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ABSTRACT
A method is presented for the recovery of the three-
dimensional translation of a rigidly translating object.

The novelty of the method consists of the fact that four
cameras are used in order to avoid point correspondences.
The method is immune to low levels of noise and has
good behavior when the noise increases.

1. Introduction

The potential of motion estimation in such applica-
tions as image coding, tracking and robot vision has long
been appreciated and demonstrated. Up to now there
have been three approaches to the solution of this prob-
lem:

(1) The first method assumes the dynamic image to be a
three dimensional function of two spatial arguments
and a temporal argument. Then, if this function is
locally well behaved and its spatiotemporal gradients
are computable, the image velocity or optical flow
may be computed [I].

(2) The second method considers the cases where the
motion is "large" and the previous technique is not
applicable. In these instances the measurement tech-
nique relies upon isolating and tracking highlights or
feature points in the image through time[2],

(3) In the third method, the three-dimensional motion
parameters are directly computed from the spatial
and temporal derivatives of the image intensity func-
tion. In other words, if / is the intensity function
and (u,v) the optic flow at a point, then the equation
v + f,v + f; = 0 holds approximately [6,9].

As the problem has been formulated over the years one
camera is used, and so the three-dimensional motion
parameters that have to be and can be computed are five
in number (two for the direction of translation and three
for the rotation). In our approach, four cameras are used
to recover the three translation parameters, instead of
only the direction of translation.

2. Motivation and previous work

The basic motivation for this research is the fact
that optical flow (or discrete displacements) fields pro-
duced from real images by existing techniques are cor-
rupted by noise and are partially incorrect [5]. Most of
the algorithms in the literature that use the retinal
motion field to recover three-dimensional motion fail
when the input (retinal motion) is noisy.

Some researchers have developed sets of nonlinear
equations[7] with the three dimensional motion parame-
ters as unknowns, which are solved by iteration and ini-
tial guessing. These methods are very sensitive to noise.
Others, developed linear equations[8], but the sensitivity
did not improve.

Several other authors use the optic flow field and its
first and second spatial derivatives at corresponding
points to obtain the motion parameters. But these deriva-
tives seem to be unreliable in the presence of noise, and
there is no known algorithm that can determine them
reliably in real images.

Even if we had some way however to compute reti-
nal motion in a reasonable fashion, with at most an error
of 10% for example, all the algorithms proposed to date
that use retinal motion as input (and one camera) would
still produce non-robust results.

So, a natural question arises: is it possible to recover
three dimensional motion from images without having to
go through the very difficult correspondence problem?
And if such a thing is possible, how immune to noise will
the algorithm be? In this paper, as in [3, 9] we prove that
if we combine stereo and motion in a certain way and we
avoid any static or dynamic correspondence by using four
cameras, then we can compute the three dimensional
translation of a moving object.

3. Technical prerequisites

Consider a coordinate system OXYZ fxed with
respect to the camera, where O is the noda! point of the
eye and the image plane is perpendicular to the Z axis,
that is, pointing along the optical axla. Let us represent
points on the image plane with small letters {z,y) and
points in the world with capital letters (X,Y,Z). Let a
point P == (X,,Y,Z,} in the world have perspective
. 1 Yy |
image (z;,¥,), where z; = 5 and ¥, = 5 with f

1 1
the focal length (see Figure 1).
If the point P moves (iranslates) to P'= (X,,Y4Z5)
with
X2=X1+AX Y2=Y1+AY 22=21+AZ
where (AX,AY,AZ) is the three dimensional transla-

tional translation, and P' has the perspective image
(#4:¥2), then it can be easily shown that

_ AX - 11AZ fﬁY‘ .ylAZ
TR E T Y AZ V-V < TFTI Az
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4. The model

Let OXYZ be n Cartesian coordinste system, fixed
with the Z-axis pointing along the optical axis, and con-
sider the Image plane plane Im, perpendicular to the Z-
axis at & point (0,0.f) (focal length==f). This is obviously
the model of & camera, Furthermore, consider three more
cameras with image planes Img, Im, , Im, with nodsl
points {6z ,0,0),(és , 6y ,0), and (0,8y,0)
respectively (see Figure 2).

{0. dy.0) /’

— !—4—-’)’“&
w.u.u/m/l
| — )M‘n

dx.0,0) /]
— r—-»)m
X

Figure 3 The Imagmg (Four-Eye) System

{dr, dy. 0

l‘—!

On each of the image planes a coordinate system is
defined exactly as it was done for Im,. From now on,
coordinates of three dimensional points will be denoted
by (X,Y,Z), while coordinates of points in each of the
images will be denoted by
(21 91 =2, ¥2 J{5g 93 Wz4 s ¥4 ), respectively. Coor-
dinates of image points in the second dynamie frame (j.e.
projections of three-dimensional points after the motion)
will be denoted by the same symbols as before the
motion, but primed (i.e. (z’,, ¥')), ete.). Consider a set
Aw={(X;,Y,,2;): =1,.,n} of points in the world,
which translates rigidly along the vector (AX,AY,AZ)
toform a newset A'= {(X", , Y, , 2, ):iml.n},
where X', = X, + AX, Y, m Y; + AY  and
2l = Z; + AZ, for i == 1,..n.

Let the projections of the set A on the four image
planes be (s 1y Jim=1,.n},
{(z2; w9; )i§ == 1,um }, {{zai w3 )i = 1m },
{(z4 s¥4s ) = L..,n }, respectively, and the projec-
tions of the oset A’ be {(3'“ ,ﬂ"“ ), t o= | P ) },

316  PERCEPTION

{(='ai w's; J¥ = Len 3, {(2' 3"} = 1n }
f(2'0 o¥'s; Wi = 1.0 } respectively (see Figure 3).

Tvm ]
oy
1Illl| L
————
dr

Rgurs § Orthographic Projection of the Systam on the Mane YZ

We now prove the following propositions.

Proposition 1: Using the aforementioned nomenclature,
the quantity

LI |
l"z-;lzl'

Is directly computabie from the projections of the polats
of the set A on Im, and Im,.

Proof: Consider & point P = (X, , Yi.Z;}) €A and
its projections P, = (z,, , ¥1i) and Py = (25, , y,,) on
Im,; and Im, respectively. Then

1 Ty — Ty
7= _'}.15.‘5_1 (4.1.1}
1
Therefore,
B =S - 3 an) ged
— e 2 - 2.} ged
i1 g f's"'u-lh |--12
n
Corollary 1: The quantity '21% is also directly com-
{ == 1

putable from the projections of the set A4' on Im; and

Im,.

Propesition 3¢ The quantity é -%3-
R i

putable from the projections of 4 on Im, and Im,.

Prool: From equation {4.1.1) we have

Is directly com-

é Vii%ai)

LR 1

LA T 1 A

——— il ———— -z o
igl zl f&x(‘gl,h 1]
But corresponding points in Im; and Imy have the same ¥
coordinates, and so

i);l% = ?i';(ii:lﬂh':]i - ’_Z::lhszm‘) {4.3.1)

Equation (4.3.1) proves Proposition 2.

Proposition 3: The quantity Z.) -{ZL’ is directly com-
I - 4
putsble from the projectiona of t.ll:e set
Im,.
Proof: Similar to proposition 2.
5. Recovering three dimensional
without correspondence
Consider the projections of the sets A and A’ on
Im,. From Section 3 we have
JAX -z, A2
Zz i,-

A on Im; and

translation

2l -z - (5-1)



faY -y,,A2
yfl: ¥y = _ZTI-—_- {5°2)
If we write equation (5.1) for slt pairs of corresponding
points and we sum up these equations, we get
L] L] . 1 i ’l.

B X TR e R
Assuming that the motion in depth is amall with respect
to the depth, (5.3) can be approximated by

= u - 1 LIS o1

g‘glx'll - .'gazh = AXU.'E.:;'E'T) -AZ | ‘gl—z—" ) {5.4)
Similarly, with equation (5.2) we obtain

L] L] L L) ’l
fgl!'u - .glfl{ -4t | {EIZL;' )~ azZ | ‘giz“ ) (5.5}

If we apply the same procedure for the projectiona of the
sets 4 and 4’ on Im, we get two more equations. One of
them is the same as (5.5) and the other Is

S i - Ban = AX (ST )- AZ (D) (56)
RIALIR z, z, ™
Equations (5.4) through (5.6} constitute a linear system in
the unknowns AX, AY, AZ (we will call this system T
from now on ) which aiways has a unique solution, given
by

fIE #y, - i]l"h]"{ Yo E-:‘l-)

- i ]

. QLTS T 1Y 67
Lo Lo
irtlr‘f}zll'*_‘z[i%]
K—_:r:l l——-!.nl 1=1%s (5.8)
RN
D - B + B2 (5 )
-ﬂmlnl ld‘—lﬂl P=1%* {59]
IE'E*

Note that the denominators in the expressions [(5.7)
through (5.9) are always different from zero (for

6z by 5£0).
We now proceed with an error analysis and imple-
mentation issues.

8. Theoretical error analysis

8.1. Error due to assumptions in the development
ol the constraints

Equation (5.3) is exact, but equation (5.4), used in
the subsequent analysis, is an approximation of equation
(5.3). It seems that the approximation used is

Z',- = Zl'

But this is not the case, as we show in the sequel. Let
the three-dimensiona! points be

(XY Zjy, 8 = 1., then
X, J(X; + AX)

| R dz =
Ty A and I, Z‘-f-AZ

2-1‘3'“""]!') =‘f_é (’z:f—'ai“;:]*“fﬁxz—l"

V- 1] z’f

gives

X | AZ b
Zyaz*z Utz ) o

X X 2
! : lu—é£+0{(-‘-s'z—z))giuing

But we can write

z,-+az=“2,_{ Z,

E (=% -2 ) =!AXE.:

Z;
A

1 = zll -2
z—,‘--Azlgl Z, +0[d }

where d = min (
]

A similar analysis can be carried out for the compu-
tation of

L] ]
2 y’ll' = E ¥1
P =1 =1
The above equation (which is exact) becomes equation
(5.4) (which is used in the algorithm) neglecting O( d-2 )
terms, bence the accuracy o{ the algorithm depends on

the assumptions that ( —%E— ) is negligible.
;

6.2. Error due to small perturbation of the
points
It is observed that when random noise is added to

the image points, the equations remain consistent 4]
(details omitted due to lack of space.}

8.3. Error due to the addition and deletion of ran-
dom noise points

Unlike random perturbation of points, throwing in
points at random makes the estimators based on the
image points inconsistent(4]. However, from actual experi-
ments it is observed that the effect of this error is not

significant if we consider & window around the object of
interest.

8.4. Stabllity of the solutfon of the linear system &

From our analysisf4], the necessary and sufficient
condition for the system not to be critically ili-
conditioned ( and therefore for ite solution to be stable) is

n o
E Ell 51;,"6.3' <1

[ B

where B = (4; )=,

It is worth stating at this point that diseretization noise
Is enough to destroy many algofithma in the literature

that do dynamic analysis ( measurement of motion) [8].
However, we have the following proposition.
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Proposition 4: A sufficient condition for critical ill-
conditioning not occuring in our model under discretiza-
tion error is

féz > HM(Z)

where HM(Z) denotes the harmonic mean of the depths of
the world points corresponding to the image points.
Proof: For proof see [4], (deleted here for lack of space).
7. Experiments

Here we only describe one experiment with real
images. Note that we have eight frames in all, four
before the motion and four after the motion. When we
say that we have an error of B% in the translation, we
mean

[AX ~AX| . JAY -AY| . |AZ - AZ]

1
=103 (777 NG| [aZ]
where (AX ,AY , AZ) is the sactus] translation (with
(AXAYAZ9£0), snd (AKX ,AY, AZ50) is the com-
puted one,

The experiments were carried out using images of a
circuit board. Image acquisition was accurately controlled
using a "American Robot" arm and a VICOM processor.
Figure 4 shows the result of the point extraction operator
on the images obtained after motion. The number of
points extracted in the four frames were respectively
1767, 1643, 1665, 1687 before motion and 1491, 1547,
1578, 1529 after motion. The actual motion was (60.0,
-60.0, -30.0) and the estimated translation was (63.5,
-63.1, -35.2). The error is due to the factors that were
explained in the paper and to the fact that our actual
measurements (ground truth) were not perfect (cameras
set up, calibration and motion).

Due to lack of space several proofs and experiments
were omitted. The interested reader is refered to [4].
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