@inproceedings{watarai-tsuchiya-2020-developing,
title = "Developing Dataset of {J}apanese Slot Filling Quizzes Designed for Evaluation of Machine Reading Comprehension",
author = "Watarai, Takuto and
Tsuchiya, Masatoshi",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.852/",
pages = "6895--6901",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "This paper describes our developing dataset of Japanese slot filling quizzes designed for evaluation of machine reading comprehension. The dataset consists of quizzes automatically generated from Aozora Bunko, and each quiz is defined as a 4-tuple: a context passage, a query holding a slot, an answer character and a set of possible answer characters. The query is generated from the original sentence, which appears immediately after the context passage on the target book, by replacing the answer character into the slot. The set of possible answer characters consists of the answer character and the other characters who appear in the context passage. Because the context passage and the query shares the same context, a machine which precisely understand the context may select the correct answer from the set of possible answer characters. The unique point of our approach is that we focus on characters of target books as slots to generate queries from original sentences, because they play important roles in narrative texts and precise understanding their relationship is necessary for reading comprehension. To extract characters from target books, manually created dictionaries of characters are employed because some characters appear as common nouns not as named entities."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="watarai-tsuchiya-2020-developing">
<titleInfo>
<title>Developing Dataset of Japanese Slot Filling Quizzes Designed for Evaluation of Machine Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Takuto</namePart>
<namePart type="family">Watarai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masatoshi</namePart>
<namePart type="family">Tsuchiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>This paper describes our developing dataset of Japanese slot filling quizzes designed for evaluation of machine reading comprehension. The dataset consists of quizzes automatically generated from Aozora Bunko, and each quiz is defined as a 4-tuple: a context passage, a query holding a slot, an answer character and a set of possible answer characters. The query is generated from the original sentence, which appears immediately after the context passage on the target book, by replacing the answer character into the slot. The set of possible answer characters consists of the answer character and the other characters who appear in the context passage. Because the context passage and the query shares the same context, a machine which precisely understand the context may select the correct answer from the set of possible answer characters. The unique point of our approach is that we focus on characters of target books as slots to generate queries from original sentences, because they play important roles in narrative texts and precise understanding their relationship is necessary for reading comprehension. To extract characters from target books, manually created dictionaries of characters are employed because some characters appear as common nouns not as named entities.</abstract>
<identifier type="citekey">watarai-tsuchiya-2020-developing</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.852/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>6895</start>
<end>6901</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Developing Dataset of Japanese Slot Filling Quizzes Designed for Evaluation of Machine Reading Comprehension
%A Watarai, Takuto
%A Tsuchiya, Masatoshi
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G eng
%F watarai-tsuchiya-2020-developing
%X This paper describes our developing dataset of Japanese slot filling quizzes designed for evaluation of machine reading comprehension. The dataset consists of quizzes automatically generated from Aozora Bunko, and each quiz is defined as a 4-tuple: a context passage, a query holding a slot, an answer character and a set of possible answer characters. The query is generated from the original sentence, which appears immediately after the context passage on the target book, by replacing the answer character into the slot. The set of possible answer characters consists of the answer character and the other characters who appear in the context passage. Because the context passage and the query shares the same context, a machine which precisely understand the context may select the correct answer from the set of possible answer characters. The unique point of our approach is that we focus on characters of target books as slots to generate queries from original sentences, because they play important roles in narrative texts and precise understanding their relationship is necessary for reading comprehension. To extract characters from target books, manually created dictionaries of characters are employed because some characters appear as common nouns not as named entities.
%U https://aclanthology.org/2020.lrec-1.852/
%P 6895-6901
Markdown (Informal)
[Developing Dataset of Japanese Slot Filling Quizzes Designed for Evaluation of Machine Reading Comprehension](https://aclanthology.org/2020.lrec-1.852/) (Watarai & Tsuchiya, LREC 2020)
ACL