Towards a Machine Learning Based Control
of Musical Synthesizers in Real-Time Live Performance

Nathan Sommer and Anca Ralescu
EECS Department
University of Cincinnati, ML0O030
Cincinnati, OH 45221-0030, USA
sommernw @mail.uc.edu, anca.ralescu@uc.edu

Abstract

Musicians who play synthesizers often adjust synthesis
parameters during live performance to achieve a more
expressive sound. Training a computer to make auto-
matic parameter adjustments based on examples pro-
vided by the performer frees the performer from this
responsibility while maintaining an expressive sound in
line with the performer’s desired aesthetic. This paper
is an overview of ongoing research to explore the ef-
fectiveness of using Long Short-Term Memory (LSTM)
recurrent neural networks to accomplish this task.

Introduction

Electronic sound synthesizers have been used as musical in-
struments for more than a century, and musicians and re-
searchers continue to explore new ways to synthesize inter-
esting and expressive sounds. Approaches to allow humans
to control synthesizers include woodwind style controllers,
guitar and other stringed instrument style controllers, and
controllers that map gestures to musical events. However,
the most popular synthesizer controller continues to be the
the piano-style keyboard.

The keyboard remains an attractive controller because it
is familiar to many musicians, and because it is a natural
way to tell a synthesizer to start or stop playing a sound.
When a key on a keyboard is depressed, a message is sent to
start playing a sound at a certain frequency. When the key is
released, a message is sent to tell the synthesizer to stop.

What’s missing from this is a way to control the quality
of the sound once a key has been depressed. Wind instru-
ments allow the musician to alter the quality of the sound
through breath and mouth control, and bowed string instru-
ments allow for different sounds through different bowing
techniques. To allow for similar expressive sound adjust-
ments, most synthesizers have a number of parameters that
can be adjusted via knobs, sliders, wheels, pedals, and other
methods. This allows for a great deal of sound control, but
the number of parameters that can be controlled simultane-
ously is limited by the number of hands and feet the per-
former has, and often the performer would like to use both
hands simultaneously to play the keyboard.

One way to allow for a more expressive sound during per-
formance without requiring the human performer to directly

Note events

|Current musical context |

LSTM network

Synth parameter

|
|
|
change events :

Synthesizer > >

Figure 1: Basic functionality of the proposed system. Note events
are received by the system and allow it to continually update the
current musical context which is continually fed through the LSTM
network. Note events are passed through to the synthesizer along
with generated synthesizer parameter change events.

control synthesis parameters is to use a computer to con-
trol the parameters. Many modern synthesizers are hard-
ware or software modules that are not directly connected to
a keyboard. Multiple protocols exist to control these syn-
thesizers, such as MIDI and OSC. Keyboards, other types of
controllers, and computers can send messages to these syn-
thesizers telling them to start or stop playing a sound, or to
change a synthesis parameter value. With a such a setup, a
computer program can be used to monitor messages from a
keyboard controller and alter the synthesis parameters in real
time based on what the human is playing. This paper pro-
poses a synthesizer control system, the Middleman, which
implements such a setup, and is illustrated in Figure 1.
Because different musicians have different desired aes-
thetics, there is no one correct way to shape synthesis param-
eters over time during a performance. Ideally a performer
would be able to teach a machine to learn to control the

parameters in a way that is consistent with the performer’s
desired aesthetic. This paper explores the extent to which
machine learning techniques, specifically a class of neural
networks, can be used to achieve such control in a manner
comparable to that of a human musician.

Expressive Music Performance

Expressive music performance has been of particular inter-
est to researchers in the last decade, and much work has been
done to attempt to model expressive human performance
with machines (Kirke and Miranda, 2009). These models
can be used to generate expressive musical performances by
machine alone, and also for collaborative performances be-
tween human and machine.

When human musicians perform a piece of music from a
written score, they inject their own expression and aesthetic
into the music by varying the following musical parameters,
or performance actions (Kirke and Miranda, 2009):

e tempo, the speed of the music

o dynamics, how loud the notes are played
e articulation, the transitions between notes
e intonation, pitch accuracy

e timbre, the quality of the sound

A musician may only be able to vary a subset of these actions
depending on the instrument played. For example, a saxo-
phone player can vary the timbre and intonation of a note as
it is being played by altering the tightness of the mouth on
the mouthpiece of the instrument, but a piano player cannot
achieve this at all.

Traditionally, music composers and arrangers provide in-
formation about how pieces of music are intended to be per-
formed through scores. Scores contain notation that tells
musicians how loud to play, when to speed up and slow
down, what articulation to use for what notes, etc. The mu-
sician ultimately decides how to interpret this information,
and adds expressive subtlety to a piece of music during per-
formance that cannot be conveyed in a score alone.

Expressive Computer Music Performance

Similarly to a human performer, a computer can perform a
piece of music on an electronic instrument as it is written in
a score. However, it is difficult for a computer to perform a
piece of music with the same expressive subtlety as a human
performer. Computers are good at following rules, but the
rules for musical expression are difficult to define. Differ-
ent styles of music have different rules of expression, and
often what makes a particular performance of a piece of mu-
sic interesting is how the musician plays with the listener’s
expectations of such rules.

One way researchers have tried to get computers to per-
form music in an expressive way is by learning expression
rules from human performances (Widmer, 2001). Perfor-
mance examples are used which include a musical score
along with a recorded human performance, and algorithms
are employed to explicitly or implicitly extract performance
rules that a computer can use to perform unseen scores.

One of the easiest instruments with which to accomplish
this task is the piano. Unlike many wind and string instru-
ments, the piano does not allow for subtle control of dynam-
ics, timbre, and intonation once a note has been struck. Be-
cause the piano can only play discrete notes there is no con-
trol over intonation, and the timbre can only be controlled
in the same manner as the dynamics, in how hard the key is
struck.

Due to this, a piano performance can easily be described
with key and pedal events rather than recorded audio, and
mechanical pianos can be controlled by a computer. There
is an annual piano performance rendering contest called
Rencon (http://renconmusic.org/) which evalu-
ates performance rendering systems’ abilities at performing
unseen musical scores on the piano which continues to push
progress in this area (Widmer, Flossmann, and Grachten,
2009). An interesting aspect of this competition is that while
the contestants are computer systems, the judges are human
and therefore the evaluations are highly subjective.

Human Computer Collaborative Performance

Other research explores ways in which humans and com-
puters can collaboratively contribute to expressive perfor-
mances. The OMax system (Assayag et al., 2006) allows for
improvisational collaboration in real time by listening to the
human musician, learning features of the musician’s style,
and playing along interactively. Music Plus One (Raphael,
2010) is an automatic accompaniment system which plays
a scored piece along with a soloist, following the soloist’s
tempo. In addition to the piano performance rending con-
test, Rencon also has a “semi-automatic and interactive” cat-
egory, which in 2013 was won by VirtualPhilharmony, a sys-
tem that allows a human to conduct a virtual orchestra.

All of these examples are exciting works that showcase
the extent to which humans and computers can work to-
gether to make music, but none of the collaborative systems
developed so far address the problem put forth in this paper
— allowing a human performer to control the pitch, tempo,
dynamics, and articulation of a performance, while a com-
puter controls timbre and intonation by varying sound syn-
thesis parameters.

We hypothesize that a machine learning approach to this
problem can be successful. Allowing musicians to train
the system with example performances created by the musi-
cians themselves will result in performances that are unique
and adhere to the performers’ visions. This problem also
presents unique challenges from a machine learning per-
spective, which will be discussed in later sections.

Creating Performance Examples

Often when creating recordings in a studio, synthesizer parts
are initially recorded as events rather than as audio. This
allows musicians to separate the recording of note events
from the recording of synthesizer parameter change events.
After a keyboard performance has been recorded, parameter
changes can be recorded to achieve the desired sound over
the course of the recording. In this way, musicians can create
interesting and expressive synthesizer recordings that could
not be performed live by a single musician.

These studio event recordings can be used as training ex-
amples for our system. If the system can learn to reproduce
the desired parameter changes while a human is performing,
temporally changing sounds that were previously only at-
tainable in a studio can be brought to life during live perfor-
mances. This method of creating training examples is natu-
ral because musicians are already accustomed to recording
this way, and allows them to use the synthesizers they are
already familiar with.

Learning with Time Series Data

Many tasks which have been tackled with machine learning
approaches involve time series data. Some of these tasks,
such as speech recognition, involve finding patterns in time
series data. Other tasks, such as numerous types of forecast-
ing, involve predicting what will happen in the future based
on what has happened in the past.

For this particular problem we are concerned with predict-
ing the immediate future values of synthesizer parameters.
These values must be predicted based on two things:

e past parameter values
e the current musical context of the piece being played.

The important aspects of the musical context that affect
the parameter levels are defined implicitly by a musician
through training examples, and so the learning system em-
ployed must be able to discover those aspects. The current
musical context at any time step during a musical perfor-
mance is dependent on events that have happened at previ-
ous time steps, and so the system must have an awareness of
the past. Which past events are important and how long they
remain important will differ for each set of training exam-
ples, and so the system must be flexible in that regard. The
following sections discuss some techniques that have been
used to achieve this goal in other problem domains.

Recurrent Neural Networks

Artificial neural networks have long been useful tools in ma-
chine learning due to their ability to approximate non-linear
functions. While the standard artificial neural network can
be useful for some time series data learning tasks, there are
limitations to the model when applied to time series data.

After a standard neural network is trained, data is input
via input nodes. In each subsequent layer, node activations
are calculated by applying activation functions to weighted
sums of the previous layer’s activation values. No infor-
mation about previous activation values is stored, and so
the network is in the same state before each forward pass.
Therefore, in order for such a network to accept time series
data as input it must receive a window of data, or all the
data after time step ¢ — n up to time step ¢, where ¢ is the
latest time step under consideration and n is the size of the
window.

This sliding window approach has limitations because
events relevant to time step ¢ could have occurred at or be-
fore time step t —n, yet they will not be taken into considera-
tion by the network because they are outside of the window.
An alternative to the window approach is to use a Recurrent

cell output }/C output gate

output gating Scy(;u! @

z

out

— N memorizing (_\/
Yo | MmO o cr (/N Q cell

o and forgetting \ \) cstate|
forget gate v - input gate i
input gating gyi" % 7N -
e

input squashing g s in
1

cell input // W
/o N
Z c

Figure 2: LSTM block with a single memory cell, taken from Gers,
Schraudolph, and Schmidhuber (2003). The gates and cell input
activations are calculated by passing the weighted sum of incom-
ing connections through an activation function, as with a standard
artificial neural network node. Input to the cell is scaled by the in-
put gate’s activation, output from the cell is scaled by the output
gate’s activation, and the cell’s state is scaled by the forget gate’s
activation.

Neural Network (RNN) (Jordan, 1986; Elman, 1990). RNNs
contain nodes which retain activation values from the previ-
ous time step, and contain recurrent connections from those
nodes to other nodes in the network. In this manner, data
can be fed into the network one time step per forward pass,
and the network will learn to take into account information
from past time steps when calculating output for the current
time step.

Simple RNNs as described above are generally trained
using Backpropagation Through Time (BPTT). Using this
method, errors at the current time step flow backwards
through previous time steps in order to calculate changes
in the network’s weights. However, these errors either van-
ish or blow up as they travel backwards in time. As a result,
simple RNNs cannot learn well when relevant events happen
more than 5-10 time steps in the past (Gers, Schmidhuber,
and Cummins, 2000).

LSTM Networks

Long Short-Term Memory (LSTM) RNNs overcome this
limitation (Gers, Schmidhuber, and Cummins, 2000).
LSTM networks contain memory cells which retain values
between forward passes through the network. The networks
also contain three types of specialized activation units called
gates. A group of memory cells and their associated gates
are organized into blocks. Input gates control write access
to the memory cells by scaling values that are to be added
to the memory cells; output gates control read access from
the memory cells by scaling the values that are output by the
cells; forget gates allow the memory cell to periodically reset
by scaling the cell’s current value. The gates have weighted
connections from the input as well as recurrent connections
from the other gates and memory cells. During training the
gates learn to open and close so that the memory cells can
store and accumulate values, keep them for arbitrary peri-
ods of time, and use the cells’ values to affect the output as
needed.

LSTM networks have been used successfully in both
recognizing patterns from sequences and in generating se-

quences. Most notably they have proven highly effective
in handwriting recognition and generation (Graves, 2013).
There have been musical applications of LSTM: LSTM net-
works have been used to generate musical chord progres-
sions (Eck and Schmidhuber, 2002), and for learning mu-
sical structure from scores (Eck and Lapalme, 2008), but
these applications operate on the level of notes and chords
and do not operate in real time. Our project explores how
effectively LSTM networks can be trained to implicitly ex-
tract relevant high level musical structures from low level
time series input, and use that information to control sound
synthesis parameters.

Specific Challenges

In order for this system to be successful, several challenges
must be overcome. The learning system is to be given the
musical context at each time step, and so the most effec-
tive manner of encoding the current musical context must
be determined. The system must run in real time, thus care
must be taken to ensure it can continually predict parame-
ter levels quickly enough. Generalization is an issue with
any machine learning task, and here one must be careful not
to overfit to the provided training examples so that the sys-
tem can generalize well. Finally, suitable metrics must be
devised to evaluate the success of the system.

Capturing the Musical Context

When this system is used, it will be given a regularly updated
state of the current musical context. This information must
be determined from the stream of note on and note off events
received from the keyboard and should provide enough con-
text to the learning system so that it can effectively predict
the synthesizer parameter levels.

One very simple way to capture the context is to have a
single input value which represents whether or not a note
is currently being played. When a note on event is sent
from a controller, it has two values: pitch and velocity. The
pitch value indicates which key was depressed on the key-
board, and the velocity value indicates how hard the key
was struck. Given the normalized velocity v of the last note
played, where 0 < v < 1, a very simple single input x
looks like this:

otherwise

- {O, if no note is depressed
0 =
v

)

This input scheme can capture the timing and dynamics of
the piece being played, but the pitch is ignored and it cannot
take into account polyphonic playing, where the performer
depresses more than one key at a time. If a musician merely
wants parameter changes based on the timing and dynamics
of monophonic playing however, this input scheme might be
a good choice.

Another option is to have one input for each key on the
keyboard. For each key ¢ on the keyboard, the input vector
element x; looks like this:

0, if key ¢ is not depressed
T = .
! v;, otherwise

This input scheme captures pitch, timing, and dynamics,
and hypothetically provides enough information for a prop-
erly trained network to be able to extract any musical con-
text that might be relevant. However, it remains to be seen
if such training is feasible. Having one input value for each
key on the keyboard might require significantly larger net-
works which introduce longer training times and additional
processing latency.

A third option is to explicitly provide the network with
higher level musical features. Melodic information can
be determined based on the intervals between consecu-
tive notes. Expressive computer music performance sys-
tems (Widmer, Flossmann, and Grachten, 2009; Arcos,
De Mantaras, and Serra, 1998) have had success using the
Implication-Realization model (Narmour, 1990), which can
be used to classify small local melodic structures. Such
information can be determined from a monophonic perfor-
mance, but becomes difficult if the performance is highly
polyphonic.

Harmonic information can be explicitly determined if
multiple notes are being played at once. The same har-
monic intervals can mean different things depending on the
key of the piece. Therefore, to use this information as input,
the system must be trained for a specific key or the training
data must be transposed to different keys during training to
achieve generalization across keys.

Real Time Performance

Musicians using this system will be playing their keyboards,
or whatever controllers they prefer. Every time a note is
played, the system must predict the values of the synthesizer
parameters and set them before the note event is sent to the
synthesizer. This ensures that the parameters are set before
the note is played so that the synthesizer creates the desired
sound. Thus the system must be able to run fast enough that
the total latency from the time at which the note is depressed
to the time at which the note is played on the synthesizer is
within the musician’s acceptable latency tolerance.

In preliminary testing, relatively small LSTM networks
have been able to complete a forward pass in approximately
50 microseconds on a mid-range laptop. For most mu-
sicians, added latency does not become an issue until it
reaches several milliseconds. As this research progresses
the networks are sure to grow in size, increasing the time re-
quired to complete a forward pass. Because forward pass
time is the primary contributor to added latency, the net-
works cannot grow past a certain size before use will not be
satisfactory to the musician. This limit will be continually
evaluated as development of the system progresses.

Generalization

Any good machine learning system must be able to gener-
alize well. Generalization becomes an issue here because
it is impossible for human musicians to play something on
an instrument exactly the same way twice, and often musi-
cians will play the same musical phrase with slightly differ-
ent tempo, dynamics, and articulation each time for variety.
This system must be able to make satisfying parameter ad-
justments when musicians play phrases that are similar to

the example phrases used to train the system, but not exactly
the same.

Normally it is ideal to train a learning system with a large
data set. Providing as many training examples as possible in-
creases the generalizing power of the learned model. There
are several possible ways to increase the number of training
examples for this particular system. One is for the musician
to play numerous examples of similar musical phrases and
create parameter curves for each. However, this is a rather
cumbersome task and the musician still might not be able to
produce enough examples for satisfactory generalization.

Another way is for the system to alter the data during
training in the same ways that a human might alter the play-
ing of a musical phrase during performance. This involves
changing the duration and velocity of notes, the tempo at
which the notes are played, and even the notes themselves.

Altering the examples during training is similar to gen-
erating expressive computer music performances based on
example human performances. The difference here is that
these altered examples will never be heard, and thus do not
need to sound like authentic human performances. There is
generally a consistency to the way human performers make
changes to the timing and dynamics of a musical phrase to
achieve an expressive performance. For example, if a per-
former is playing an upward moving phrase, he or she might
increase the tempo and dynamics as the phrase moves up-
wards. It could sound musically awkward to speed up and
slow down multiple times during the same upward moving
phrase, and as such is something that an expressive perfor-
mance generating system would want to avoid. However, if
one is only concerned with creating an altered training ex-
ample for the sake of generalization it is not a concern if the
example does not sound musically correct as a whole. It is
only important that the individual changes within the phrase
are consistent with what might happen note to note during a
performance.

Evaluation and Measuring Success

It is important to establish metrics to determine the level of
success of this approach. Here there are both subjective and
objective measures of quality to consider when evaluating
performance.

To subjectively evaluate such a system, it needs to be put
in the hands of a variety of musicians. Different musicians
will have different ideas of how to use it, and different ways
of determining if it lives up to their expectations. After col-
lecting initial feedback and seeing how musicians use the
system it will be easier to determine more specific subjec-
tive evaluation criteria.

As mentioned before, the system must be able to generate
satisfactory output when presented with musical phrases that
are similar to the phrases used to train the system. In some
cases, what the system sees as similar and what the musician
sees as similar might not agree, and what might be seen as a
failure of the system might be due to training examples that
do not properly capture the desired behavior.

Objective metrics are easier to define. As with any su-
pervised learning task, the general goal is to minimize train-
ing error, and to do it in as few training epochs as possi-

Parameter Level

22 24 26

28 30 32 34 36 38 40
Time Step

Figure 3: A simple triangle-shaped parameter modulation over 15
time steps. The network was able to learn to output this shape per-
fectly after 27, 370 training epochs. It is merely an approximation
of a triangle due to the 16 discrete output levels.

ble. Different methods for capturing the musical context
and different network topologies and parameters can be ob-
jectively compared based on the level of error minimization
achieved during training and, in the case of similar results,
the amount of time taken to train. These objective metrics
can be compared with subjective evaluations of performance
to ensure that optimizing the objective metrics correlates
with improved subjective evaluation.

Preliminary Results

Much of the work so far has been on developing a custom
LSTM implementation and conducting training experiments
to ensure that LSTM is a suitable learning algorithm for
this problem. Two simple experiments are presented here.
The first experiment demonstrates that the LSTM implemen-
tation presented here can learn to output a basic triangle-
shaped temporal parameter change on demand. The second
experiment shows that LSTM is capable of learning to de-
tect higher level articulation patterns from an input stream
and output different values based on the temporal position
within a pattern.

Simple Temporal Modulation Experiment

This experiment was devised to determine how well an
LSTM network can learn to output a simple triangle-shaped
parameter modulation whenever a key is pressed. This shape
is shown in Figure 3.

Rather than outputting a single continuous parameter
value, the network outputs a vector y which contains 16 val-
ues representing discrete parameter levels. The predicted
parameter level is selected by finding the maximum element
in y. Each element of each target vector is set to 0 except for
the element representing the desired parameter level which
is set to 1. Training follows the backpropagation algorithm
described in Gers, Schmidhuber, and Cummins (2000).

Because the output is discrete rather than continuous,
the output pattern is merely an approximation of a triangle
shape.

A single network input zy represents the current state of
the controller at the current time step, and has two possible

values:
{0, if no note is depressed
o =

1, otherwise

Each training sequence consists of 25 subsequences, dis-
tributed as follows:

e One subsequence containing the triangle-shaped modula-
tion. Input for each time step is 1. The output starts at
level 1, rises to level 16, and falls back to 1 over 15 time
steps. This results in output that is a discrete approxima-
tion of the triangle shape.

e Ten subsequences representing silence. Input for all time
steps is 0 and output for all time steps is level 1. The
lengths of the silent sequences range from 9 to 11 time
steps. Prior to each training epoch and each validation
pass, these subsequences are shuffled so that the non-
silent section is in a different position within the sequence
for each pass.

The topology of the LSTM hidden layer consists of seven
memory cells, each with input, output, and forget gates. All
units in the hidden layer receive a weighted connection from
the input, as well as recurrent connections from all other
units in the hidden layer. The memory cells are fully con-
nected to the output units. Gates and output units utilize a
sigmoid activation function.

Networks with this topology are able to learn to output the
desired shape perfectly over time steps with an input equal
to 1.

Articulation Experiment

For this experiment, training data is generated to simu-
late notes being played with different articulation. Notes
with two types of articulation are generated: staccato notes,
which here last for a duration of 8 to 12 time steps followed
by 8 to 12 time steps of silence, and normal notes, which
last for a duration of 16 to 20 time steps followed by 1 to 4
time steps of silence.

At each time step the network is to output one of three pa-
rameter levels as follows: Level 1 is the normal level which
is set while normal notes are being played and during ex-
tended periods of silence. If a staccato note is played, the
parameter level should be increased to level 2 at the onset of
the next note. If the next note is also staccato, then the level
should be increased to level 3 on the onset of the note after
that. The parameter level will stay at level 3 as long as stac-
cato notes continue to be played. If a normal note is played
after a series of 3 or more staccato notes, the level should be
decreased to level 2 after the note has been sustained for 14
time steps, and then decreased to level 1 after 3 more time
steps. This behavior is illustrated in Figure 4.

It is worth noting that it would be impossible for a net-
work to learn to raise the parameter level on the onset of
the first staccato note in a series of staccato notes, because
at that point it is impossible to determine for how long the
note will be sustained. This is a limitation of operating in
real time, and must be kept in mind when creating future
training examples.

Each training sequence consists of 25 subsequences, dis-
tributed as follows

Parameter Level
N
o
T
]

1.0

500 520 540 560 580 600 620 640
Time Step

Figure 4: Illustration of the articulation experiment. Shown are
5 consecutive staccato notes followed by one normal note. This
subsequence starts at time step 500 of a validation run after 90, 010
training epochs. The parameter level stays at 1 at the onset of the
first note, raises to 2 at the onset of the second note, and raises to
3 at the onset of the third. The parameter level remains at 3 until
most of the way through the normal note, at which point it falls
back down to 2 and then 1.

e Ten subsequences of silence, each with a random duration
of 1 to 50 time steps. Output is always level 1.

e Ten subsequences each consisting of a single normal note
with a random duration of 16 to 20 time steps followed by
1 to 4 time steps of silence. Output is always level 1.

o Five subsequences of 3 to 5 staccato notes followed by 1
normal note. Output starts at level 1, increases to level 2
at the onset of the second note, increases to level 3 at the
onset of the third note, decreases to level 2 15 time steps
into the normal note, and then decreases back to level 1 3
time steps later.

Prior to each training epoch and each validation pass, these
subsequences are shuffled to create a unique sequence which
still contains the desired properties.

As in the previous experiment, the state of the controller
is passed to the network as a single input xy which is 0 or 1
depending on whether or not a key is depressed. The output
vector again represents discrete parameter levels, but in this
case only 3 levels are used.

The input vector at time step ¢ also contains the parameter
level from time step ¢ — 1. During training the target vector
from time step ¢ — 1 is used. During validation all elements
of the output vector from time step ¢ — 1 are set to 0 except
for the maximum element, which is set to 1. Feeding the
output from ¢ — 1 into the network along with the current
controller state improves training accuracy dramatically.

Perfect output was achieved in this experiment as well,
using the same network topology and parameters as in the
previous experiment.

Future Work

It has been shown that LSTM networks are capable of learn-
ing to output simple temporal changes in the presence of a

stimulating input, and that LSTM networks can be trained
to recognize articulation patterns and to output parameter
levels based on provided examples. Future experimentation
will focus on training networks to achieve tasks that depend
on pitch and dynamics as well as articulation.

Once satisfactory performance has been established using
generated data, the system will be tested by various musi-
cians using their own training examples which will further
expose the strengths and limitations of the system.

Conclusions

Employing a computer system to automatically control
sound synthesizer parameters during human performance
is an unexplored problem that warrants continued investi-
gation. Results from initial experimentation suggest that
LSTM networks have great potential for use in solving this
problem. Successful application here will hopefully aid oth-
ers in applying LSTM to other problems that involve contin-
uous real time sequences.

Adopting a machine learning approach to this problem al-
lows for parameter control that is consistent with perform-
ers’ desired aesthetics, and allows such a system to be used
by musicians that do not possess computer programming
skills. Machine learning applications usually learn from
large aggregations of data sampled from many individuals.
This project puts the teaching power directly in the hands of
individuals to allow them to fully realize their visions.

References

Arcos, J. L.; De Mantaras, R. L.; and Serra, X. 1998. Saxex:
A case-based reasoning system for generating expressive
musical performances®. Journal of New Music Research
27(3):194-210.

Assayag, G.; Bloch, G.; Chemillier, M.; Cont, A.; and Dub-
nov, S. 2006. Omax brothers: A dynamic topology of
agents for improvization learning. In Proceedings of the
1st ACM Workshop on Audio and Music Computing Mul-
timedia, AMCMM °06, 125-132. New York, NY, USA:
ACM.

Eck, D., and Lapalme, J. 2008. Learning musical structure
directly from sequences of music. University of Montreal,
Department of Computer Science, CP 6128.

Eck, D., and Schmidhuber, J. 2002. Finding temporal struc-
ture in music: Blues improvisation with Istm recurrent
networks. In Neural Networks for Signal Processing XII,
Proceedings of the 2002 IEEE Workshop, 747-756. IEEE.

Elman, J. L. 1990. Finding structure in time. Cognitive
Science 14:179-211.

Gers, F. A.; Schmidhuber, J. A.; and Cummins, F. A. 2000.
Learning to forget: Continual prediction with Istm. Neu-
ral Computation 12(10):2451-2471.

Gers, F. A.; Schraudolph, N. N.; and Schmidhuber, J. 2003.
Learning precise timing with Istm recurrent networks.
The Journal of Machine Learning Research 3:115-143.

Graves, A. 2013. Generating sequences with recurrent neu-
ral networks. CoRR abs/1308.0850.

Jordan, M. I. 1986. Serial order: A parallel distributed
processing approach. Technical Report ICS Report 8604,
Institute for Cognitive Science, University of California,
San Diego.

Kirke, A., and Miranda, E. R. 2009. A survey of computer
systems for expressive music performance. ACM Com-
puting Surveys 42(1):3:1-3:41.

Narmour, E. 1990. The Analysis and Cognition of Basic
Melodic Structures: The Implication-Realization Model.
University of Chicago Press.

Raphael, C. 2010. Music plus one and machine learning.
In Proceedings of the 27th International Conference on
Machine Learning, ICML 10.

Widmer, G.; Flossmann, S.; and Grachten, M. 2009. Ygx
plays chopin. Al Magazine 30(3):35.

Widmer, G. 2001. Discovering simple rules in complex data:
A meta-learning algorithm and some surprising musical
discoveries. Artificial Intelligence 146:129-148.

