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Many efforts at standardising terminologies within the biological domain have resulted in the 
construction of hierarchical controlled vocabularies that capture domain knowledge. Vocabularies, 
such as the PSI-MI vocabulary, capture both deep and extensive domain knowledge, in the OBO 
(Open Biomedical Ontologies) format. However hierarchical vocabularies, such as PSI-MI which are 
represented in OBO, only represent simple parent-child relationships between terms. By contrast, 
ontologies constructed using the Web Ontology Language (OWL), such as BioPax, define many 
richer types of relationships between terms. OWL provides a semantically rich structured language 
for describing classes and sub-classes of entities and properties, relationships between them and 
expressing domain-specific rules or axioms that can be applied to extract new information through 
semantic inference. In order to fully exploit the domain knowledge inherent in domain-specific 
controlled vocabularies, they need to be represented as OWL-DL ontologies, rather than in formats 
such as OBO. In this paper, we describe a method for converting OBO vocabularies into OWL and 
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class instances represented as OWL-RDF triples. This approach preserves the hierarchical 
arrangement of the domain knowledge whilst also making the underlying parent-child relationships 
available to inference engines. This approach also has clear advantages over existing methods which 
incorporate terms from external controlled vocabularies as literals stripped of the context associated 
with their place in the hierarchy. By preserving this context, we enable machine inference over the 
ordered domain knowledge captured in OBO controlled vocabularies. 

1 Introduction 

Molecular biology as a field encompasses several dynamic sub-domains undergoing 
rapid expansion with resultant rapid discovery and growth in acquired data. High-
throughput techniques and large scale biological research, such as genome and 
transcriptome sequencing projects and expression studies, generate abundant data. 
However, a significant gap exists between data acquisition and knowledge discovery. 
These massive quantities of data are frequently produced through a distributed effort, and 
need to be integrated for analysis and final presentation [1, 2]. Likewise, techniques such 
as expression profiling produce large quantities of raw data which must be recorded and 
described [3]. In addition to data exchange and integration issues, many projects in 
computational and systems biology focus on the analysis of high-level properties of 
biological systems. Such projects might, for example, compare the distribution of protein 
functional classes between genomes [4], or analyse the genetic regulatory network of an 
organism [5]. Such analysis requires the integration of heterogeneous information 
produced from multiple sources at varying levels of resolution and described using 
highly variable terminologies. Solutions to these exchange and integration challenges 
include provision of the data in delimited text files, databases, and XML documents 
conformant with a given XML schema. The semantic meaning of the data is not however 
explicit within the documents, and relies on some external definition of concepts and 
relationships in the data. 

Analysis at the level of biological systems also requires reasoning over large and 
complex data sets is beyond the ability of humans. Machine reasoning has the ability to 
uncover implicit relationships in the data, rather than simply retrieving explicitly 
represented data, as is the case of querying a database. However, machine reasoning over 
large and complex data sets requires the use of appropriate and meaningful knowledge 
representations of the domain area combined with presentation of the data in machine-
readable format [6]. One technique for implementing knowledge representation that has 
been readily adopted in biology has been the construction of bio-ontologies to establish a 
precisely (if not formally) defined way to model and express the knowledge of a domain 
in terms of defined concepts: the classes of “things”, the relationships that exist between 
these classes, and the rules or axioms that apply to these concepts in the domain. The 
need for ontology development was recognized almost a decade ago in the creation of 
perhaps the most widely adopted biological ontology, the Gene Ontology (GO) [7]. 

An important consideration is why choose to create or use an ontology over 
traditional database schema, which are widely adopted knowledge representations in the 
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field of molecular biology [8]. While there have been few successful demonstrations of 
automated inference using bio-ontologies, there are significant reasons for their adoption 
[9]. The key reason is that ontologies are designed to evolve over time and to facilitate 
integration of data, while database schemas are not [10]. Database schemas are typically 
considered an internal design decision for a given application and rarely, if ever, are 
schemas from other databases reused. A specific ontology, on the other hand, is an 
external, global resource that is meant to be reused, extended and integrated with other 
ontologies. An ontology is also more expressive than a database [11]. Finally, databases 
rarely allow the preservation of data. It is still common simply to add attributes to an 
existing schema rather than splitting it logically due of the extent of the data migration 
[12]. Ontologies provide a separation between the actual data and the metadata or 
descriptions of the datasets and their relationships. This allows the data to be migrated 
independently from changes within the ontology [10]. 

Many types of knowledge representation exist, and there are many views of what 
constitutes machine reasoning [13]. The majority of ontologies developed in the 
biological domain to date do not take advantage of this background [14]. Technologies 
developed by the World Wide Web Consortium (W3C; http://www.w3.org/) to support 
machine reasoning include the Resource Description Framework (RDF) and Web 
Ontology Language (OWL). Both RDF and OWL support machine inference across 
resources on the web.  

While some bio-ontologies have been constructed using these standards, or have 
been converted into a form compliant with these standards [15], most do not take 
advantage of the W3C recommendations [14] (see OBO Foundry 
http://www.obofoundry.org). Many are presented as controlled vocabularies where 
concepts are represented taxonomically, and relationships are predominantly “is-a” or 
“part-of” relationships that establish the tree-like structure of the vocabulary. While these 
structures create well ordered catalogues of concepts relevant to a domain, they do not 
typically allow for the expression of rules defining other relationships between concepts. 
The end result is a simplified, flattened model of the domain that lacks the semantic 
depth or logical support to enable a reasoner to infer new relationships or new 
information. 

A significant challenge in molecular biology is to understand the molecular 
interactions that occur within cells; research in cell and structural biology shows that 
many proteins rely on a complex network of interacting partners to achieve their correct 
localization and functional state in the cell. High-quality molecular interaction data are 
largely described in journal articles using natural language. Because of the unstructured 
nature of the observations, the discipline of molecular interactions is covered by several 
overlapping ontologies. Some of these, such as BioPax (http://www.biopax.org) and the 
Protein Standards Initiative Molecular Interaction vocabulary (PSI-MI; 
http://www.psidev.info/) provide significant coverage over concepts relevant to the 
domain, while others, such as GO, and the NCBI-Taxonomy 
(http://www.ncbi.nlm.nih.gov/) intersect with the field. The diverse formats of these 
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overlapping ontologies make molecular interactions a useful test domain for strategies to 
integrate bio-ontologies and reuse domain knowledge. 

2 Results 

The field of bio-ontology development is active, and already populated with a number of 
general and domain specific ontologies that have been developed, or are under 
development. We reviewed ontologies listed by the OBO Foundary; and the National 
Center for Biomedical Ontology (NCBO; http://www.bioontology.org/). Of the ~70 
ontologies listed at these sites, around three quarters are written using the OBO format 
[16], with the remainder using other formats, including OWL, Protégé files and plain 
text. 

OWL is specifically designed to construct ontologies that support machine reasoning 
[11]. For this reason, we choose to use OWL DL (description logics) to construct a high-
level ontology to integrate concepts from relevant biological ontologies and vocabularies 
not expressed in OWL. Given that knowledge acquisition is one of the most time 
consuming and necessarily manual parts of ontology construction, the knowledge 
captured in non-OWL ontologies constitutes a valuable resource. One approach 
suggested in such cases is to construct a new ontology using OWL [14], however this 
under estimates the value of knowledge represented in other formats. Practical strategies 
to rescue domain knowledge captured in non-OWL ontologies will have obvious 
applicability in a domain such as molecular biology where the majority of vocabularies 
are not expressed in OWL. 

We have reviewed two ontologies used to describe molecular interactions: the OWL 
ontology BioPax, and the OBO ontology PSI-MI. However it is not our intention to 
comparatively evaluate these ontologies, as has been done recently [17, 18]. Briefly, 
BioPax is designed to describe pathway rather than specific molecular interaction data. 
However of the ~40 classes and ~70 properties that BioPax defines, many are key 
concepts and relationships necessary to describe molecular interactions. The PSI-MI 
vocabulary, on the other hand, is specifically designed to describe molecular interaction 
data and captures >800 concepts from the domain. However it is represented in OBO and 
expresses only hierarchical relationships between these classes. While BioPax lacks the 
descriptive power of PSI-MI, it is more suited for machine reasoning because it is 
represented in OWL. BioPax recognizes the value of external controlled vocabularies 
such as PSI-MI and GO, by providing a facility to exploit these external vocabularies 
through the inclusion of a class openControlledVocabulary. This class stores a term from 
an external vocabulary along with a cross reference holding the identifier of that term and 
the name of the vocabulary (as literal strings). 

However, it is not sufficient merely to store the data from external controlled 
vocabularies as literals - the term becomes devoid of meaning if taken out of the context 
of the original concept tree. In order to preserve the meaning of the term its relationship 
to other terms throughout the hierarchy, must also be preserved. For example, most 
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biologists would know that “mouse” is not only a label for an organism, but also that an 
organism which is a mouse is also a mammal and a vertebrate. If “mouse” is used as a 
text-string label, it lacks the meaning a biologist would ascribe to the concept, and all 
that is available is the string of text. While applications could be written that interpret the 
string “mouse” to have a particular meaning, there is nothing in the representation that 
makes the meaning explicit. However, if an OWL ontology containing a class hierarchy 
of taxonomic terms was used in the representation, then an organism that was an instance 
of the class mouse would inherit class membership of super-classes in the hierarchy as 
instances of each sub-class are also instances of super-classes. This allows an instance of 
mouse to be recognized as an instance of mammal and vertebrate. There is no need for 
any special encoding of this information into applications interpreting the data, since the 
meaning is now made explicit in the ontology itself. The meaning of the term is 
preserved through maintaining its relationship to other terms and its place in the 
hierarchy. 

To illustrate this point, consider the natural language expression, “The protein 
Emerin is localized to the nuclear inner membrane” (Figure 1). 

  

Figure 1. A natural language assertion decomposed into generic concepts (shaded) and specific instances of 
those concepts. The specific instance “Emerin” is of the generic type protein, while the specific instance 
“Nuclear inner membrane” is of the generic type cellular location. The relationship between “Emerin” and its 
localisation is represented by a labeled arrow, localisation. 

This statement is composed of generic and specific concepts and relationships: two 
generic concepts, protein and cellular location, and two specific instances of these 
concepts, “Emerin”, a protein, and “nuclear inner membrane”, a cellular location. A 
relationship also exists between these two instances, namely, that “Emerin” has a 
property localisation, the value of which is “nuclear inner membrane”. The same 
statement could also be expressed using the BioPax ontology, as illustrated in Figure 2, 
by using the openControlledVocabulary class to include a term from an external 
vocabulary like the GO Cellular Component hierarchy.  
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Figure 2. Expression of an assertion of subcellular location in BioPax. Classes and properties from the BioPax 
ontology are shaded on the left of the diagram, while the instance data describing the localisation of Emerin is 
on the right. Elipses represent classes, or instances of classes, while rectangles represent typed (string) literals. 
The string in bold, “nuclear inner membrane” has been imported from the GO Cellular Component hierarchy. 

However, as the references to the term from the external vocabulary are all simple 
text strings, they lack context or meaning. A search for proteins where the value of 
cellular_location is the string “organelle membrane” would not retrieve proteins where 
this value was “nuclear inner membrane” unless the query application was hard-coded 
with additional information about the relationship between these two strings. External 
terms used in this fashion lack meaning. Because of the limitation of the BioPax 
approach, we developed a different approach to include domain knowledge captured in 
external controlled vocabularies (see Figure 3).  
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Figure 3. Integration process for an OBO Controlled Vocabulary. The OBO vocabulary is converted into OWL-
DL. This results in an OWL class hierarchy where terms from the original vocabulary become OWL classes. 
Instance data is then created for the ontology so each class has a single instance comprising the vocabulary term 
that can then be used as an object or subject of triples. Outputs from this process are shaded. 

An external controlled vocabulary that contains relevant descriptive terms is 
converted into OWL-DL. Most frequently, the external vocabulary is in OBO format, so 
we currently use one of several OBO to OWL conversion applications [19-21]. However 
this process may be more generally applied to any hierarchical controlled vocabulary 
such as NCBI Taxonomy, which is not in OBO format. It is important that both the class 
hierarchy and the instance data for this hierarchy are created. OWL DL classes are used 
to define restrictions for properties within the ontology, through the specification of 
allowable domain and range values [11]. However, a class cannot also be an instance, 
and only instances may be used as the values of properties. For this reason, a single 
instance of each class is created, taking the form of the original term from the 
hierarchical vocabulary. At the end of this process, both an OWL ontology representing 
the terms from the controlled vocabulary and a set of instance data are available (see 
Figure 3) to use in conjunction with an OWL ontology, as illustrated in Figure 4. 
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Figure 4. Application of the conversion process. Classes and instances used to express the statement are boxed 
in a dashed line. The term, “nuclear inner membrane” in bold is an instance of the class 
GO_0005637_Nuclear_Inner_Membrane, which is related to other classes in the hierarchy shaded box. Domain 
knowledge is explicitly captured in these hierarchical relationships, so that the relationship of the protein 
“Emerin” to other cellular locations can be inferred. 

In this example, the instance “nuclear inner membrane” is used as the value of the 
cellular_location property. Not only is this value meaningful to a person who understands 
what is meant by the words, it is also meaningful to a machine reasoner that has access to 
the underlying ontology. This machine reasoner, when presented with the assertion that 
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Emerin is located in the “nuclear inner membrane”, may correctly infer that Emerin is 
also located in an “organelle membrane”, and located in a “membrane”. 

By using this process to incorporate components of external vocabularies under a 
high-level extensible ontology, external terms become more than text labels, and enable 
implicit relationships to be extracted from explicit data. 

3 Discussion 

Many of the existing bio-ontologies are written in the OBO format, and represent a rich 
source of biomedical domain knowledge. By using the approach described here, 
vocabularies covering specific aspects of a domain may be plugged into a high level 
extensible OWL ontology designed to facilitate these modular extensions. The parent-
child relationships of the new vocabulary are maintained, and made available to a 
reasoner to infer implicit relationships from the explicitly represented data. The current 
strategy used by BioPax is inadequate for machine reasoning. To make bio-ontologies 
useful for machine reasoning, they need to be explicitly represented in languages such as 
OWL. Converting and importing relevant hierarchies of terms and associated instances is 
one solution to maintaining the meaning of terms in controlled vocabularies.  

We have constructed a high-level ontology that imports classes and properties from 
BioPax to describe such things as entities, references and cross-references. To avoid 
using the BioPax openControlledVocabulary class to incorporate external information, 
we construct new properties with BioPax classes for domains, and ranges that specify 
classes in the converted OWL class hierarchy targeted by the property. For example, we 
create a property Cellular_location, which has a range of 
GO_0005575_Cellular_Component. While the property conceptually maps to the BioPax 
property of the same name, the range is restricted to elements from the converted GO 
Cellular Component hierarchy, that is, all the subclasses of the class 
GO_0005575_Cellular_Component. In the same way, we can exploit the rich vocabulary 
in PSI-MI that describes experimental methods used to determine molecular interactions 
by creating a property Experimental_method (which conceptually maps to the BioPax 
property experimental_form) which has a range restricted to values taken from 
subclasses of the converted PSI-MI MI_0045_experimental_interaction_detection class 
describing experimental methods. This strategy enables us to extend the ontology to 
incorporate descriptive vocabulary terms from external controlled vocabularies, without 
losing the context, or meaning, that those terms have in their vocabulary of origin. 

One concern when creating an ontology or expanding an existing ontology is the 
trade off between the ability of the ontology to express concepts in the domain, and to 
provide tractable inference. The effects of this trade off are difficult to evaluate [23]. A 
strategy which we will explore to address this is to identify which branches of a given 
concept tree are required and include only those branches. 

Since so many biological concepts are framed in terms of hierarchically inherited 
properties, and the majority of biological ontologies take the form of hierarchical 
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controlled vocabularies, the process described here is a useful generic strategy for 
incorporating the existing wealth of ordered knowledge into a semantically rich ontology 
constructed using OWL. This will help to extend the utility of bio-ontologies into the 
arena of machine inference. 

Acknowledgments 

The authors thank Pfizer Inc. for support of the BioMANTA project. We also thank our 
colleagues in the BioMANTA project for useful suggestions and discussion. 

References 

1. F. Collins, M. Morgan and A. Patrinos, Science, 300, 286 (2003). 
2. P. Carninci et al. Science, 309, 1559 (2005). 
3. A. Brazma et al. Nat. Genet. 29, 365 (2001). 
4. M. A. Andrade et al., J. Mol. Evol. 49, 551 (1999). 
5. S. Li et al., Science, 303, 540 (2004). 
6. F. Bry and M. Marchiori, in Proc.2nd EWIMT, London, UK, IEEE. (2005). 
7. M. Ashburner et al., Nat. Genet. 25, 25 (2000). 
8. M. Y. Galperin, Nucleic Acids Res. 35, D3 (2007). 
9. M. Keet, M. Roos and M. Marshall, in Proc. 3rd OWLED, Innsbruck, Austria, 

CEUR-WS, (2007). 
10. N. Noy and M. Klein, KAIS, 6, 428 (2004). 
11. S. Bechhofer et al., in W3C Recommendations, (2004). 
12. R. Elmasri, S. Navathe and C. Shanklin, Fundamentals of Database Systems, 

Adison-Wesley, Boston (2000). 
13. R. Davis, H. Shrobe and P. Szolovits, AI Magazine, 14, 17 (1993). 
14. L. Soldatova and R. King, Nat. Biotech. 23, 1095 (2005). 
15. M. E. Aranguren et al., BMC Bioinformatics, 8, 57 (2007). 
16. R. G. Cote et al., BMC Bioinformatics, 7, 97 (2006). 
17. L. Stromback and P. Lambrix, Bioinformatics, 21, 4401 (2005). 
18. L. Stromback et al., Brief. Bioinformatics, 7, 331 (2006). 
19. D. A. Moreira and M. A. Musen, Bioinformatics, 23, 1868 (2007). 
20. C. Goldbreich and I. Horrocks, in Proc. 3rd OWLED, Innsbruck, Austria, CEUR-

WS, (2007). 
21. S. H. Tirmizi and D. P. Miranker, Technical Report 

http://www.cs.utexas.edu/~hamid/pub/tirmizi-obo2owl-tr-06-47.pdf 
22. D. Martin et al., Genome Biol. 5, R101 (2004). 
23. H. Levesque and R. Brachman, Comput. Intell. 3, 78 (1987). 


