A Computational Study of Matrix Decomposition Methods for Compression of Pre-trained Transformers

Sergey Pletenev, Viktoriia Chekalina, Daniil Moskovskiy, Mikhail Seleznev, Sergey Zagoruyko, Alexander Panchenko


Anthology ID:
2023.paclic-1.73
Volume:
Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation
Month:
December
Year:
2023
Address:
Hong Kong, China
Editors:
Chu-Ren Huang, Yasunari Harada, Jong-Bok Kim, Si Chen, Yu-Yin Hsu, Emmanuele Chersoni, Pranav A, Winnie Huiheng Zeng, Bo Peng, Yuxi Li, Junlin Li
Venue:
PACLIC
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
723–742
Language:
URL:
https://aclanthology.org/2023.paclic-1.73/
DOI:
Bibkey:
Cite (ACL):
Sergey Pletenev, Viktoriia Chekalina, Daniil Moskovskiy, Mikhail Seleznev, Sergey Zagoruyko, and Alexander Panchenko. 2023. A Computational Study of Matrix Decomposition Methods for Compression of Pre-trained Transformers. In Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation, pages 723–742, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
A Computational Study of Matrix Decomposition Methods for Compression of Pre-trained Transformers (Pletenev et al., PACLIC 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.paclic-1.73.pdf