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Abstract

Visualization is one of the most effective and widely-used techniques for understanding data. Yet, the

growing use of visualizations for exploratory data analysis poses new demands beyond simply the graph-

ical presentation and visualization authoring capabilities offered in existing tools. In particular, many

data analysis tasks involve navigating large collections of visualizations to make sense of trends in data;

at present, this navigation is done manually or programmatically. We outline a vision for an intelligent,

interactive, understandable, and usable tool that can help automate this largely manual navigation: we

call our tool VIDA1—short for VIsual Discovery Assistant. We argue that typical navigation tasks can

be organized across two dimensions—overall goal and precision of specification. We organize prior

work—both our own work, as well as other ongoing work in this area—across these two dimensions,

and highlight new research challenges. Together, addressing these challenges underlying VIDA can

help pave the way for a comprehensive solution for removing the pain points in visual data exploration.

1 Introduction

With the ever-increasing complexity and size of datasets, there is a growing demand for information visualization

tools that can help data scientists make sense of large volumes of data. Visualizations help discover trends and

patterns, spot outliers and anomalies, and generate or verify hypotheses. Moreover, visualizations are accessible

and intuitive: they tell us stories about our data; they educate, delight, inform, enthrall, amaze, and clarify.

This has led to the overwhelming popularity of point-and-click visualization tools like Tableau [33], as well

as programmatic toolkits like ggplot, D3, Vega, and matplotlib. We term these tools as visualization-at-a-time

approaches, since data scientists need to individually generate each visualization (via code or interactions), and

examine them, one at a time.

As datasets grow in size and complexity, these visualization-at-a-time approaches start to break down, due

to the limited time availability on the part of the data scientists—there are often too many visualizations to

examine for a given task, such as identifying outliers, or inferring patterns. Even on a single table, visualizations

can be generated by varying the subsets of data operated on, or the attributes (or combinations thereof) that

can be visualized. If we add in various visualization modalities, encodings, aesthetics, binning methods, and
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transformations, this space becomes even larger. (For this work, we focus primarily on the impact of varying the

data subsets and attributes visualized—some of these latter concerns are the focus of recent work [39].)
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Figure 1: The two dimensions of discovery set-

tings. The Y axis depicts the different discov-

ery goals ordered in roughly increasing com-

plexity, while the X axis characterizes decreas-

ing levels of query specificity and correspond-

ingly increasing levels of autonomous assis-

tance.

Thus, there is a pressing need for an intelligent, interactive,

understandable, usable, and enjoyable tool that can help data sci-

entists navigate collections of visualizations, across a range of

possible analysis goals and modalities that data scientists may

require. We term our hypothesized comprehensive tool VIDA,

short for VIsual Discovery Assistant. Data scientists can spec-

ify any discovery goal at a high level, in one of many intu-

itive input modalities supported in VIDA, with VIDA automati-

cally traversing visualizations to provide solution or guidance for

the specified discovery goal, thereby eliminating the tedium and

wasted labor of comparable visualization-at-a-time approaches.

VIDA Dimensions. In order to be a holistic solution for navigat-

ing collections of visualizations, VIDA must be able to support

various discovery settings. We organize these settings along two

dimensions, displayed along the Y axis and X axis (respectively)

of Figure 1—first, the overall discovery goal, and second, the

degree of specificity of the input query.

Along the Y axis, we identify five common discovery goals

in visual data exploration: finding patterns, identifying anoma-

lies/clusters, summarizing, performing comparisons, providing explanations. These five goals borrow from

functionalities in existing systems, as well as related visualization task taxonomies [2, 11]. They are organized

along the Y axis in a sequence of roughly increasing complexity; however, we must emphasize that these goals

are distinct from one other. We omit low-level goals such as filtering or sorting, since these functionalities are

common in existing visualization-at-a-time tools and toolkits. We also omit goals that go beyond visual data

exploration, such as extrapolation, supervised learning, and cleaning, among others.
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Figure 2: VIDA Architecture

We identify three degrees of specificity for the

query input, organized along the X axis: precise,

fuzzy, minimal. The degree of specificity character-

izes the division of work between how much user has

to specify versus how much the system has to auto-

matically infer and aid in accomplishing the discov-

ery goal. For the precise setting, the onus is placed on

the user to provide an exact and complete specifica-

tion of what the solution to their discovery goal must

look like; for the fuzzy setting, the user can provide

a vague specification of what the solution must look

like; and finally, for the minimal setting, the user pro-

vides a minimal specification, or leaves the character-

istics of the solution underspecified, leaving it up to

the system to “fill in” the rest. As we proceed along

the X axis, it gets harder for the system to automatically interpret what the user might have in mind as a solution

to their goal.

VIDA Input Modalities. To support the spectrum of demands imposed by the discovery settings described

above, VIDA must support a range of interactive input modalities, as displayed in Figure 2, catering to a range

of user expertise and preferences. These input modalities include:

• restricted template queries, involving selection of operators and operands from a drop-down menu; and
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VQS Discovery Goals Covered Specificity Interactions Supported

Zenvisage [18, 31] Find Patterns, Cluster/Outliers, Compare Precise Interactions (Clicking, Sketch, Drag-and-drop), Query Language

TimeSearcher [12] Find Patterns, Cluster/Outliers Precise Interactions (Clicking, Sketch)

Query-by-Sketch [36] Find Patterns Precise Interactions (Clicking, Sketch)

Scorpion [41] Explain Fuzzy Interactions (Clicking)

ShapeSearch [32] Find Patterns Fuzzy Interactions (Sketch), Natural Language, Query Language

Profiler [15] Compare Fuzzy Interactions (Clicking, Brushing-and-Linking)

SeeDB [34] Compare Minimal Interactions (Clicking)

Storyboard [17] Cluster/Outliers, Compare, Summarize Minimal Interactions (Clicking)

iDiff [27, 28] Compare, Explain Minimal Query Language

Table 1: A Sample of Visual Query Systems

• interactions, either with an existing visualization, such as brushing-and-linking or hovering, or those that

construct a new one, such as drag-and-drop or sketching; and

• natural language, via a keyword search box, dialog, or conversational interface.

Each of these inputs are compiled down into a query in a query language, called VIDA-QL. Alternatively,

expert users may directly invoke VIDA-QL queries. VIDA-QL queries will natively support the five discovery

goals and combinations thereof, e.g., summarization followed by pattern search. Another important element

is how much does a user actively requests for visualizations (“pull”) versus how much VIDA recommends

visualizations (“push”). Given that we expect VIDA to support a range of specificities, VIDA must support

both push and pull, with pull decreasing in importance and push gaining importance, as we go from the precise

to minimal setting.

Present Day Visual Query Systems. We have described VIDA so far as if no comparable capabilities exist

today. This is not the case; in Table 1, we list some examples of systems that partially provide the functionality

of VIDA, for certain settings and input modalities. We will describe some of these systems later on in the paper.

Since all of these systems allow users to query data visually, we call these systems Visual Querying Systems,

or VQSs for short. VQSs typically (i) employ objectives that are perceptually-aware, taking into account for

the fact that the results are typically consumed by a human analyst, rather than an algorithm; (ii) provide some

interactive interface or declarative capabilities to express the discovery goal as a “what” rather than a “how”;

and (iii) possess optimization capabilities to facilitate the efficient discovery of visual insights.

Outline. The rest of our paper is organized along the degree of specificity of discovery goal, and we will allude

to the specific discovery goals as well as input modalities as we go along. The degree of input specificity is the

factor that most significantly affects the architecture of VIDA, with the complexity increasing as the specificity

decreases—in that the system has to do more “guesswork” to support underspecified goals.

We begin by discussing the the precise setting (Section 2). We describe ZENVISAGE [31] as a partial solution

for this setting, and thereby a starting point for VIDA, partially eliminating the problem of having to manually

examine large numbers of visualizations for a given discovery goal, which can be error-prone and inefficient.

However, a design study using ZENVISAGE demonstrates that the precise setting is insufficient for addressing

all of the demands of real-world use-cases [18]. In particular, users do not have a clear understanding of their

querying intent without looking at example visualizations or summaries of the data, and even when they do,

their intent involves vague or high-level notions that can not be expressed clearly.

To bridge the gap between the user’s high-level intent and the system demands, we outline a set of research

challenges that goes beyond simple precise visual querying, by (a) supporting a wider class of vague or “fuzzy”

high-level queries, thereby increasing the expressiveness of VIDA (Section 3); and (b) making it easier to know

what to query by recommending visualizations that provide a high-level understanding of the data (Section 4).

Interfaces and Interactions, not Optimization. In this paper, we focus our attention on the interfaces, query

languages, and capabilities, and how to use them to capture discovery goals with varying degrees of specification,

as opposed to optimization. Indeed, once the query is issued in some form (say, translated into a VIDA-QL

query), optimization is crucial to try to traverse the space of visualizations and return results in an interactive

manner. A range of techniques may be adopted for this purpose, including parallelism, multi-query optimization,
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sampling, pruning, and pre-computation [31, 34]. We expect a similar combination of techniques to be applicable

to each of the settings that we consider. To limit the scope of this paper, we have decided to avoid describing

optimization aspects and focus on the interfaces and interactions instead.

2 The Precise Setting: Existing Visual Query Systems

While visual data exploration often reveals important anomalies or trends in the data [11, 22], it is challenging

to use visualization-at-a-time systems to repeatedly choose the right subsets of data and attributes to visualize in

order to identify desired insights. We first motivate the precise setting through a use-case from astronomy.

2.1 Motivating Example: Discovering Patterns in Astronomical Data

Astronomers from the Dark Energy Survey (DES) are interested in finding anomalous time series in order to

discover transients, i.e., objects whose brightness changes dramatically as a function of time, such as supernova

explosions or quasars [7]. When trying to find celestial objects corresponding to supernovae, with a specific

pattern of brightness over time, astronomers individually inspect the corresponding visualizations until they find

ones that match the pattern. With more than 400 million objects in their catalog, each having their own set of

time series brightness measurements, manually exploring so many visualizations is not only error-prone, but

also overwhelming. Many astronomers instead rely on guess-work or prior evidence to explore the visualiza-

tions, rather than directly “searching” for the patterns that they care about. While most astronomers do use

programming tools, such as Python and R, it is cumbersome to express each new information need via carefully

hand-optimized code. The astronomy use case highlights a common challenge in visual data exploration, where

there are often a large number of visualizations for each discovery goal, and manual exploration is impossible.

There is no systematic way to create, compare, filter, and operate on large collections of visualizations.

2.2 Ongoing Work and Research Challenges within the Precise Setting

Discovering Patterns and Anomalies/Clusters, and Performing Comparisons with ZENVISAGE. ZENVIS-

AGE is an example of a VQS that operates on large collections of visualizations. ZENVISAGE is built on top

of a visual query language called ZQL, which operates on collections of visualizations, and returns collections

of visualizations, using primitives such as visualization composition, sorting, and filtering [31]. In addition,

via user-defined functions (also provided as built-ins), ZQL can compute the distance for a visualization from

another—and this distance can be used as a building block for more complex operations, such as the first three

discovery goals listed in Table 1, i.e., finding a visualization matching a pattern, detecting an outlier or cluster

centers, or comparing visualizations with each other. Thus, ZQL operates at a level higher than languages for

specifying visual encodings of individual visualizations [33, 37]. ZQL can be used to construct a rich variety of

queries, including the following on a real-estate dataset:

• Find Patterns. Find visualizations of cities whose housing price over time is similar to Manhattan.

• Identify Anomalies. Find visualizations of cities with both an increasing housing price trend and an in-

creasing foreclosure rate trend.

• Perform Comparisons. Find visualizations for which New York and Champaign differ the most.

• Find Patterns, followed by Clusters. For cities that are similar to New York on sales price trends, find

typical trends for foreclosure rates.

While ZQL is a useful starting point, writing ZQL queries can be daunting for users who are not comfortable

with programming. Therefore, we extracted a typical workflow of visual querying for finding patterns, identify-

ing outliers and clusters, and making comparisons, and made it expressible via simple interactions. As shown
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Figure 3: ZENVISAGE offers a variety of querying modalities, including: a) uploading a sample pattern from an

external dataset as a query, b) sketching a query pattern, c) dragging-and-dropping an existing pattern from the

dataset, and d) inputting an equation as a query, from [18].

in Figure 3, the user can input their search pattern via (a) inputting a set of points, (b) a sketch, (c) dragging-

and-dropping an existing visualization, or (d) inputting an equation, and specify a space of visualizations over

which to search. The system returns a ranked list of matching visualizations, shown in the “Results” pane below

the canvas in (b), for the corresponding ZQL query. The system also provides typical trends (called “Represen-

tative Patterns”, highlighted under (c)) and outliers for additional context. The user can also switch to a tabular

interface wherein they can input ZQL queries. Users can also make comparisons between different subsets of

the data by examining visualizations of dynamically created classes in ZENVISAGE [18]. Thus, this workflow

captures one variation of the three discovery goals—finding patterns, identifying outliers/clusters, and making

comparisons.

Other Related Precise Visual Querying Systems. There has been a range of work primarily focused on

locating visualizations matching certain patterns, including the influential work on TimeSearcher [12], where

the query is specified as a box constraint, and Query-by-Sketch [36], where the query is sketched as a pattern.

This was applied to search queries within Google Correlate [21]. Recent work has also extended this to querying

using regular expressions [42], while others have analyzed the semantics of sketches [5, 19].

Limitations within the Precise Setting. The most important challenge within the precise setting is the fol-

lowing: How do we expose the entire capabilities of VIDA-QL via intuitive interactions and discoverable

modules? So far, most tools that we listed above support a restricted set of interactions, primarily focused on

finding patterns via sketches or box constraints. ZENVISAGE extends and builds on this by supporting outlier

and representative trend discovery from the front-end interface. Unfortunately, performing comparisons, deriv-

ing explanations, or summaries, is hard to do interactively. In fact, deriving explanations or summaries is hard to

do even with the full power of ZQL, since it does not support the synthesis of new information that goes beyond

simple processing of collections of visualizations. It remains to be seen if and how ZQL can be extended to

meet these capabilities. Moreover, even for sketching, it would be interesting to see if we can support analogous

pattern search mechanisms for other visualization types, such as scatterplots or heatmaps.

2.3 Limitations with the Precise Setting

Even if we could address the issues within the precise setting in the previous section, there are some fundamental

limitations with the precise setting itself that need to be addressed within a full-fledged VIDA. We discuss these

limitations in the context of a participatory design process for the development of ZENVISAGE, in collaboration

with scientists from astronomy, genetics, and material science [18].

The Problem of Interpreting Ambiguous, High-level Queries. When users interact with ZENVISAGE, they

often translate their ambiguous, high-level questions into an plan that consists of multiple interactions to incre-
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mentally address their desired query. The expressiveness of such a system comes from the multiplicative effect

of stringing together combinations of interaction sequences into a customized workflow. Designing features that

diversify potential variations expands the space of possible workflows that could be constructed during the anal-

ysis. However, even with many supported interactions, there were still vague and complex queries that could

not be decomposed into a multi-step interaction workflow. For example, ZENVISAGE was unable to support

high-level queries that involved the use of vague descriptors for matching to specific data characteristics, such as

finding patterns that are ‘flat and without noise’, or ‘exhibits irregularities’. These scenarios showcase examples

of lexical ambiguity, where the system can not map the vague term ‘irregular’ or ‘noisy’ into the appropriate

series of analysis steps required to find these patterns. In Section 3, we survey the challenges in supporting

vague and complex queries and point to some ongoing research.

The Problem of Not Knowing What to Query. Another key finding is that users often do not start their

analysis with a specific pattern in mind or a specific comparison to perform. For example, within ZENVISAGE,

many users first made use of the recommended representative trends and outlier visualizations as contextual

information to better understand their data, or to query based on these recommended visualizations. Thus, the

recommended visualizations are often used to form queries in a bottom-up manner, rather than users coming up

with a query in a top-down, prescriptive manner. Thus, there is a need for visualization recommendations [35]

that can help users jump-start their exploration. Recommendations help facilitate a smoother flow of analysis

by closing the gap between the two modalities of querying and exploration, reminiscent of the browsing and

searching behaviors on the Web [24], thus ensuring that user is never stuck or out of ideas at any point during

the analysis. Typically, visualization recommendations help accelerate the process of discovering interesting

aspects of the data by broadening exploration. In Section 4, we argue that recommendations should not just

focus on increasing breadth-wise exploration so that other views of the data are discoverable, but they should

also contribute towards helping users become more aware of the distributions and trends in the data, as well as

the broader context of their analysis.

3 The Fuzzy Setting: Towards Intelligent Visual Search

As we argued in the previous section, there are ambiguous, high-level goals (e.g., “explain this bump in this vi-

sualization”, or “find a product for which the visualization of sales over time is bumpy”) that cannot be captured

within the precise setting. We will discuss this fuzzy setting in the following section.

3.1 The Challenge of Usability-Expressiveness Tradeoff

The challenge for supporting ambiguous, high-level goals stems from the inevitable design trade-off between

query expressiveness and interface usability in interactive data exploration systems [14, 22]. This tradeoff is

observed not only in visual data exploration systems, but also true for general ad-hoc data querying. While

querying language such as SQL are highly expressive, formulating SQL queries that maps user’s high-level in-

tentions to specific query statements is challenging [14, 16]. As a result, query construction interfaces have been

developed to address this issue by enabling direct manipulation of queries through graphical representations [1],

gestural interaction [23], and tabular inputs [8, 43]. For example, form-based query builders often consist of

highly-usable interfaces that ask users for a specific set of information mapped onto a pre-defined query. How-

ever, form-based query builders are often based on query templates with limited expressiveness in their semantic

and conceptual coverage, which makes it difficult for expert users to express complex queries. The extensibility

of these systems also comes with high engineering costs, as well as potentially overwhelming users with too

many potential options to chose from. Thus, there is a need for tools that enable users to formulate rich and

complex queries, yet amenable to the fuzzy, imprecise query inputs that users might naturally formulate.
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3.2 Ongoing Work and Research Challenges within the Fuzzy Setting

Given the tradeoff between expressiveness and usability, we discuss a growing class of VQSs that targets how

to answer imprecise, fuzzy, and complex queries. In the fuzzy setting, the most important challenge is how

do we interpret fuzzy, complex queries, and allow users to understand the results and refine the analysis. This

boils down to several challenges that we will discuss in this section, including: How can we develop better

ways to resolve ambiguity by inferring the information needs and intent of users? What is the appropriate level

of feedback and interactions for query refinement? How can we develop interpretable visual metaphors that

explain how the query was interpreted and why specific query results are returned?

We organize our discussion along the types of ambiguity that may arise in interpreting fuzzy, complex

queries. Since systems targeting the fuzzy setting operate in the intermediate layer between users and VIDA-

QL as shown in Figure 2, we use the linguistic classification scheme to provide an analogy for where the

ambiguous aspects of queries may arise, noting that the use of this analogy by no means limits our analysis to

only natural language interfaces.

Lexical Ambiguity: Lexical ambiguity involves the use of vague descriptors in the input queries. Resolving

these lexical ambiguities has been a subject of research in natural language interfaces for visualization specifi-

cation2, such as DataTone [10] and Eviza [30]. These interfaces detect ambiguous quantifiers in the input query

(e.g. “Large earthquakes near California”), and then displays ambiguity widgets in the form of a widget to allow

users to specify the definition of ‘large’ in terms of magnitude and the number of miles radius for defining ‘near’.

These ambiguity widgets not only serve as a way to provide feedback to the system for lexically vague queries,

but is also a way for explaining how the system has interpreted the input queries. It remains to be seen if similar

ambiguity-resolution techniques can be applied for exploration of collections of visualizations as opposed to one

visualization at a time.

In addition to ambiguity in the filter descriptions, as we have seen in the ZENVISAGE study, there is often

also ambiguity in the terminologies used for describing query patterns. SHAPESEARCH [32] operates on top

of an internal shape query algebra to flexibly match visualization segments, such as a trendline that “first rises

and then go down”. After the translation to the internal query representation, SHAPESEARCH then performs

efficient perceptually-aware matching of visualizations. SHAPESEARCH is restricted to trendline pattern search,

without supporting the other four discovery goals. Similarly, within VIDA, we envision lexical ambiguity to

be resolved by determining the appropriate parameters to the internal VIDA-QL query for achieving the user’s

desired querying effects.

Syntactic Ambiguity: Syntactic ambiguity is related to the vagueness in specifying how the query should be

structured or ordered. For example, DataPlay introduced the idea of syntax non-locality in SQL, in which

switching from an existential (at least one) to a universal (for all) quantifier requires major structural changes to

the underlying SQL query [1]. DataPlay consists of a visual interface that allowed users to directly manipulate

the structure of the query tree into its desired specification. Within VIDA, syntactic ambiguities resolution h

involves mapping portions of the vague queries into to a series of multi-step workflows to be executed in VIDA-

QL and exposing feedback frameworks to allow users to directly tweak the internal query representation.

Semantic Ambiguity: Semantic ambiguity includes addressing ‘why’ questions that are logically difficult to

answer, such as ‘why do these datapoints look different from others?’. For example, Scorpion [41] visually

traces the provenance of a set of input data tuples to find predicates that explain the outlier behavior; it remains

to be seen if this work, along with others on causality, e.g., [20, 26], can be exposed via front-end interactions

or natural language queries. Semantic ambiguity can also arises when the user does not specify their intent

completely or explicitly, which is often the case in early stages of visual data exploration. Evizeon [13], another

natural language interface for visualization specification, makes use of anaphoric references to fill in incomplete

follow-on queries. For example, when a user says ‘Show me average price by neighborhood’, then ‘by home

2These are not VQSs, since they do not operate on collections of visualizations, rather, they expect one visualization to be the result

for a query. Thus, they act as a natural language interface for visualization-at-a-time systems.
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type’, the system interprets the anaphoric reference as continuing the context of the original utterance related to

average price on the y-axis. Semantic ambiguity can often be composed of one or more lexical and syntactical

ambiguities. For example, in Iris [9], a dialog system for data science, users can specify a vague, high-level

query such as ‘Create a classifier’, then Iris makes use of nested conversations to inquire about what type of

classifiers and features to use for the model, to fill in the details of the structure and parameters required.

4 The Minimal Setting: Towards Recommendations for Data Understanding

While our focus in the previous sections have been on intent-driven queries, where users have some knowledge

of the types of visual queries they may be interested in, one of the key goals of visual data exploration is to

promote a better understanding of the dataset to enable users to make actionable decisions. Within the minimal

setting, we target systems that help users become more aware of their dataset and visualize where they are in

their analysis workflow with minimal required user input. This can often be useful when there is an absence of

explicit signals from the user, such as when a user is at the beginning of their analysis (commonly known as

the ‘cold-start’ problem) or when the user does not know what to query for. We will first describe SEEDB and

STORYBOARD as examples of visual query systems that suggest informative data views for jumpstarting further

analysis. Then, we will discuss the importance of contextual awareness during dynamic visual data exploration

to highlight the challenges and opportunities ahead in this space.

SEEDB: Exploring Multi-variate Data Dimensions Through Interesting Visualization Recommendations.

Identifying interesting trends in high-dimensional datasets is often challenging due to the large combination of

possible X,Y axes for the generated visualizations. To perform this task, users need to manually create, examine,

and compare relationships between these multi-variate visualizations to discover interesting insights.

Within SEEDB [34], a user can specify a subset of data that they would be interested in exploring. Then,

SEEDB searches for visualizations (i.e., specific combinations of X and Y axes) that show how this subset

differs from the rest of the data, and are therefore interesting, and provides these recommendations within a

side panel in the visual exploration interface. The evaluation user study showed that SEEDB-recommended

visualizations are three times more likely to be interesting compared to manually constructed visualizations and

provide an effective starting point for further analysis. Profiler [15] provides similar recommendations targeting

the identification of anomalies in data.

STORYBOARD: Promoting Distribution Awareness of Data Subsets with Summary of Visualizations.

Whereas SEEDB looks at the space of possible X and Y axes for a given data subset, our recent system STO-

RYBOARD explores the space of possible subsets (or subpopulations) of data, for fixed X and Y axes. Common

analytics tasks, such as causal inference, feature selection, and outlier detection, require understanding the dis-

tributions and patterns present in the visualizations at differing levels of data granularity [3, 11, 41]. However, it

is often hard to know what subset of data contains an insightful distribution to examine. In order to explore dif-

ferent data subsets, a user would first have to construct visualizations corresponding to all possible data subsets,

and then navigate through this large space of visualizations to draw meaningful insights.

STORYBOARD is an interactive visualization summarization system that automatically selects a set of visu-

alizations to characterize and summarize the diversity of distributions within the dataset [17]. Figure 4 illustrates

an example dashboard generated by STORYBOARD from the Police Stop Dataset [25], which contains records

of police stops that resulted in a warning, ticket, or an arrest. STORYBOARD was asked to generate a dashboard

of 9 visualizations with x-axis as the stop outcome and y-axis as the percentage of police stops that led to this

outcome. First, at the top of our dashboard, STORYBOARD highlights three key data subsets that result in a high

arrest rate, which looks very different than the overall distribution at the root node (where the majority of stops

results in tickets). Following along the leftmost branch, we learn that even though in general when a search is

conducted, the arrest rate is almost as high as ticketing rate, when we look at the Asian population, whether a

search is conducted had less influence on the arrest rate and the trend more resembles the overall distribution.
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STORYBOARD makes use of a context-dependent objective to search for visualizations within the data subset

lattice for which even the informative parents—i.e., the parent visualization within the data subset lattice that is

closest to the present visualization—fail to accurately predict or explain the visualization.

Figure 4: Example dashboard generated by STORYBOARD summarizing the

key insights in the Police dataset.

The effectiveness of STORY-

BOARD largely comes from how

the summary visualizations help

users become more distribution-

ally aware of the dataset. We

define distribution awareness as

the aspect of data understand-

ing in which users make sense

of the key distributions across

different data subsets and their

relationships in the context of

the dataset. With distribution

awareness, even though it may

be infeasible for an user to ex-

amine all possible data subsets,

the user will still be able to draw

meaningful insights and estab-

lish correlations about related

visualizations by generalizing their understanding based on the limited number of visualizations presented in the

dashboard. Our evaluation study shows that facilitating distribution awareness through STORYBOARD guides

users to make better predictions regarding unseen visualizations, ranking attribute importance, and retrieval of

interesting visualizations compared to dashboards generated from the baselines.

4.1 Research Challenges within the Minimal Setting: Distributional to Contextual Awareness

The main research challenge that we aim to address in the minimal setting is the following: How can contextual

information be used to help facilitate better understanding, and guide users towards more informative next steps

in their analysis? The notion of distribution awareness is useful when considering the scenario at one static point

in time of the analysis, such as during cold-start. In this section, we introduce a complementary notion of data

understanding called contextual awareness, which is essential when considering a dynamic analytic workflow

for visual data exploration.

Contextual awareness is the aspect of data understanding related to the situation (what is the information that

I’m currently looking at and how did it come about?) and history (what have I explored in the past and where

should I look next?) of exploration. Situational understanding involves recognizing what data is in the current

scope of analysis, including making sense of the data attributes and schema and keeping track of what filters or

transformations have been applied to the displayed data. Historical understanding is associated with the user’s

past analysis actions on the data. As an example, a user may be interested in how the sales price of a product

changes as a function of other dimensions variables, such as geographic location, year sold, and product type.

Situational information informs them that they are looking at a bar chart with X=TYPE, Y=AVG(PRICE),

whereas historical information points to the fact that they should explore the geographic dimension, since they

have already explored the temporal attribute YEAR.

While the problem of data provenance has been well studied in database literature [4, 6, 40], the effects of

showing provenance information to users during data analysis is an important but underexplored area. Moreover,

within a dataset, history is essential in helping users navigate through the space of possible analysis actions

and provide users with sense of coverage and completion. The notion of adding navigational cues to guide
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exploration in visual information spaces was first proposed in Willet et al.’s work on scented widgets [38]. In

Pirolli and Card’s theory of information foraging, scents are cues that signifies the perceived benefit that one

would receive during a search. Scented widgets adds to existing search interfaces by embedding visualizations

that provide informational scents, such as histogram distributions of how popular a particular value is among

users or using color to encode the size of a dataset in a drop-down menu. Recently, Sarvghad et al. have extended

the idea of scented widgets to incorporate dimension coverage information during data exploration, including

which dimensions have been explored so far, in what frequency, and in which combinations [29]. Their study

shows that visualizing dimension coverage leads to increased number of questions formulated, findings, and

broader exploration. Interpretable and non-disruptive cues that enables users to visualize provenance and history

help sustain contextual awareness and guide users towards more informative next steps in their analysis.

Mechanisms that facilitate distribution awareness for users can effectively couple with contextual awareness

in dynamic exploration situations to help update the user’s mental model on the current data context. For

example, the representative and outlier patterns in ZENVISAGE provides summaries of data in context. When a

dataset is filtered, the representative trends are updated accordingly. By being aware of both the context and the

distributions, the users becomes distributionally aware of how the typical patterns and trends of the distributions

changes in a particular context.

We envision that by incorporating contextual information along with improving the recommendation (‘pull’)

aspects of the VIDA-QL discovery modules, VIDA will be well-equipped with the necessary information for

making ‘active’ recommendations. Contrary to ‘static’ recommendations in STORYBOARD and SEEDB, where

users need to submit some minimal required information to explicitly request for recommendations and the

system performs only one type of recommendation, these next-generation systems actively seek for opportunities

to provide appropriate recommendations that would be useful to the user at the specific stage of analysis by

intelligently adapting the modes of recommendation to the context of user’s analysis. This shift from static

to active recommendation is analogical to the shift from precise to fuzzy querying in Section 3, where the

onus is more on the system to ‘guess’ at the users intent. In active recommendations, instead of providing

minimal information to request recommendation, the system will automatically infer implicit signals through

other modalities of interaction. VIDA can make use of this information to make better recommendations that

can guide users towards meaningful stories and insights for further investigation.

5 Concluding Remarks

Data is inherently agnostic to the diverse information needs that any particular user may have. Visual data ex-

ploration systems can help bridge the gap between what users want to get from the data through querying and

what insights the data has to offer through recommendations. To facilitate a more productive collaboration,

in this paper, we outline our vision for VIDA, motivated by related work from precise visual querying of in-

formative visualizations to accelerate the process of data discovery; to interpreting ambiguous and high-level

queries through query refinement feedback; to recommendations that promote better distributional and contex-

tual awareness for users. We hope that the agenda sketched out in this paper sheds light on the many more

exciting research questions and opportunities to come in this nascent field.
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