@inproceedings{maladry-etal-2023-fine,
title = "A Fine Line Between Irony and Sincerity: Identifying Bias in Transformer Models for Irony Detection",
author = "Maladry, Aaron and
Lefever, Els and
Van Hee, Cynthia and
Hoste, Veronique",
editor = "Barnes, Jeremy and
De Clercq, Orph{\'e}e and
Klinger, Roman",
booktitle = "Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wassa-1.28/",
doi = "10.18653/v1/2023.wassa-1.28",
pages = "315--324",
abstract = "In this paper we investigate potential bias in fine-tuned transformer models for irony detection. Bias is defined in this research as spurious associations between word n-grams and class labels, that can cause the system to rely too much on superficial cues and miss the essence of the irony. For this purpose, we looked for correlations between class labels and words that are prone to trigger irony, such as positive adjectives, intensifiers and topical nouns. Additionally, we investigate our irony model`s predictions before and after manipulating the data set through irony trigger replacements. We further support these insights with state-of-the-art explainability techniques (Layer Integrated Gradients, Discretized Integrated Gradients and Layer-wise Relevance Propagation). Both approaches confirm the hypothesis that transformer models generally encode correlations between positive sentiments and ironic texts, with even higher correlations between vividly expressed sentiment and irony. Based on these insights, we implemented a number of modification strategies to enhance the robustness of our irony classifier."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maladry-etal-2023-fine">
<titleInfo>
<title>A Fine Line Between Irony and Sincerity: Identifying Bias in Transformer Models for Irony Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">Maladry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Els</namePart>
<namePart type="family">Lefever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia</namePart>
<namePart type="family">Van Hee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we investigate potential bias in fine-tuned transformer models for irony detection. Bias is defined in this research as spurious associations between word n-grams and class labels, that can cause the system to rely too much on superficial cues and miss the essence of the irony. For this purpose, we looked for correlations between class labels and words that are prone to trigger irony, such as positive adjectives, intensifiers and topical nouns. Additionally, we investigate our irony model‘s predictions before and after manipulating the data set through irony trigger replacements. We further support these insights with state-of-the-art explainability techniques (Layer Integrated Gradients, Discretized Integrated Gradients and Layer-wise Relevance Propagation). Both approaches confirm the hypothesis that transformer models generally encode correlations between positive sentiments and ironic texts, with even higher correlations between vividly expressed sentiment and irony. Based on these insights, we implemented a number of modification strategies to enhance the robustness of our irony classifier.</abstract>
<identifier type="citekey">maladry-etal-2023-fine</identifier>
<identifier type="doi">10.18653/v1/2023.wassa-1.28</identifier>
<location>
<url>https://aclanthology.org/2023.wassa-1.28/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>315</start>
<end>324</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Fine Line Between Irony and Sincerity: Identifying Bias in Transformer Models for Irony Detection
%A Maladry, Aaron
%A Lefever, Els
%A Van Hee, Cynthia
%A Hoste, Veronique
%Y Barnes, Jeremy
%Y De Clercq, Orphée
%Y Klinger, Roman
%S Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F maladry-etal-2023-fine
%X In this paper we investigate potential bias in fine-tuned transformer models for irony detection. Bias is defined in this research as spurious associations between word n-grams and class labels, that can cause the system to rely too much on superficial cues and miss the essence of the irony. For this purpose, we looked for correlations between class labels and words that are prone to trigger irony, such as positive adjectives, intensifiers and topical nouns. Additionally, we investigate our irony model‘s predictions before and after manipulating the data set through irony trigger replacements. We further support these insights with state-of-the-art explainability techniques (Layer Integrated Gradients, Discretized Integrated Gradients and Layer-wise Relevance Propagation). Both approaches confirm the hypothesis that transformer models generally encode correlations between positive sentiments and ironic texts, with even higher correlations between vividly expressed sentiment and irony. Based on these insights, we implemented a number of modification strategies to enhance the robustness of our irony classifier.
%R 10.18653/v1/2023.wassa-1.28
%U https://aclanthology.org/2023.wassa-1.28/
%U https://doi.org/10.18653/v1/2023.wassa-1.28
%P 315-324
Markdown (Informal)
[A Fine Line Between Irony and Sincerity: Identifying Bias in Transformer Models for Irony Detection](https://aclanthology.org/2023.wassa-1.28/) (Maladry et al., WASSA 2023)
ACL