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Fragment-based analysis of protein three-dimensional (3D) structures has received increased 
attention in recent years. Here, we used a set of pentamer local structure alphabets (LSAs) recently 
derived in our laboratory to represent protein structures, i.e. we transformed the 3D structures into 
one-dimensional (1D) sequences of LSAs.  We then applied Hidden Markov Model training to 
these LSA sequences to assess their ability to capture features characteristic of 43 populated protein 
folds. In the size range of LSAs examined (5 to 41 alphabets), the performance was optimal using 20 
alphabets, giving an accuracy of fold classification of 82% in a 5-fold cross-validation on 
training-set structures sharing < 40% pairwise sequence identity at the amino acid level. For test-set 
structures, the accuracy was as high as for the training set, but fell to 65% for those sharing no more 
than 25% amino acid sequence identity with the training-set structures. These results suggest that 
sufficient 3D information can be retained during the drastic 3D->1D transformation for use as a 
framework for developing efficient and useful structural bioinformatics tools. 

1. Introduction 

Ever since Anfinsen’s experiments in the 1950’s demonstrating that the factors 
determining the three-dimensional (3D) structure of a protein is encoded in its 
one-dimensional (1D) sequence of amino acids [1], protein structure prediction has been 
a central interest in computational biology. Among the markedly diverse approaches used, 
the success of the Rosetta method developed by Baker and co-workers in Critical 
Assessment of Structure Prediction competitions [2] has highlighted the practicality of 
using short structural motifs for protein 3D prediction and has stimulated many 
fragment-based studies in recent years [3-10]. The strategy used in these studies is to cut 
known protein structures into short overlapping fragments, which are then collected and 
clustered based on measures of geometric similarity, each cluster being represented by a 
central fragment, called a centroid; these centroids are then used to construct or analyze 
protein 3D structures.  



 

We have recently derived a library of structural centroids 
(http://gln.ibms.sinica.edu.tw/jccs) for protein fragments of 5 amino acids, and shown its 
performance in approximating protein 3D structures to compare favorably with several 
others reported in the literature [10]. In the present work, we assigned each centroid of 
the fragment library an alphabet and used these alphabets to represent protein 3D 
structures: i.e. with a certain loss of resolution, the protein 3D structure was conveniently 
transformed into a 1D sequence string of local structural alphabets (LSAs). Using Hidden 
Markov Model (HMM) machine learning [11], we then evaluated the possibility of using 
this 3D->1D transformation to assign the Structure Classification Of Proteins (SCOP) 
fold [12] of a given protein structure, and determined the size of the alphabet set required 
for optimal performance. 

2. Materials and Methods 

2.1.  Derivation of structural alphabets 

The details of our method for deriving LSAs have been described [10]. Briefly, we 
employed a two-stage procedure to cluster a total of 136,765 pentamer fragments cut 
from 1,059 randomly selected protein chains of a non-redundant (sequence identity < 
25%) Protein Data Bank (PDB) [13] set. The first stage involved the application of an 
Expectation-Maximization (EM) algorithm [14] using six intra-fragment distances of 
non-adjacent Cα atoms as feature vectors for clustering. In the second stage, the EM 
clusters were refined by splitting and merging iteratively to achieve high conformational 
homogeneity among within-cluster fragments. The results showed that half of the 
fragment database could be approximated within 0.65 Å by the centroids of the top (i.e. 
those with most members) 5 clusters. At the same level of approximation, the top 20 
clusters covered 80% of the database and the top 40 clusters 90%, but 264 clusters were 
required to cover the entire database. The root-mean-square (rmsd) error to fit residual 
fragments (those that cannot be approximated within 0.65 Å of any of the centroids) 
using 20 and 40 clusters was 0.43 Å and 0.38 Å, respectively [10].  

2.2. Hidden Markov training and fold classification 

Using the alphabets, we can approximate a protein 3D structure by converting it into a 
1D character string, or sequence, of the alphabets (i.e. LSAs). To evaluate to what extent 
the LSA sequence representation can capture the essence of a protein 3D fold, we 
examined the fold classification performance by HMM training on 43 of the most 
populated SCOP folds (release 1.61), each containing at least 20 domains. We employed 
the ASTRAL Compendium database [15] to choose those domains in the 43 folds sharing 
less than 40% sequence identity. In all, we used 2,041 domains (~10% of all the SCOP 
domains belonging to the 43 folds) for training. For HMM training, we followed the 
procedures and model architecture of HMMER [16]. For each fold selected, we identified 
a reference structure as the one with the largest number of structurally similar domains 



 

within its own fold and aligned onto it all the other structures of the same fold using the 
fast structure comparison algorithm FLASH [17]. The resulting multiple structural 
alignment was represented in the form of a multiple LSA sequence alignment, and this 
representation was used to train HMM models. Two groups of HMM models were 
derived with or without the use of an alphabet substitution matrix to estimate a prior 
relationship between alphabets. The substitution matrix contained probabilities 
transformed from the rmsd values computed for all pairs of the structural alphabets using 
the formula of Altschul et al. [18]. Using the HMM models, a given protein structure was 
then assigned to one of the 43 SCOP folds, with the HMM model of this fold scoring 
highest for the given structure. Figure 1 outlines the procedures involved in HMM 
training and fold classification. To evaluate fold classification performance, we 
performed a 5-fold cross-validation on the training set. For a further evaluation, we tested 
the trained HMMs on a second set of SCOP domains. This second set, which contained 
17,959 structures from the 43 folds, was selected from a newer SCOP release (1.63), 
excluding those already used in the training set. 

Figure 1. Schematic diagram of the HMM training and fold classification procedures 
used in this work. For each fold, we (A) selected a suitable reference structure (thick) and 
aligned the other structures (thin) with it using FLASH, a structural comparison program 
[17], (B) transformed all these 3D structures into 1D sequence strings of LSAs and 
produced a multiple LSA sequence alignment based on the multiple structure alignment 
of (A), (C) trained HMMs iteratively using the multiple LSA sequence alignment of (B) 
as the initial input, (D) produced HMM profiles showing the emission distribution of 
LSAs at aligned positions (only part of the aligned positions shown), (E) ranked each fold 
according to the HMM score for a given structure.  
 



 

3. Results  

3.1. Number of alphabets for optimal performance 

The HMM was run on different sets of LSAs containing 5, 10, 15, 20, 25, 33, or 41 
alphabets. The 5-fold cross-validation results showed that the performance, as measured 
by the TP-rate (the fraction of correctly assigned domains), reached a plateau at 20 
alphabets, beyond which improvement was negligible (Figure 2). Furthermore, the use of 
a substitution matrix to take into account different degrees of similarity among the 
alphabets increased the classification accuracy by ~7% for all alphabet sets, the TP-rate 
being maximal at 82% for the set of 20 alphabets.  
 

 
Figure 2. Results of the 5-fold cross-validation using different number of LSAs, with and without a substitution 
matrix (see Methods). The performance of the fold classification was measured by the TP-ratea, the fraction of 
test domains that were correctly assigned. 
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TPi: true positives for fold i; FPi: false positives for fold i. 

3.2. Comparison with the results of Cootes et al. [19] 

Having determined the number of LSAs for optimal fold assignment, we then retrained 
the HMM on the entire training set using 20 alphabets plus the substitution matrix, and 
compared the results with those reported by Cootes et al. [19], who used inductive logic 
programming, a machine learning algorithm, to capture signatures of 45 SCOP folds 
expressed in rules such as “has a parallel sheet of eight strands for a TIM barrel fold”. As 



 

shown in Table 1, our method performed considerably better for three of the four major 
protein classes. Furthermore, the poorer result for the α+β structures was due to a gross 
misalignment in the form of LSA sequence for a particular SCOP fold (SCOP fold ID 
d92, the Zincin-like fold). This misalignment resulted from the difficulty in aligning two 
domains which differ greatly in size, especially for alignments involving many helices, 
which, as represented by LSA, are rather featureless. Discounting this fold, our results for 
α+β structures were 94% for precision, 82% for recall, and 88% for the F-measure (Table 
1). 

 
Table 1. Comparison of fold classification performance 
in this work (first value) and the study of Cootes et al. 
[19] (second value) 

 Precision a (%) Recall b (%) F-measure c (%) 
All-α 78 / 76 72 / 53 75 / 62 
All-β 91 / 64 83 / 45 87 / 53 
α/β 85 / 78 74 / 54 79 / 64 
α+β(-d.92) d 82 (94) / 93 72 (82) / 71 77 (88) / 81 
Total 84 (87) / 77 75 (78) / 55 79 (82) / 65 
According to [20]: 
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where  TPi :True positive for fold i. 
FPi :False positive for fold i. 
FNi:False negative for fold i. 

d The data in parenthesis are the results discounting the Zincin-like 
fold. (fold id d92) 

 

3.3. Test results at different levels of amino acid sequence identity 

The trained HMM was then tested on structures that were not included in the training set. 
These test structures were grouped in different ranges of amino acid sequence identity, 
which, for any given test structure, was taken to be the highest sequence identity when 
compared to the training set structures of the same fold. As shown in Figure 3, for 
structures with sequence identity greater than 30%, the test accuracy was as good as that 
for the training set (Figure 2 and Table 1). Below this level of sequence identity, 
performance degraded because of increasing assignment difficulty or decreasing 
sequence identity. However, the correct assignment was generally within the top ranked 
folds (87% accuracy within the top 5 folds) even for structures with low sequence 
identity (Figure 3).  
 



 

 
Figure 3.Results of fold assignment for test structures grouped by sequence identity. 

4. Discussion 

In recent years, many studies have used clustering techniques to identify and characterize 
short structural motifs of proteins [3-10,21-27]. These studies showed that, although only 
a few motifs, i.e. a few structural alphabets, are sufficient to represent a large proportion 
of protein local structures, many more alphabets – hundreds or thousands, depending on 
the desired resolution – would be required to cover the rest. Consequently, to make use of 
these structural alphabets, one must evaluate the trade-off between computational 
efficiency and accuracy. In this work, we showed that, using pentamer fragments, 20 
alphabets were optimal for capturing fold-specific features. Using 20 structural alphabets, 
many bioinformatics tools developed for analyzing amino acid sequences, which, 
coincidentally, have the same number of alphabets, may now be adopted to analyze 
protein 3D structures. 

Protein fold classification is one such application demonstrated in this work. As the 
number of new structure entries in the database is increased rapidly by structural 
genomics projects, there is a need for the accurate and fast classification of protein 
structures. The baseline accuracy of fold classification using amino acid sequence 
information alone  was recently established as 69.6% for proteins in the 27 most 
populated folds with sequence identity < 35% [28]. Other methods have been shown to 
be much more accurate, but require more detailed geometric information, such as the 
spatial relationship between secondary structure elements [29]. The data presented here 
demonstrate that LSAs can capture specific features of a protein fold, provided that it is 
sufficiently populated, with an accuracy intermediate between that of methods requiring 
no 3D information whatsoever (e.g. [28]) and those requiring detailed knowledge (e.g. 



 

[29]). By removing artifacts that distort HMM training, such as that identified for the 
Zincin-like fold, our method can be significantly improved.   
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