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ABSTRALCT

XRL 1+ an  integrated knowledge programming
environment  whose major  research lheme is thae
invesligation of declaralive knowledge programming
slyles “and locls, dand of 1he way ghey can be
effectively inleyrated and wused to support Al
programming. This invesli%atlcn is carried out in
the context of the structured-object
representation paradi?m which provides the glue
keepiln XEL compunenls together. The paper
describey  several declarative programming styles
andxassociated suppert tocls currently avallahble
1n XKl .

I. JINTKORWCTION

kecent research (1) prompts the view thal the
success of Al knowledye based programs 16 a3 direct
cunsequence of a specific approach to pro?rammlng
in which the programmer construcls declarative
spacifications directly interpretable by the
supporiing programminq syslem, rather 1than "of a
different nature of Al programs.

If one shares this wview (as we dad, lhen
deva loping belter declarative programming
languages and language features providing leverage
for this approach "to programming becomes an
essenlial research directinn.

The XRL system reported 1n this paper is one
auch  altemptl. It s an integraled knowledge
rogr amming énvivonmeni whose major research theme
14 tht avestigation of declarative knowledge
pragramming styles and features and of the way
they can be effectively 1ategrated and wused to
suppor{ Al programming.

The paper presenis Lhe mosl  imporiand
dec larative programm;n? styles and assaclated
tools uurrenll( available 1n XKl. These tools are
?rga?ized in the layered architecture shown n

ig.1.

The structlured object layer forme the
subsirale of the whole environment providing the
lue whith kerps everything together,” Thc
nstanbiation framework supports a  generalized
view of ihe ubigquitlous frame jnstantiation
process. The description pased programming system
provides a novel declarative programming style
which embedds a mathematical oriented description
language in the struclured object environment.

The  semanlics oriented programming  framework
offers L specific semaniic construcl based
approach to programming which supports

maintainance and evelulion. Finally, the self
eneration tool applies this approach to XRL
tsglf.

self generation framework )
support for semantics-praiented prugramming
i description based programming
instantiation framework forward rule sysiem
strutlured ?bjecl Eepresan;allon

big. 1: XRL architeciure
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Il1. STRUCTURED GBJELT SUBSTRATE
A, Struclured objecls

his layer  provides  an  object-ceniered
programming system [2-£1. Itvy tured objectis come
in Tlwu Torms: generic objects, called uniis which
stand for «clesses of objecils ana individual
objecls (instancew). Unyls are crmposed of slots
which have values and meta-deseriptions.,
Meta-dewcriplions, which also apply for uniis as 2
whole, are specified in terms of ather first order
unils which can be meéta-described {hemselves by
means of other meta-units a.s.o..

A unit example 313 shown 1n (1g.2. its
me la-description asppears 1n the self slotl, The
nutation ta <unil names...) defines 5 "virtual
copy" of <unil name’. I1 is an anonymyus unit
which can be used in 3 single place. 14 inberils
all the clcts defined by <unil name>. The sints
mentioned in Lhe nolalion are added to the new
unit, overriding tlha correcsponding ones from <unit
name>. At this level mela-descriplions are oweed
to store specifications of inheritance relations
tihe supers slot) and the associstion of methods
to selectors (iha draw and refine-by slot<). A
full language for sqenify;ng method combimation is

also proviaed in {7

[House
self (a HouseMelalnit
supers (Building Properiy)
subtask-processing-order sequence
pre-cund (avk "Horking on Housa2*)
posi-cong (TrueSlet is-affordable?
nol~affordable {an kEvent
slaot is~affordabie?
predicate noti
handlar HouseNolAfdb)
draw OrawHouse}
room- types (selalisct Bedroom Iivinﬂ Mning
Bathroom Kitchent
such-that UserApproves)
{a S0DL#etlalinil refine-by Fi1jter?
rooms {(setofl :0: (a :!1: room))
{a 50DLMetalnit

labels (:1: :0Q:)

:1: (a SpecializationMulliSetConstr
speciaslizalions (any room-types)
mulliplicitly AsklUsar)

U ta WholeSel))

is-affordable? {(using(income(path owner income))
(HouseAfdb? 1ncome cost
mainlajinance-cast})
maintainance-cosl (ComputeNC rooms!}
cost ta Ceost)
(an ADTValuedSlat))

Fig. 2: The House wunitl

This layer also sp?ports an_absiract data type
tAOT} programming facilitly. AUT~s are described
as wusual wnits (slet cost in fi?.ai, byt are
interpreled by a special compiler or vdriable
craation and manlgulation {somewhat similar ADT-s
are provided in [513.

As efficiency al this Jevel is vital for 1the
whole environment, time consuming processes such
as method combination, message sending and ADT
creation and manipulalion are carefully cowmpiled.
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I11. THE INSTANTIATION FRAVBACRK

A powerful and widel used mechanism for
brln%ln _the knowledge encoded in
structured-object representations.  to bear is
instantiation, é\ process. by which the knowledge
contained. in a enerlc,ob*ect is applied to the
construction of a_ similarly structured terminal
?b ect. In spite of the ubiquity of instantion in
rame _or object-centered systems, few Ianguages
explicitly support this process, Ore of " these
rare cases s 3 with its composite
objects, but even here only . igl recursive
mechanism is provided. XL fills this ggp with a
generalized instantiation engine discuss below.

A. Instantiation tasks

Centra] to the jnstantiation framework  is the
c?ncept_ of task.. task Is_the processing unit
of the instantiation system. Tasks may . represent
neneric objects in course of instantiation, AOIs
fo be created or operated upon or _arbitrary MSP
expressions to | evaluated. Each of “"this is
allocated an _ instantiation region . on. the
blackboard. Considering the House unit ,§f|§.2),
the system will associate” a task to the unit as a
whole” and several subtasks to each of its slots.

the latter we note an ~to be created (the
ost™ slot) and a expression to be evaluated
the maintainance-cost slot). tasks generated
or . room-types and ms belon the
description-based  programming laye to be
discussed later . on. As ‘illustrated by the
example, ere exists a task-subtask_  hierarchy
stemming from  the structured nature of units ani
inducing a tree-structured organization o
agendas.

B. Specifying task processing

n_ instantiation rotocol. IS protocol IS
efined _as a  convention about the meaning of a
number .of selectors nvolv%d in messagr(]e passm?
activities ,trlg%ere b% the various components o
the Instantiatioh system.

Task rocessinge is accompll_iﬁhed according to

The instantiation_ protocol  specifies . the
followln? issues: (1) The conditions under which a
slot is 1o be processed as a subtask.
pre-conditions_  enabling a task to be selectéd for
execution. X post-conditions for successful
task processing. (4% Colateral actions to be
erformed before or after task processing. (5)
ask priority; a given task decide on”its own
priorifty as well as on_ the “priorities of its
subtasks or of other tasks wh results are
needed for its own processing. (6) Actions to be
carried =~ out for executihg a task. V)
Descriptions of exceptional ‘events and of the
associated event handling activities.

. Sare of this possibilities are illustrated in
fig.2, the self slot.

C. Communication and synchronization

In order to allow tasks to communicate to each
other and to provide mechanisms for programming
task placement "in  the agenda, the = system
introduces . two_new primitives. _The %ath primitive
(see slot is-affordable? from  fig. ; % specifies
dynamic access paths to the instantiation regions
of other tasks.  'Thus, (path qwner income) creates
an access link, to "the . income slot” of the
instantiation region assocjated to _ the unit
filling the owner slot of House unit . Path-s
automatically schedule the tasks using them after
the value they need es available.

The second rimitive is_the using construct
see also . slot Is-affordable? in fig.2 which
binds  varjables = to the objects referenced by iIts
inner paths. In  fig. variable income °~ will
receive  the value of the owner's income (when
available).

To program various control palicies, the
message, . passing . protocol allows (l) any task to
modify its own orir.rity, (?). a task 10 mod|1’¥1 the
priority of the tasks ‘it references through
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path-s.
D. Systewm organization

Task procaislni is organized into
“instantiation sysiems® {18) which ara

declaratively described asy units (fig.3).

(HouseDesignls
self fan (SMetaUnit
supdrs (InstantiationSystem)?
spaces (spechi-acq design!
specs-acq (& Space
unit Koyse
task-sel-fn task-eligible?
trace-on T)
dasign {1 Spece
unil Houselesign
re-cond (done=space specs-acq)
ask-activate-fn task-activate)
states (sl)
sl {an ISState )
spacas {specu-acq design)
select-space first-ok
interrupt-space no
finish-~space no-tasks
next=state #final-stateas)
systi-pre-cond T
lg=run~-fn ISRun)

Fig. 3: Instantiation system for house design

An IS is composed of an agenda and a number of
spaces %bl,ackboard . zones), In each sgace a
network of instantiation redions generated by the
rocesglng of an initial unit can be constructed,
ach | be_.individually manipulated. by the
programmer. ns it.can be_created, run,
|r]gft rrupted, resumed, modified. This. mechanism
offers flexibility in dividing the initial problem
into subproblems "and in handling the . interactions
between them.  For example, we “used it in a number
of design applications to ; different phases
of the process such as specijfication, preliminary
design, detalied design, evaluation [8].

The system also provides a dependency handling
facility. Dependencies are created by explicjt
paths or by referencing slot names In the methods
or expressions used in~a unit (see fig.2).

F. Control regimes

Besides instantiation, other control regimes
are available at this level. Dependency riven
backtracking exploits the depen,denckl) records
allowing sé€lective network modlflcatl?n y tracjn
back = the delements rom which the offending valu

was derived.

The replay regime allows  reprocessing . a
network modified by  dependency  driven backtrackin
y reinstalling "séed" tasks "in the agenda an
reusm% previously derived results when ‘processing
these Ttasks.

The . event handlln% regime, entered whenever an
event is generated, Offefs an encompassing ?et of
event han |nl? options. In . . . of the
slots. and nits involved in declaring events and
spemfwng handlers . Are exemplified. = The
not-affordable event is raised by the violation of
the tas ost-condition and is” treated by the
House Not Afdb routine.

It is now possible to understand how the House
unjt will be treated if passed to this  problem
solver. .its slots (including those inherited)
will be considered as subtasks ™ and sequentially
processed. The unit will not be processed unless
thp user approves It. Because _of the _existin
dependency . "relations the is-affordable? subtas
will be, scheduled after the owner's income, cost
and maintainance-cost tasks.

IV. DESCRIPTION BASED FROGRAVIVING
The PBP layer is an attempt to formalize a
notion of higher "level (HL) structured object and
to create a programming system based on it.

Programs written in terms of HL structured



objects and iheir specific inference models n be
factoreg into A descriplion of the specifiéitig;
twhat should 1he progr am compuie ) and a
description of the implementation (how should the
computation proceed). These Lwo descriptions are
separate, ihus allowing separate understanding and
manipulation of specifications and
implemgntaticns.,

Us  view three major advantages of thi

uf programming. First, the hlghe? level ch:r:é{;:
which allows programs to be specified in abstract,
mathematical terms for which a clearly understood
semantics exists, econd, {hae eparalion of
specification from implementation whic makas it
possible  to wundervtand the specification of a
rrugram without having first to simulate {n ming

ls implementation, which is what necessarily
happans with procedural representaticns  and
imperative programming 1in anary)]. Third, the
introduction o 4 more malthematical view on
struclured objects which has a posilive influsnce
on the wunderstanding and utilization of Lhis
reprcsentation paradigm.

A. The set orientaed description language (SODL}

objects varies heavi across the range of
existing languages, (1] bui jds  upan the
intevpretation of an XRL generic object as a class
of tarmina) objecis tinstances?, This is
consistent with the stand taken by the undarlyin
instantiialion Jayer which construcls inslances o
eneric objects. S0DL provides a se&t orientad
anguage for describing ihe classes of objects

which can Fill the siots in instances of generic
objecls,

Unile the mcaninq of "frames® or structured
¥
5

First, here 15 lhe syntax of SOUL.
Description -> Unit
{onepf Set [suchthat Pl)
{setof Set [suchthat P)}

Set
Set -> Unit
(setof 5S¢t [suchthat F1)
(or Set ... ) ; set union

{fand 5etl ... } ; set intersection

tdiff Set ... ) ; se! diffevence

tset Elm ... 1 ; explicit enumeration
Eim -> Lisp-object | Instance

SODL descriplions can be divided into two
categories. Element descriplions f(oneof Elm)
describe an entily as belonging to a set of
objects. Set descriplions describe sets (1) as
sets of instances of a given unit, (2) as subsets
of another set (setof), and (3} by wusual set
operalions. In the curvent version, predicates
are lambda expressions of one variable.

In fig.2, two wvery simple descriptions are
usad. In the room-types slot, a selof description
describes the possible room types in_  the house.
The setafl descriplion in the rooms slot specifiss
that it can ba filled with a sel of instances of
the Room unit. As a more complex example,

toneof (setofia NiceGirl studies LS}
suchthat (height < 180))
suchthat {(eyes-colour = Bbluel)

describes a irl with blue eyes from a set of
NiceGirl-s studying Al amd having haight < 1B0.

B. Semantics of 5S0DL

A S0DL description which fills a slot in a
genaric unit describes the class of individual
objects or sets of ob{ucls which can possiblx fill
that slot in an nslance of the unit. sS0DL
description thus s{ands for a class of individuals

or a class of sats of individuals.

To clarify 1ihe mcanln? of SO0DL, we briefly
dufln, {tn a manner akin te 1(9)) a formal semntics
for 50DL based on the nation of description
extension. The extension of a description d is
the set of elements described by d. funciion E
from descriptions to elther eisments or sets from
any domain D is an sexisnsion function if and only
if il satisfles the Ffollowing properties:

L.E{UnttlcPouwerseliInstance-of(Unit])

2.ECconaaf 3 Pii={x/xglb{E(SILF(x)]

3.E[{setof 5 P)1=2Powersetix/xglRieE(S)8F(x)}

f.EC{or S1...5n}1=8]/1=UTikLicE(Si}}

S.EC{and 51,..5n¥1={1/I-NTikliGE(Si )

&.EL(diff SO S1,..5n}1={1/VxgIOLICREISO)->
—rxglik]i@F(Si)}

7.ELtset E1l...En)d={{(E1l.,.En}}

8.F(lisp-obyjectiTnstancel={Lisp-object!Instance}.

Lopkin? at how a subset of description’s
extension Is completed, it is important to analize
the first thres rules above., All of them describe
a kind of choice from alternatives. The oneof
rule describes the choice of an eilement. The
setof rule describes the choice of 3 subset of a
set while the unit rula describes the choice of a
subsel of instances of a given wunit.

L. Reasoning with descriptions

An important notien at least two wuseful
raasoring models can be based on is that of
refinin a description. It dl and d2 arse
descriptions, then dl is a refinement_ of d2 iff
E(d1)CEld2) for any E and D, Thus stated,
refinement is the same thing as the subsumed by
relation dafined in [1o1. The description
language and the way in which refinement is used
in “redsoning differ however fundamentally from
languaqus like KLOKE [10] , OMEGA [12] or YPTON
C11a, Hamqlg, we adopt a generative reasoning
model in which the problam solver starts with an
initial description and incremenially produces
more and more refineg descriptions from it, wuntil
a satisfactary level of refinement is attained
{including of course the deiermination of terminal
elemenis), For example, in fi?.ﬂ an  initial
description and two stages in ts  incremental
refinement process are illusirated,

(AlGirls
elements (setof (a WiseGirl)})

(A}Girls-03 ; stlage 1
eiements (setofloria Girl age 39)
(a Girl boyfriend (an AIGuy))
ta Givi IG 20031]

;o initial umnit

CRiGlrls-17 ; stage 2
elamants (set Lucy Ann Jane lLolad]

Fig. 4: An example of incremental refinement

A second possible reasoning model is a
recognition-based one in which a given wunit is
comparaed to other unils in a knowledge base. The
comparison may reveal (most specific) subsumers In
which case the unil is classified in the knowledge
base (in the siyle of the above cited languages
{10-12]1} or (most general} refinements in which
case the wunit may act as a template for
associative retrieval. The recognition based mode
can and should be integrated wlit the gengrative
ong. For example, the object Jane (fi?. 4) might
had been retrieved as a refinament of {a Girl 1@
200). Currently, the existing DBP system supports
the generative refinement wode and onl
rudimentary recognition machanisms. Mos
important, DBP lacks for the moment a program able
to decide if, given two SO0UL wunits, one is a
refinement of another. We view integrating

enerative and classificatory reasoning as an
mportant topic for the near future.

B. Operationalizing the incremental refinemant
wmode |

1) The nature of operaticnalization. Consider
the description:

{oneof :0: (setof :1: (a :2; Student studies Al
suchthat (height > 1803}
suchthat (age < 30)}

One possible operationalization is as follows.
At :2: search the KB for instances for the given
unit for at most 10 uniis of time. At :l; filter
the rasulting list with tha given gredicate and
relain the firet 5 instances. At :0: take the
ftrst instance catisfying the predicate.
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Several aspecis are uworth noticing., First, an
clement from ‘khe extension is  computed, Sevonard,
it 15 detgrmined by search. hird, wilh 1he
impoed rescurce Jimitations 3t may well happen
that ro sutlable elements be found.

A loet of other ocoperationalications can be
obtained by altering the above one: (a) replace
search with instance construction (done with the

instantiatlon processor); ‘b! instead of twy
fillering steps perform only one and-1ng the twc
predicates (done through a syntactic

trancformationt; (C! replace unit Studen! wi'lh the
wnieh of  1ts  speciralizatlions. Provided these
wpeclal:zatlions tave more efficient methods Vor
consiructiing or retriesving tns tances,  this
semantic transformation may amprove the ~fficiency
af step

21 The operationalization framework. The
framework recognizes four dimansions along which
nperaticnalization can be performed: search,
roastruction, synltactic and semaniic descraiptian
transformation. Ue have adopted a rule-based form
far encodtn the operationylizaticon rocedure
which fali info the above categories. ar  this
?urpose we use the XRBL produclion rule system.

his a forward reasoning sysiem which allows
defintng both rules and rule Interpreters in a
uniform and extensible objyect orjented nolaticn
{similar approaches are [4,19]}).

[UnitTolnion
seif (a SemanticTrideta)?
variables (Specs Unal”
descr-conditicns ocl
proc=conditions (pcl pc2!
dcl ifisUnzt Unitd
pcl (Fxisles Specs (Specf UnjLdi
pce (not(HaveMethods Unil “(toconstruct tofindia)
recommend (HaveMethods Zpecs
“ttogonstruct-tnst tofaingd-1nst))
neu=description {MakelUnion Srec<]
If: (1) the description is a unit
(2) there exist speciailzations of 1t
{3) the unils does not have %o construct or
te find instance methads
Then: transform 1t 1nto a umion of 1ts
specializations
Recommended: 1f the specializations have metrods
e1ther to construct ar to find
instances.

Fig. 5 UniiToUnion semantic transformation

Fi1g.5 iliustrates a semantic transformation
rule ugich transforms a wunit 1rto the unten of tts
specializations. kecommendilions 1dentify
situations where the rule 15 Jlikely to be
espacially effective.

The framguwork defines severali slandard
operationdlization regimes. Ine 1% interacliwe,
user-gquided aperationalivation in whilch user
selects the rules and system applies them.
Anoihgr it a default aulomalic one which attempts
lo operationalize any DB program even af no
operationalization 1nformation is rovided (done
usin? defaults), Finally, the third executles a
single rule for each description, covering the
case when the programmer can precisely define the
operationalizalion activities.

The processing of the descriptions used in
fig.2 <an now be understood. The room-types slol
selects the types aof rcoms b; filtering a gqiven
set of alternatives wit a predicate which
triggers wuser questioning. The rooms slot
spec?fles that a set of specializations of unit
Room must be construcled in the fo]lowinao manner .
The specializations are 1hose units whose names
appear in tlhe room-l;pcs slot and 1he number of
pccurences for eac spacialization (i.e. voom
type) is interactively glven by the user (label
:{:) and {he whole set thus produced will be
relained as the slots values (label :0:1}.

E. Applying DBFP
Ve view the usefulness of DHP for applications
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which can be modelled by an Incremental vefinement
procesn  which  starts with high leve] but
operationasl specifications angd incremenially
transfoerme them intu lewer level descriptigns. ’

Hanz design problems Can be modelled in this
way [141, ranging from mechanical design {1%) and
civil eng;neerlng des:?n (156} to program synihesis
[r7:. Jur  wse of DHF has been in Ihas dyrection
and 15 reporited an (8,191,

1f we vconsider the divtinction be tween
<lassification and constructive problem solving
made 1n (151, OPF appeares as a3 tool Tlor the
latter, It 15 a mechamism for creating and
assambling Jocai solutions and objects 1nto higher
order aggregales which are not pari o? a
pré—existing eanumrration. This may suggest QHF
Iwith the " languages below) as 3 generic tool for
this type of problem-soiving. a atliain this
gbjective, whal we current1y have can only be a
firs! step. Fuch  work 15 still requrred,
vopectally more applications.

V. SEMANTYLS-ORIMNTHI FROGRAMMING
AND SELF-GENFRATION

Tnc programming teol presented 1n 1his cection

supports a semantlics-oriented programming
mclhndulogg whie &4 major advaniage 1% a
knowledge-based meéhanism Suppariing program
modification. Ather adviantagen are belter

understandabili'y and reusability of the programs
thus developad.

A. Semantics-grivnted programming constructs

The central concepl of our approach is the
semantyc construct nution, The nature of semantic
constructs can be best urdersiovod by means aof an
analo?gpbetueen programming langudge constructs
and e constiluenis of grammarce Leawd 1n natural
language understanding.

The consirucis of general-purpocse programming
language:r are domain-indepenent siructuresie.g,
if ctalemants or real data types! in lerms of
which programs 1n  any problem domain can be
Lenslruc ted. They are analogaus 1o the
constituents of general NL grammars (such as noun
phrase or verb phrase). Semantic constructs play
a role similar_ 1o the constiluents of semantiv
grammars [23). They are rvelated la the wemantics
af the problem domain and provide a strong
connecilon between lhys domain an¢ the language
the domain 1s encoded 1n.

An  example may help elucidate this. Assume
the domain of discourse 15 the instantiation
framework of XRL 4nd we have several roulines
whiate processing depends on the state of Lhe
turrenl tacsk. In a ?encrql-purpose language like
LiSP we could encode lhese routines according to
the fo!lnwing pattern:

{defun <name> (lask)
{progis)
{rendi(eqisetq stcadddr task)) “new?
(processing the new stated)
tleq s "active!
‘processing the active stated)

(1 (error “task slate inexistent™) 11y}

For this particular domain, we can also define
a special semantic consiruct called, ¢.q.
TaskProcessingfroctedure). In a siructured obect
netation the concept could be defined as shown in
flq.b. Alsa in fig.6 we illusirate the general
pattern for using it.



[TaskProcessingProgc .
self (a SemanticProcedureMetaUnit
supers (DataParameterizedProc))
arguments ' (task
args-t¥pes t(tas )
test  task:state .
possible-values (new active ...done) | )
error-signalig (error "task state ihexistent")]

(a TaskProcessingProc
new <processing for the new state)
active processing for the active "state>

done <processing for the done state))
Fig. 6: TaskProcessingProc definition and use

. Comparin% the unit for wusing. the construct
with the LISP code earlier we note the
following clear advantages: ] )
notation is easier to perceive and
understand . as _ things like the rog and cond
struetures,the tests”in each cond clause, the .
of accessing the _task state and the local variabl
do not appeéar. Their function is automatically
provided the semantic construct. )
Knowledge . about the problem domain,
such as the possible task states, is  embedded in

the definition = of = TaskProcessingProc and
atu,t%)mg(tjlcally applied when the construct I's
uti Tized,

8?) Programminﬂ _disciplines, such as the
manner error signaling, "can be clearly
enforced

{(4) Programming knowled%e, e.g. the manr
of accessing the state_of a task, is also embedded
gnpp“éfgje concept definition and automatically

In fewer words, the semantic construct is more
understandable as. it clearlg relates the
information it contains to the problem domain K and
iIs knowledge intensive as it embedds a variety of
knowledge "about the problem domain and the
programming process.

More  than that, the  structured-object
representation is easier to modify. Several Kkinds
of _ semantic manipulations = whicl ae useful for
maintainance can be frivially accomplished in this
representation in a fully automatic manner:

(1)  Identifying and
existing task states . . .
,é?) Identifying the processing associated

to a given task state o
. i Identifying and modifying the error
signaling part T o
r(.4) Identifying and modifying the state

access mechanism.

modifying the

On the jnjtial LISP representation neither_of
these manipulations is eas ‘automate. The
major reason Is that jn the “semantic construct the
relevant information is semantlcallg tagged and
thus eaS||I:y accessible and interprétable” In the
usual (LISP) representation only complex analysis
0 code would eventually reveal the semantic
role of the syntactic constructs used .g. e
variable th cond or the prog). Another reason
is that the semantic construct’ . has a locality
property [21]. Information spreading
optimizations t¥p|cal at the code level
the caching o
this level.

(such as
the task state) have no place at

B. Structured object

semantic
constructs

support  for

Three kinds of services are provided for
programming with semantic constructs. .
~ 1) Organization . into inheritance lattice
This “allows semantic concepts to be efficient
?om by combining various features availab
rom other constructs in the lattice.

~2) Compilation. Semantic constructs can be
efficiently compiled into executable code bg
attachm_% code generation methods activated by th
instantiation processor. Code initially scaftered
leaf Instances of the instance tree is latter
assembled in parent instances until the final code

S.
ly
e

is produced.

. 3) Semantc editing. This is the profess by
which” the behaviour of a program is changed

accordin to a  given purpose. As semantic
constructs explicitl represent semantic
information, . semantic editors can efficiently
retrieve and interpret this information to achieve

thei r goals.

. Cons)derthe Ta s k Eligible .' routine from fig.1
which determines task eligibflity for execution
the instantiation processor. Sy one needs t
produce a new version which would not consider
not-yet as a possible answer to start-if and
resume-if messages. (These mey . _be needed. for
customizing the sg/stem to a specific application).
First, thiS request can be reformulated as "remaove
the not-yet entry from the msg-pos-answ slot". To
carry it"out, a generic semantic editor for this
type” of semantic ‘editing would have to perform éby
itself) the following simple actions: (1) remove
the specified entry from the msg-pos-answ slot;
(2) retrieve, for each task state, the places
where the remov valye is used. As the use of
messa?e passing is restricted to a few semantic
constructs ' such as Messaged singcase ) defined. in
advance, this is quite easy to do, (3 edit. the
above found constructs. “For Message assmlgCase-s
and similar ones) this amonts to " removi the
ot-yet slot and eventually creating szr% new
units, which. take primitive operations in the
language. . Domain specific can augment this
eneral editor b¥ checking whether the ~suspended
tate of the 1task, which was set in this case.
oes not b  superfluous. | If it
editing, is triggered this time on

does, _mew
1 ho
abstract data type.

Task

CTaskFligible?
seﬁ? (aggeman icProcedureMetaUnit
supers skProcess |ngProc
. lessagePass iIngProtin terpProc ) )
msg (select-if re?u e_-# |
msg-pos-answ ((select-if 't drop not-yet fail
resume-if { dro not-%et fail))
defau 1 tmsg-answ ((select-if t) (resume—if t
not-ln-rﬁF%S-evlgnt (select-val-not-in-range
new (@ Messagel assln%Ca,?e
selector _selecCt-i

send-to Task:lnstance
t <select task>

drop not select)
Po,t-yet Jreke task suspended?
ail” <exit instantiation system)) ...J

Fig. 7: Task Eligible? unit
C. Discussion

When designing semantic constructs, the
programmer . m have alread acquired a good
understanding of the application domain.  Semantic
editors appear as local mutation mechanisms abl
to, turn an existing constr,uc} into a class o
different useful and meaningful constructs. What
constitutes a meaningful mutation must be decld?d
in advance for “each construct. Meaningful

mutations can be seen as modi yir&g _some Tpr,evi,ous
assumption made during program design. h}gs idea
be fruitful for further developments of this

approach.

This explains why with semantic constructs the
programmer Is not designing a single program, but
a class of potential, programs”any of” which_can

rea appropriate semantic ‘editing. This
helps enforce "a kind of design for change.

The Progammmer s Apprentice [22] uses plans
to capture Tiddle level ~programming = knowledge.
semantic constructs . _are am more_ " at
representing problem specific knowledge. This
makes . semantic editing possible and distinct  from
what is ment in [233 by " knowledge-based editing.
This | distinction also explains the use of "a
special plan language in [22] and the _use of a
more general representation Iangua?e for semantic
constructs. . The Draco [24] 3System also uses
?roblem oriented languages, but ‘its major goal is
o .achieve reuasbiiity’ and the technology used
qui te different.
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D. The self generatiun layer

The approach presented in  1his seclion has
been applied to several of the XRL componenis. Al
the insiantialion level, the whole instantiatian
processor has been genera{ed in this mannar. The

rule system employed by OBPF was alwe constructed
in this way.

Exlatin semantic editors can be wuwed to
modify the instantiation protocol » o bhe
inslantiation sysiem mechanism, for building

interpretlers for new t Eas of operationalizatiuh
rules and fur modtfying { e @xisting cnes.

The semantic editing idea has been furiher
exlended by aisociatina an application analyuis
rogram whi¢h scarns an XKL  application knowledge
ase (o see Jhether 4 simpler and more efficienl
XRL intearpreter ¢an bandle it. This may happen
e.q when only a few of the rapabilities provided
by the instantiation proiocol are actually wused.
I¥ this is possible {(dacided by hauristic rvules
invoctked over collected datal, semantic ediling ls
automaticall{ applied to actually creale “the
simplified XKL interpreter.

¥I. FINAL EEMARKS

Yhile there exist several
anpioit a structured
developing more
pragramming locis

environmenis which
object substirale faor
dac larative 1mplementations of

[2-61, XKL 1% different 1n the

naiure of iis components. These componenis
attempt 1o support kigher level hnowledge
programming issues such as inctantiation,

descriplive programming and semaniicc-orienieq
suppert for procedural programming.

XKL nhas been used in several expert
@ainl{ in the design area.
invesligated its applica il1l{ 4% an  enyirvonment
for design problam-sclving [(8,1%). The approach
to procedural programming has been geperalized to
A semantics-oriented software development model

systems,
reyious work

supparting evolution and reusabilitly [251.
Much work {s still needed for better
a5%€551n9 the poiential of description bLa-ed

programmln?, for developing more Tkinds of )
cperaticnalization rules and more applications
built on it. The integration of consiructive and
classificatlory reascnin is also an  impovtant
topic for future research.

Hore work is al=o needed fur evaluating the
measure in  which grocedural rogramming can be
replaced with our object oriented 1ivol “and in
general for assessing the possibilities of using
semantic consgtructs in programming.

Thase developments are related te a longer
range ¢fforl o craating 3 genaral software and
knowledge angineering envirdnment integraling
deciarative programming <tyles and lools of the
kind discussed here.
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