership Project, Multiplexing and channel coding (Release 8). 2008. Available online: http://www.etsi.org (accessed on 23 July 2009).
- Takeshita, O.Y. Permutation polynomial interleavers: An algebraic-geometric perspective. IEEE Trans. Inform. Theory 2007, 53, 2116–2132. [Google Scholar] [CrossRef] [Green Version]
- Rosnes, E. On the minimum distance of turbo codes with quadratic permutation polynomial interleavers. IEEE Trans. Inform. Theory 2012, 58, 4781–4795. [Google Scholar] [CrossRef]
- Ryu, J. Permutation polynomials of higher degrees for turbo code interleavers. IEICE Trans. Commun. 2012, E95-B, 3760–3762. [Google Scholar] [CrossRef]
- Trifina, L.; Ryu, J.; Tarniceriu, D. Up to five degree permutation polynomial interleavers for short length LTE turbo codes with optimum minimum distance. In Proceedings of the 13th IEEE International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017. [Google Scholar]
- Trifina, L.; Tarniceriu, D. On the equivalence of cubic permutation polynomial and ARP interleavers for turbo codes. IEEE Trans. Commun. 2017, 65, 473–485. [Google Scholar] [CrossRef]
- Ryu, J.; Trifina, L.; Balta, H. The limitation of permutation polynomial interleavers for turbo codes and a scheme for dithering permutation polynomials. AEU Int. J. Electron. Commun. 2015, 69, 1550–1556. [Google Scholar] [CrossRef]
- Trifina, L.; Tarniceriu, D.; Ryu, J.; Rotopanescu, A.-M. Some Lengths for Which CPP Interleavers Have Weaker Minimum Distances Than QPP Interleavers. Available online: http://telecom.etti.tuiasi.ro/tti/papers/PDFs/Some%20lengths%20for%20which%20CPPs%20have%20weaker%20minimum%20distances%20than%20QPPs.pdf (accessed on 7 December 2019).
- Trifina, L.; Tarniceriu, D.; Ryu, J.; Rotopanescu, A.-M. Upper Bounds on the Minimum Distance for Turbo Codes Using CPP Interleavers. Available online: http://telecom.etti.tuiasi.ro/tti/papers/PDFs/UB%20of%20dmin%20for%20CPPs%20of%20L_16p_48p.pdf (accessed on 7 December 2019).
- Trifina, L.; Tarniceriu, D. A coefficient test for fourth degree permutation polynomials over integer rings. AEU Int. J. Electron. Commun. 2016, 70, 1565–1568. [Google Scholar] [CrossRef]
- Trifina, L.; Tarniceriu, D.; Rotopanescu, A.-M.; Ursu, E. The inverse of a fourth degree permutation polynomial. In Proceedings of the Fifth Conference of Mathematical Society of Moldova, Chisinau, Moldova, 28 September–1 October 2019; pp. 255–260. [Google Scholar]
- Garello, R.; Pierleoni, P.; Benedetto, S. Computing the free distance of turbo codes and serially concatenated codes with interleavers: Algorithms and applications. IEEE J. Sel. Areas Commun. 2001, 19, 800–812. [Google Scholar] [CrossRef]
- Rosnes, E.; Ytrehus, Y. Improved algorithms for the determination of turbo-code weight distributions. IEEE Trans. Commun. 2005, 53, 20–26. [Google Scholar] [CrossRef]
- Crozier, S.; Guinand, P.; Hunt, A. Computing the minimum distance of turbo-codes using iterative decoding techniques. In Proceedings of the 22th Biennial Symposium on Communications, Kingston, ON, Canada, 31 May–3 June 2004; pp. 306–308. [Google Scholar]
- Ould-Cheikh-Mouhamedou, Y.; Crozier, S.; Guinand, P.; Kabal, P. Comparison of distance measurement methods for turbo codes. In Proceedings of the 9th Canadian Workshop on Information Theory (CWIT-05), Montreal, QC, Canada, 5–8 June 2005; pp. 36–39. [Google Scholar]
- Crozier, S.; Guinand, P.; Hunt, A. Estimating the minimum distance of large-block turbo codes using iterative multiple-impulse methods. In Proceedings of the 4th International Symposium on Turbo Codes and Related Topics, Munich, Germany, 3–7 April 2006. [Google Scholar]
- Ould-Cheikh-Mouhamedou, Y. Reducing the complexity of distance measurement methods for circular turbo codes that use structured interleavers. Int. J. Commun. Syst. 2015, 28, 1572–1579. [Google Scholar] [CrossRef]
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Guinand, P.; Lodge, J. Trellis termination for turbo encoders. In Proceedings of the 17th Biennial Symposium on Communications, Kingston, ON, Canada, 29 May–1 June 1994; pp. 389–392. [Google Scholar]
- Trifina, L.; Tarniceriu, D.; Rotopanescu, A.-M. Nonlinearity degree for CPP, 4-PP, and 5-PP interleavers for turbo codes. In Proceedings of the 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019. [Google Scholar]
(1) | |||
(2) | |||
(3) | |||
() | |||
(4) | or | ||
, |
L | |||
---|---|---|---|
0 or or or | or or or | ||
0 or or or | or or or |
k for | k for | |||||||
---|---|---|---|---|---|---|---|---|
for | for | |||||||
0 | 1 | 1 | 0 | 1 | 13 | 12 | 13 | 4 |
3 | 2 | 5 | 3 | 8 | 11 | 0 | ||
5 | 0 | 1 | 9 | 12 | 9 | 4 | ||
7 | 2 | 5 | 15 | 8 | 7 | 0 | ||
3 | 1 | 2 | 3 | 13 | 12 | 5 | 12 | |
3 | 0 | 3 | 11 | 0 | 11 | 0 | ||
5 | 2 | 3 | 1 | 4 | 9 | 4 | ||
7 | 0 | 3 | 15 | 8 | 15 | 8 | ||
5 | 1 | 0 | 5 | 13 | 12 | 13 | 4 | |
3 | 2 | 1 | 3 | 8 | 11 | 0 | ||
5 | 0 | 5 | 9 | 12 | 9 | 4 | ||
7 | 2 | 1 | 15 | 8 | 7 | 0 | ||
7 | 1 | 2 | 7 | 13 | 12 | 5 | 12 | |
3 | 0 | 7 | 3 | 8 | 3 | 8 | ||
5 | 2 | 7 | 1 | 4 | 9 | 4 | ||
7 | 0 | 7 | 7 | 0 | 7 | 0 | ||
1 | 1 | 1 | 1 | 5 | 5 | 4 | 13 | 4 |
3 | 3 | 1 | 3 | 8 | 3 | 8 | ||
5 | 1 | 5 | 1 | 4 | 9 | 4 | ||
7 | 3 | 1 | 15 | 8 | 15 | 8 | ||
3 | 1 | 3 | 3 | 5 | 4 | 13 | 4 | |
3 | 1 | 3 | 3 | 8 | 3 | 8 | ||
5 | 3 | 3 | 9 | 12 | 1 | 12 | ||
7 | 1 | 3 | 7 | 0 | 7 | 0 | ||
5 | 1 | 1 | 1 | 5 | 4 | 13 | 4 | |
3 | 3 | 5 | 3 | 8 | 3 | 8 | ||
5 | 1 | 1 | 1 | 4 | 9 | 4 | ||
7 | 3 | 5 | 15 | 8 | 15 | 8 | ||
7 | 1 | 3 | 7 | 13 | 12 | 5 | 12 | |
3 | 1 | 7 | 3 | 8 | 3 | 8 | ||
5 | 3 | 7 | 1 | 4 | 9 | 4 | ||
7 | 1 | 7 | 7 | 0 | 7 | 0 |
k for | k for | |||||||
---|---|---|---|---|---|---|---|---|
for | for | |||||||
2 | 1 | 1 | 2 | 1 | 5 | 4 | 5 | 12 |
3 | 0 | 5 | 3 | 8 | 11 | 0 | ||
5 | 2 | 1 | 1 | 4 | 1 | 12 | ||
7 | 0 | 5 | 15 | 8 | 7 | 0 | ||
3 | 1 | 0 | 3 | 5 | 4 | 13 | 4 | |
3 | 2 | 3 | 11 | 0 | 11 | 0 | ||
5 | 0 | 3 | 9 | 12 | 1 | 12 | ||
7 | 2 | 3 | 15 | 8 | 15 | 8 | ||
5 | 1 | 2 | 5 | 5 | 4 | 5 | 12 | |
3 | 0 | 1 | 3 | 8 | 11 | 0 | ||
5 | 2 | 5 | 1 | 4 | 1 | 12 | ||
7 | 0 | 1 | 15 | 8 | 7 | 0 | ||
7 | 1 | 0 | 7 | 5 | 4 | 13 | 4 | |
3 | 2 | 7 | 3 | 8 | 3 | 8 | ||
5 | 0 | 7 | 9 | 12 | 1 | 12 | ||
7 | 2 | 7 | 7 | 0 | 7 | 0 | ||
3 | 1 | 1 | 3 | 5 | 13 | 12 | 5 | 12 |
3 | 1 | 1 | 3 | 8 | 3 | 8 | ||
5 | 3 | 5 | 9 | 12 | 1 | 12 | ||
7 | 1 | 1 | 15 | 8 | 15 | 8 | ||
3 | 1 | 1 | 3 | 13 | 12 | 5 | 12 | |
3 | 3 | 3 | 3 | 8 | 3 | 8 | ||
5 | 1 | 3 | 1 | 4 | 9 | 4 | ||
7 | 3 | 3 | 7 | 0 | 7 | 0 | ||
5 | 1 | 3 | 1 | 13 | 12 | 5 | 12 | |
3 | 1 | 5 | 3 | 8 | 3 | 8 | ||
5 | 3 | 1 | 9 | 12 | 1 | 12 | ||
7 | 1 | 5 | 15 | 8 | 15 | 8 | ||
7 | 1 | 1 | 7 | 5 | 4 | 13 | 4 | |
3 | 3 | 7 | 3 | 8 | 3 | 8 | ||
5 | 1 | 7 | 9 | 12 | 1 | 12 | ||
7 | 3 | 7 | 7 | 0 | 7 | 0 |
for | k for | for | k for | |||||
---|---|---|---|---|---|---|---|---|
() | () | |||||||
0 | 1 | 1/13 | 0 | 1 | 13/1 | 12/12 | ||
5/17 | 0 | 1 | 41/29 | 12/12 | ||||
7/19 | 2 | 3 | 15/3 | 8/8 | ||||
11/23 | 2 | 3 | 43/31 | 40/40 | ||||
2 | 1/13 | 2 | 2 | 45/9 | 44/20 | |||
5/17 | 2 | 2 | 1/13 | 4/28 | ||||
7/19 | 0 | 2 | 31/43 | 24/0 | ||||
11/23 | 0 | 2 | 35/47 | 0/24 | ||||
3 | 1/13 | 0 | 3 | 13/1 | 12/12 | |||
5/17 | 0 | 3 | 41/29 | 12/12 | ||||
7/19 | 2 | 1 | 15/3 | 8/8 | ||||
11/23 | 2 | 1 | 43/31 | 40/40 | ||||
4 | 1/13 | 2 | 4 | 45/9 | 44/20 | |||
5/17 | 2 | 4 | 1/13 | 4/28 | ||||
7/19 | 0 | 4 | 7/19 | 0/24 | ||||
11/23 | 0 | 4 | 11/23 | 24/0 | ||||
1 | 1 | 3/15 | 3 | 1 | 35/23 | 8/8 | ||
5/17 | 1 | 3 | 17/5 | 36/36 | ||||
9/21 | 1 | 3 | 45/33 | 20/20 | ||||
11/23 | 3 | 1 | 43/31 | 40/40 | ||||
2 | 3/15 | 1 | 2 | 3/15 | 8/32 | |||
5/17 | 3 | 2 | 25/37 | 28/4 | ||||
9/21 | 3 | 2 | 29/41 | 20/44 | ||||
11/23 | 1 | 2 | 11/23 | 24/0 | ||||
3 | 3/15 | 3 | 3 | 35/23 | 8/8 | |||
5/17 | 1 | 1 | 17/5 | 36/36 | ||||
9/21 | 1 | 1 | 45/33 | 20/20 | ||||
11/23 | 3 | 3 | 43/31 | 40/40 | ||||
4 | 3/15 | 1 | 4 | 3/15 | 8/32 | |||
5/17 | 3 | 4 | 1/13 | 4/28 | ||||
9/21 | 3 | 4 | 5/17 | 44/20 | ||||
11/23 | 1 | 4 | 11/23 | 24/0 |
for | k for | for | k for | |||||
---|---|---|---|---|---|---|---|---|
() | () | |||||||
2 | 1 | 1/13 | 2 | 1 | 37/25 | 36/36 | ||
3/15 | 0 | 3 | 19/7 | 8/8 | ||||
7/19 | 0 | 3 | 47/35 | 40/40 | ||||
9/21 | 2 | 1 | 45/33 | 20/20 | ||||
2 | 1/13 | 0 | 2 | 5/17 | 4/28 | |||
3/15 | 2 | 2 | 27/39 | 32/8 | ||||
7/19 | 2 | 2 | 31/43 | 24/0 | ||||
9/21 | 0 | 2 | 13/25 | 20/44 | ||||
3 | 1/13 | 2 | 3 | 37/25 | 36/36 | |||
3/15 | 0 | 1 | 19/7 | 8/8 | ||||
7/19 | 0 | 1 | 47/35 | 40/40 | ||||
9/21 | 2 | 3 | 45/33 | 20/20 | ||||
4 | 1/13 | 0 | 4 | 5/17 | 4/28 | |||
3/15 | 2 | 4 | 3/15 | 8/32 | ||||
7/19 | 2 | 4 | 7/19 | 0/24 | ||||
9/21 | 0 | 4 | 13/25 | 20/44 | ||||
3 | 1 | 1/13 | 3 | 3 | 13/1 | 12/12 | ||
5/17 | 3 | 3 | 41/29 | 12/12 | ||||
7/19 | 1 | 1 | 47/35 | 40/40 | ||||
11/23 | 1 | 1 | 27/15 | 8/8 | ||||
2 | 1/13 | 1 | 2 | 29/41 | 28/4 | |||
5/17 | 1 | 2 | 33/45 | 20/44 | ||||
7/19 | 3 | 2 | 7/19 | 0/24 | ||||
11/23 | 3 | 2 | 11/23 | 24/0 | ||||
3 | 1/13 | 3 | 1 | 13/1 | 12/12 | |||
5/17 | 3 | 1 | 41/29 | 12/12 | ||||
7/19 | 1 | 3 | 47/35 | 40/40 | ||||
11/23 | 1 | 3 | 27/15 | 8/8 | ||||
4 | 1/13 | 1 | 4 | 5/17 | 4/28 | |||
5/17 | 1 | 4 | 9/21 | 44/20 | ||||
7/19 | 3 | 4 | 7/19 | 0/24 | ||||
11/23 | 3 | 4 | 11/23 | 24/0 |
for | k for | for | k for | |||||
---|---|---|---|---|---|---|---|---|
() | () | |||||||
0 | 1 | 1/13 | 0 | 1 | 13/1 | 12/12 | ||
5/17 | 0 | 1 | 41/29 | 12/12 | ||||
7/19 | 2 | 3 | 47/35 | 8/8 | ||||
11/23 | 2 | 3 | 27/15 | 40/40 | ||||
2 | 1/13 | 2 | 2 | 29/41 | 44/20 | |||
5/17 | 2 | 2 | 33/45 | 4/28 | ||||
7/19 | 0 | 2 | 31/43 | 24/0 | ||||
11/23 | 0 | 2 | 35/47 | 0/24 | ||||
3 | 1/13 | 0 | 3 | 13/1 | 12/12 | |||
5/17 | 0 | 3 | 41/29 | 12/12 | ||||
7/19 | 2 | 1 | 47/35 | 8/8 | ||||
11/23 | 2 | 1 | 27/15 | 40/40 | ||||
4 | 1/13 | 2 | 4 | 29/41 | 44/20 | |||
5/17 | 2 | 4 | 33/ 45 | 4/28 | ||||
7/19 | 0 | 4 | 7/19 | 0/24 | ||||
11/23 | 0 | 4 | 11/23 | 24/0 | ||||
1 | 1 | 1/13 | 1 | 3 | 37/25 | 36/36 | ||
3/15 | 3 | 1 | 19/7 | 40/40 | ||||
7/19 | 3 | 1 | 47/35 | 8/8 | ||||
9/21 | 1 | 3 | 45/33 | 4/4 | ||||
2 | 1/13 | 3 | 2 | 5/17 | 20/44 | |||
3/15 | 1 | 2 | 3/15 | 40/16 | ||||
7/19 | 1 | 2 | 7/19 | 0/24 | ||||
9/21 | 3 | 2 | 13/25 | 4/28 | ||||
3 | 1/13 | 1 | 1 | 37/25 | 36/36 | |||
3/15 | 3 | 3 | 19/7 | 40/40 | ||||
7/19 | 3 | 3 | 47/35 | 8/8 | ||||
9/21 | 1 | 1 | 45/33 | 4/4 | ||||
4 | 1/13 | 3 | 4 | 29/41 | 44/20 | |||
3/15 | 1 | 4 | 3/15 | 40/16 | ||||
7/19 | 1 | 4 | 7/19 | 0/24 | ||||
9/21 | 3 | 4 | 37/1 | 28/4 |
for | k for | for | k for | |||||
---|---|---|---|---|---|---|---|---|
() | () | |||||||
2 | 1 | 3/15 | 0 | 3 | 35/23 | 40/40 | ||
5/17 | 2 | 1 | 17/5 | 36/36 | ||||
9/21 | 2 | 1 | 45/33 | 4/4 | ||||
11/23 | 0 | 3 | 43/31 | 8/8 | ||||
2 | 3/15 | 2 | 2 | 27/39 | 16/40 | |||
5/17 | 0 | 2 | 25/37 | 44/20 | ||||
9/21 | 0 | 2 | 29/41 | 4/28 | ||||
11/23 | 2 | 2 | 35/47 | 0/24 | ||||
3 | 3/15 | 0 | 1 | 35/23 | 40/40 | |||
5/17 | 2 | 3 | 17/5 | 36/36 | ||||
9/21 | 2 | 3 | 45/33 | 4/4 | ||||
11/23 | 0 | 1 | 43/31 | 8/8 | ||||
4 | 3/15 | 2 | 4 | 3/15 | 40/16 | |||
5/17 | 0 | 4 | 25/37 | 44/20 | ||||
9/21 | 0 | 4 | 29/41 | 4/28 | ||||
11/23 | 2 | 4 | 11/23 | 24/0 | ||||
3 | 1 | 1/13 | 3 | 3 | 13/1 | 12/12 | ||
5/17 | 3 | 3 | 41/29 | 12/12 | ||||
7/19 | 1 | 1 | 15/3 | 40/40 | ||||
11/23 | 1 | 1 | 43/31 | 8/8 | ||||
2 | 1/13 | 1 | 2 | 45/9 | 28/4 | |||
5/17 | 1 | 2 | 1/13 | 20/44 | ||||
7/19 | 3 | 2 | 7/19 | 0/24 | ||||
11/23 | 3 | 2 | 11/23 | 24/0 | ||||
3 | 1/13 | 3 | 1 | 13/1 | 12/12 | |||
5/17 | 3 | 1 | 41/29 | 12/12 | ||||
7/19 | 1 | 3 | 15/3 | 40/40 | ||||
11/23 | 1 | 3 | 43/31 | 8/8 | ||||
4 | 1/13 | 1 | 4 | 21/33 | 4/28 | |||
5/17 | 1 | 4 | 25/37 | 44/20 | ||||
7/19 | 3 | 4 | 7/19 | 0/24 | ||||
11/23 | 3 | 4 | 11/23 | 24/0 |
Equation | ||||
---|---|---|---|---|
(68) | 1 | 0 | 1 or 5 | 3 |
0 | 3 or 7 | 7 | ||
2 | 1 or 3 or 5 or 7 | 3 | ||
3 | 0 | 1 or 3 or 5 or 7 | 7 | |
2 | 1 or 5 | 7 | ||
2 | 3 or 7 | 3 | ||
(70) | 1 | 0 | 1 or 5 | 5 |
0 | 3 or 7 | 1 | ||
2 | 1 or 3 or 5 or 7 | 5 | ||
3 | 0 | 1 or 3 or 5 or 7 | 1 | |
2 | 1 or 5 | 1 | ||
2 | 3 or 7 | 5 | ||
(89) | 1 | 0 | 1 or 3 or 5 or 7 | 1 |
2 | 1 or 5 | 1 | ||
2 | 3 or 7 | 5 | ||
3 | 0 | 1 or 5 | 5 | |
0 | 3 or 7 | 1 | ||
2 | 1 or 3 or 5 or 7 | 5 | ||
(91) | 1 | 0 | 1 or 3 or 5 or 7 | 7 |
2 | 1 or 5 | 7 | ||
2 | 3 or 7 | 3 | ||
3 | 0 | 1 or 5 | 3 | |
0 | 3 or 7 | 7 | ||
2 | 1 or 3 or 5 or 7 | 3 | ||
(93) | 1 | 0 | 1 or 3 or 5 or 7 | 3 |
2 | 1 or 5 | 3 | ||
2 | 3 or 7 | 7 | ||
3 | 0 | 1 or 5 | 7 | |
0 | 3 or 7 | 3 | ||
2 | 1 or 3 or 5 or 7 | 1 |
Equation | ||||
---|---|---|---|---|
(68) | 1 or 3 | 1 | 7 | 1 or 3 or 5 or 7 |
3 | 3 | 3 or 7 | ||
3 | 7 | 1 or 5 | ||
(70) | 1 or 3 | 1 | 3 | 1 or 5 |
1 | 7 | 3 or 7 | ||
3 | 7 | 1 or 3 or 5 or 7 | ||
(89) | 1 or 3 | 1 | 7 | 1 or 3 or 5 or 7 |
3 | 3 | 1 or 5 | ||
3 | 7 | 3 or 7 | ||
(91) | 1 or 3 | 1 | 3 | 3 or 7 |
1 | 7 | 1 or 5 | ||
3 | 7 | 1 or 3 or 5 or 7 | ||
(93) | 1 or 3 | 1 | 3 | 1 or 5 |
1 | 7 | 3 or 7 | ||
3 | 3 | 1 or 3 or 5 or 7 |
0 or 2 | 1 or 3 or 5 or 7 | 1 or 3 or 5 or 7 |
1 or 3 | 3 or 7 | 1 or 3 or 5 or 7 |
Equation | ||||
---|---|---|---|---|
(75) | 0 | 1 or 3 | for , for | |
2 or 4 | ||||
1 | 4 | for , | ||
for | ||||
2 | 1 or 3 | for , for , | ||
for , for | ||||
2 or 4 | for , for | |||
3 | 2 | |||
4 | ||||
(77) | 0 | 1 or 3 | for , for | |
2 or 4 | ||||
1 | 2 | for , | ||
for , | ||||
4 | for , | |||
for | ||||
2 | 1 or 3 | for , for , | ||
for , for | ||||
2 or 4 | for , for | |||
3 | 4 | |||
(79) | 0 | 1 or 3 | for , for | |
2 or 4 | ||||
1 | 2 | for , | ||
for , | ||||
4 | for , | |||
for | ||||
2 | 1 or 3 | for , for , | ||
for , for | ||||
2 or 4 | for , for | |||
3 | 2 |
Equation | ||||
---|---|---|---|---|
(96) | 0 | 1 or 3 | for , for | |
2 or 4 | ||||
1 | 4 | for , | ||
for | ||||
2 | 1 or 3 | for , for , | ||
for , for | ||||
2 or 4 | for , for | |||
3 | 2 | |||
4 | ||||
(98) | 0 | 1 or 3 | for , for | |
2 or 4 | ||||
1 | 2 | for , | ||
for , | ||||
4 | for , | |||
for | ||||
2 | 1 or 3 | for , for , | ||
for , for | ||||
2 or 4 | for , for | |||
3 | 4 | |||
(100) | 0 | 1 or 3 | for , for | |
2 or 4 | ||||
1 | 2 | for , | ||
for , | ||||
4 | for , | |||
for | ||||
2 | 1 or 3 | for , for , | ||
for , for | ||||
2 or 4 | for , for | |||
3 | 2 |
0 | 1 or 2 or 3 or 4 | |
2 | 1 or 2 or 3 or 4 | for , for |
1 | 2 or 4 | for , for |
3 | 2 or 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifina, L.; Tarniceriu, D.; Ryu, J.; Rotopanescu, A.-M. Lengths for Which Fourth Degree PP Interleavers Lead to Weaker Performances Compared to Quadratic and Cubic PP Interleavers. Entropy 2020, 22, 78. https://doi.org/10.3390/e22010078
Trifina L, Tarniceriu D, Ryu J, Rotopanescu A-M. Lengths for Which Fourth Degree PP Interleavers Lead to Weaker Performances Compared to Quadratic and Cubic PP Interleavers. Entropy. 2020; 22(1):78. https://doi.org/10.3390/e22010078
Chicago/Turabian StyleTrifina, Lucian, Daniela Tarniceriu, Jonghoon Ryu, and Ana-Mirela Rotopanescu. 2020. "Lengths for Which Fourth Degree PP Interleavers Lead to Weaker Performances Compared to Quadratic and Cubic PP Interleavers" Entropy 22, no. 1: 78. https://doi.org/10.3390/e22010078
APA StyleTrifina, L., Tarniceriu, D., Ryu, J., & Rotopanescu, A. -M. (2020). Lengths for Which Fourth Degree PP Interleavers Lead to Weaker Performances Compared to Quadratic and Cubic PP Interleavers. Entropy, 22(1), 78. https://doi.org/10.3390/e22010078