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ABSTRACT

This paper presents a method for describing the characteris-
tics of human musical performance. We consider the prob-
lem of building models that express the ways in which devi-
ations from a strict interpretations of the score occurs in the
performance, and that cluster these deviations automatically.
The clustering process is performed using expressive rep-
resentations unambiguously notated on the musical score,
without any arbitrariness by the human observer. The result
of clustering is obtained as hierarchical tree structures for
each deviational factor that occurred during the operation of
the instrument. This structure represents an approximation
of the performer’s interpretation with information notated
on the score they used during the performance.

This model represents the conditions that generate the
difference in the fluctuation of performance expression and
the amounts of deviational factors directly from the data
of real performance. Through validations of applying the
method to the data measured from real performances, we
show that the use of information regarding expressive repre-
sentation on the musical score enables the efficient estima-
tion of generative-model for the musical performance.

1. INTRODUCTION

The idea of having a computer perform like human musician
arose more than two decades ago. There have been various
proposals for making a computer understand the rich expres-
sion of a performance [2]. Historically, the mainstream ap-
proach to capturing the nuances of performance has changed
from rule-based methods to learning-based methods. One
model that shows the effectiveness of the latter approach
is represented by the generative model. Also, there is an-
other motivation for this kind of research, that is, learning
what makes a performance humanlike; however, there are
few initiatives based on such questions. One approach to
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analyze performance statistically, by capturing the trends of
the performance in the acoustic features, has already been
attempted [3, 8, 10, 11]. These studies are admirable in that
their verification used a large quantity of expressive perfor-
mance; we also essentially agree that it is desirable to per-
form the verification with such an approach. However, it
is difficult to observe the expressiveness of a performance
from diverse perspectives by these approaches as expres-
siveness consists of various factors. We adopt a MIDI-based
approach to simplify such problems, and consider a variety
of expressive representations notated on the musical score as
the factor that describes how the expressive performance has
been generated. In addition, our method to capture the per-
formance is based on the idea of a generative model. There-
fore, our method has the potential to generate an unseen per-
formance, not merely to analyze an already known one.

In the following sections, we propose a method for the
automatic analysis of the characteristics of a performance
based on various combinations of expressive representations.
Also, we observe what kinds of representation constitute the
human quality of the performance by apply them to the data
measured from the real performance to evaluate the validity
of this method.

2. METHOD
In this section, we propose a method for the automatic clas-
sification of trends of the deviations in performance, so as to
describe the dependencies between score and performance.
On the keyboard instrument, a performer’s key operation,
in terms of timing and intensity, causes deviations from the
score for the purpose of artistic expression. We believe that
the performer’s individuality would occur in the differences
in the trend of deviations. The occurrence tendencies of
these deviations in the performance are not constant, as they
are affected by various factors such as the differences in mu-
sical compositions. To capture the characteristics of indi-
viduals who performed only in terms of deviation from the
average trend in the overall performance is difficult; there-
fore, it is necessary to handle deviations in each key action,
specifically and in general. Using this awareness, we have
been studying a method that regards the trends in the de-
viation as a stochastic model and acquire these trends via
learning and instructions on the score.
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Figure 1. Extraction of deviational factors
2.1 Context-dependent model

If the performance seems to be personalized, it is considered
that the resultant personality is caused by biases in the trends
of performance. The trend of deviation is observed as a dis-
tribution with some focus, according to deviations for each
note extracted from each note o observed from the measured
performance and the corresponding score (see Figure 1). We
can think of the model as a Gaussian probability density
function (PDF) so as to approximate the behavior of devi-
ations; this model is able to cope with complex behaviors
according to the Gaussian mixture model (GMM) approach.
The PDF N of the observation vector o is defined by
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where o is observed with D deviational factors, og4 is the
dth dimension for observation vector o, m is the mixture in-
dex of the M Gaussian component densities, g is the mean
vector, and o is the diagonal covariance matrix.

However, the cause of the deviating behavior is not con-
sidered in this model. The performance of musical instru-
ments consists of playing the sequences of notes according
to the score. Therefore, it is obvious that the qualities of
each note have some musical significance. As a general ex-
ample, we consider performing two notes with different rep-
resentations in terms of dynamics. In this case, the amount
of deviation between them may be differ not only in the dy-
namics, but also in the timing, because of their expressive
representations. Also, the extent to which the performer de-
viates from the average for the note with the representation
is considered to be under the influence of some individual-
ity. In the past, there were several studies that attempted to
estimate the performers’ characteristics by referring to the
amount of deviation in timing and dynamics [5-7]. How-
ever, it is also necessary to consider what kind of representa-
tion leads to such behavior, using some musical knowledge
that supersedes the mixture in the GMM.

Several factors complicate the process of occurrence. We
make the following considerations to organize this subject:
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Figure 2. Extraction of contextual factors

e The performer obtains information from the musical
score, and then creates his/her own interpretation us-
ing that information, thus introducing deviations into
the performance.

e The trend of deviations occurring is also influenced by
unintentional factors such as the performer’s physical
limitations.

We believe that the latter factor is not necessary, because it is
considered likely based on relatively simple arguments, and
the progress of performance technology is a means to reduce
the interference of factors, such as unintentional representa-
tions. Additionally, factors (such as the former) influence
the occurrence of this deviation, which is considered signif-
icant because it is intended to expand the range of expres-
sion in accordance with technological progress. However,
criteria tend to be abstract and difficult to qualify, even for
the performers themselves. Therefore, we do not directly
address the interpretation of the music itself. Instead, we
associate the trends in the deviation with the expressive rep-
resentations, which affects the performer’s musical interpre-
tation.

All the information used here is in the form of unambigu-
ous values that are available in the score, such as pitch, note
value, dynamics, and so on, because we want to eliminate
any undefined properties throughout the process. There is
also the musical phrase to consider, which has some rela-
tionship that holds among surrounding notes. We introduce
them under the term “context.” Models in which context is
applied are called “context-dependent,” because they con-
struct a kind of context that contributes to the interpretation.
The parameters of the model are the same as the model men-
tioned above; however, each model has its own combination
of contexts that is dealt with individually (see Figure 2). The
description of the behavior for each model can be simplified
because it is defined by a number of combinations. There-
fore, each model is trained using a single Gaussian compo-
nent density, as shown in Equation (1) .

2.2 Tree-based clustering

The purpose of introducing context is to associate a per-
former’s interpretation of the musical composition with the
deviations in the performance. A more detailed representa-
tion of the information obtained from the score has to con-
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Figure 3. Example of a decision tree

sider a variety of contexts. However, with increasing use of
contexts, the quantity of combinations of contexts increases
exponentially. This effect is detrimental to model training,
because the training data for each model will be significantly
reduced. On the other hand, fragmented information has lit-
tle meaning by itself. Therefore, it is necessary to classify
a large number of combinations of contexts at a scale that
matches the performer’s significant interpretation. How-
ever, it is beyond human power to decide appropriate cri-
teria for each case of classification. To address these issues,
a method is necessary to reconstruct and decompose models
efficiently, and to capture the varied expressive representa-
tions obtained from the score. We use tree-based cluster-
ing [4] to classify the context-dependent models.

Tree-based clustering divides all possible combinations
of context-dependent model into a countable number of clus-
ters. As a result, a decision tree (a binary tree in which
a question is attached to each node) is obtained. In this
method, each of the questions relates to the contextual fac-
tors for the preceding, current, and succeeding note. One
tree is constructed for each deviational factor so as to cluster
all of the corresponding behaviors of all context-dependent
models. This is done because there are different trends of
behavior for each deviational factor. All context-dependent
models in the decision tree are divided into M nodes by
clusters Sq, - -+, Sas, such that one model U(Sy,---,Sy)
is defined for each leaf node. For example, the tree shown in
Figure 3 will partition its behaviors into eight subsets with
the same number of leaf nodes. The questions and topology
of the tree are chosen so as to maximize the likelihood of the
training data, given these tied behaviors, by estimating the
parameters of a Gaussian PDF. Once these trees have been
constructed, data with unseen contexts can be classified in
any leaf node by tracing the questions in the tree.

Initially, all the context-dependent models to be clustered
are placed at the root node of the tree. The log likelihood
of the training data is calculated, supposing that all of the
models in that node are tied. Then, this node is divided into
two by finding a question that divides the model in the par-
ent node such that the log likelihood (maximally) increases.
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The log likelihood L for node .Sy, is given by

L(Sn) = @

where I'), is the amount of data for training at node .S,,
This process is then repeated by dividing the node in a way
that creates the maximum increase of log likelihood until
the minimum description length (MDL) criterion [9] is met.
This step is carried out to optimize the number of clusters
without using external control parameters. In order to opti-
mize the size of the tree, we use an algorithm with a prag-
matic cost of computation. Here, let us assume that node
S, of model U divides into two nodes, Sp,q+ and Sy,q—,
by answering question ¢. Then, let A,,,(q) be the difference
between the description length after division and before di-
vision, thatis [(U’) —(U). The description length of model
U’ is represented by the following equation:
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where W = 211-\,1/[:1 T',,, and C is the length of code re-
quired to choose a model (assumed here to be a constant
value). The number of nodes in U’ is M + 1, T';,44 is the
occupancy count for node Sy,q+, and I'y,4— is that of node
Smq—- The difference A, (¢) is given by
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When dividing models, we first determine the question
¢’ that minimizes Ao, and that is used at root node Sp.
If Ag(q") < 0, node Sy is divided into two nodes, Sq+
and S,_, and the same procedure is repeated for each of
these two nodes. This process of dividing nodes is car-
ried out until there are no nodes remaining to be divided.
If Ag(q") > 0, then no dividing is executed.

3. EXPERIMENTS

In this section, we apply the method mentioned above to
the real-measured performance data to verify its efficacy of
using expressive representations from the musical score as
priori information. This information is applied to the issue
of classifying the trends of the deviational behavior during
the musical performance.
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3.1 Data of real-measured expressive performance

Experiments in this paper use expressive performance data
from a database ( [1] and original data we collected). These
contain information of musical expression on experts’ ex-
pressive piano solo performances of classical Western mu-
sical compositions. The data of performance used in the
experiments are as follows:

e performers

PA V. D. Ashkenazy

PG G. H. Gould

PP M. J. Pires

PR S.T. Richter

PX Five anonymous semi-professional performers

e referred scores

SBI J. S. Bach: ”Two part Inventions BWV 772—
786,” Henle Verlag, pp. 2-31.

SBW J. S. Bach: ”The Well-Tempered Clavier
BWYV 846,” Wiener Urtext Edition, pp. 2-3.

SCN F. F. Chopin: ”Nocturne No. 10,”
Paderewski Edition, pp. 54-55.

SM3 W. A. Mozart: ”Sonata K. 331, the First move-
ment,” Wiener Urtext Edition, pp. 18-27.

SM5 W. A. Mozart: ”Sonata K. 545, the First move-
ment,” Henle Verlag, pp. 266-269.

The actual performances also include notes do not corre-
spond to the score. The current form of our method excludes
these notes from the data used to train the model.

3.2 Design of models

The values of deviations and contexts are extracted by com-
paring the performance and the score, as shown in Figure 1
and Figure 2. The five factors in which there could be devi-
ation (shown below) are extracted for each note; therefore,
the dimensionality D = 5 in Equation (1).

e Factors that depend on the note:

onset Timing when striking the key. The amount of
deviation is represented relative to a beat. If the
performed note is struck one half beat faster, the
deviation of onset is —0.5.

offset Timing when releasing the key, represented in
the same way as the deviation of onset.

gate time The quotient of the time taken to depress
the key in the performance divided by its length
on the score. If both are exactly the same, the
deviation of gate time is 1.

dynamics Strength when striking the key, obtained
in the same way as the deviation of gate time.

e Factor that depends on the beat:

tempo Temporal change of BPM (current beat/average).

The contextual factors attached to context-dependent model

are shown below. They are used for question to construct
decision trees. In this experiment, the total number of ques-
tions used amounted to more than two thousands.
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o Extracted for {preceding, current, succeeding} notes:

syllable Interval name of the note and the tonic, i.e.,
minor third, perfect fifth, etc.

step One of the twelve note names, from C to B.
accidental Existence and type of accidental.
octave Rough pitch of the note.
chord Whether the note belongs to any chord.
type Note value of the note.

staff Clef and stage on the great staff the note is writ-
ten in.

beam Type of the note’s beams, i.e., begin, continue,
end, etc.

local The note’s position on the beat in the bar, rep-
resented as a percentage.

e Extracted for current note only:

global The note’s position in elapsed time in the mu-
sical composition, represented as a percentage.

voice Voice part of the note, defined by the author of
the database.

notations Noted signs for the note, such as dynam-
ics, intonation, etc.

3.3 Efficacy of tree-based clustering

The tree-based clustering itself is an existing method; how-
ever, the effect of applying this method to a musical per-
formance is unknown. Therefore, it is necessary to deter-
mine whether changes in generative efficiency can be seen
in the bottom-up clustered model without additional infor-
mation. To achieve concrete results, we tried to identify the
performer from the performance data using the models. The
data sets used in this case were SBI and SM3, both of which
were performed by PX. The models were trained with the
data of the compositions, which amounted to approximately
one quarter of the data set. The tests used each datum of the
remaining compositions in the same set; the percentage of
the right choices for the performer by the trained model was
calculated (called the rate of identification). Evaluation of
resistance to the unseen data was also carried out using this
test, as all models were tested with data that is not used to
train the models. We differentiate these methods:

Tree-based clustering The model using the proposed method.

Bottom-up clustering The model trained by GMM with
the same number of mixtures M as the leaves in the
trees generated by tree-based clustering, and using the
same data set that is used to train the models.

The result is shown in Figure 4, and the ratio of accu-
racy to the average of 20 ordinary human listeners for each
method is also indicated in parentheses. This is a severe con-
dition, and the most human listeners cannot tell the differ-
ence. However, proposed method can determine such subtle
difference with high precision, because the ratio of Tree-
based is about 232% for human listeners. Furthermore, the
ratio of Tree-based for Bottom-up is about 111%. There-
fore, it is confirmed that the accuracy can be improved upon
to generate models that can respond to unseen data by using
the clustering with the information from the score.
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Figure 4. Results of identification test

3.4 Observation of decision trees

Next, we observe the decision trees obtained from the per-
formance data to verify the kind of questions that divide the
models and the statistical attributes of each model. The set
of training data used here was SCN, performed by PA. Ex-
amples of the portion of the trees near the root are shown in
Figure 5. Each node has the content of the question, each
leaf gives the average deviation, and the number of models
involved in each leaf is indicated by an arrow.

The trees of deviational factors belong to the timing (on-
set, offset, and gate time) have affinities in the kind of ques-
tions. The tree of dynamics also has the sequence of ques-
tions with the same contexts as the factors mentioned above;
however, the kind of question on the root node is not seen.
Although they have certain unique points, they have a simi-
lar structure. On the other hand, the tree of tempo has very
different trends, both in terms of structure and questions.

Is local of precedingNote
later than 71%?
no

9.314e-01 1.128e+00

(e) tempo for SCN by PA

(d) dynamics for SCN by PA
Figure 5. Examples of structural and statistical differences in tree-structures for each deviational factor

3.5 Contribution of contextual factors to decision trees

Due to the limitations of the available data, a more efficient
analysis is needed to understand the trends of these fac-
tors. We therefore investigated the frequency of any ques-
tion to find the degree of contribution to the trend of de-
viation caused by each contextual factor. The contribution
C for contextual factor ) in a tree with M leaf nodes is
counted by

M N,
Cq mz__l (Na” x RQ> , )
where IV, is the number of context-dependent models shared
by the mth leaf node, and R is the number of nodes related

to @ in the path from the root node to the mth leaf node. The

training data used here was SBW-by-{PG, and PR}, SCN-

by-{PA, and PP}, and SM5-by-{PG, and PP}. The results

for each composition are shown in Figure 6; we propose that

these results show the priorities of performers’ criterion to

differentiate the behavior in the performance.

The trend of contextual factors that make a large contri-
bution is the same in all compositions (e.g., step, octave,
type, local, and syllable). We consider the essential part of
the trees’ construction to depend upon the selection order
of these factors. On the other hand, the difference between
offset and gate time is small, as mentioned above; however,
these result shows some differences (for example, they are
found in step, octave, and type). There is a possibility to
reveal the diverging points of the deviations with expressive
representations by observing more detailed classifications.
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Figure 6. Frequencies of contextual factors for each composition

4. CONCLUSIONS

In this paper, we presented a method for describing the char-
acteristics of human musical performance. The experimen-
tal results of performer identification showed the use of the
expressive representations from the musical score enables
the efficient acquisition of the model of the performance.
The results also showed that the proposed model can cap-
ture the characteristics of the performance from any subtle
differences that cannot be found by most human listeners.
Therefore, the efficacy of using expressive representations
from the musical score to describe the characteristics of the
musical performance was shown. This method can auto-
matically learn the knowledge necessary to describe the tree
structure of the model directly from the data of the perfor-

[10]

[11]
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mance. We believe that the availability of such objective
elements from the proposed model is effective for the anal-
ysis of the performance. In the future, we will make compar-
isons based on more common and more extensive examples,
in addition to attempting to improve the modeling method.
Furthermore, this method can be applied to generate unseen
performances. We are also making efforts in that direction.
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