
INTEGRATING DECLARATIVE KNOWLEDGe PROGRAMMING STYLES AND TOOLS

IN A STRUCTURED OBJECT Al ENVIRONMENT

H i h a i Barbuceanu S te fan Trausan-Matu B a l i n t Molnar

I n s t i t u t e f o r Computers and I n f o r m a t i c s
8 -10 M i c i u r i n , 71316 Buchares t 1
phone 653390. t e l e x 11891 l c p c i r

RUMANIA

C e n t r a l Research I n s t i t u t e f o r Phys i cs
H-152S Budapest 114, P.O.B. 49

HUNGARY

Barbuceanu, Trausan-Matu, and Molnar 563

I I I . THE INSTANTIATION FRAMEWORK path-s.
A powerful and widely used mechanism for

bringing the knowledge encoded in
structured-object representations to bear is
instant iat ion, a process by which the knowledge
contained in a Generic object is applied to the
construction of a similarly structured terminal
object. In spite of the ubiquity of instantion in
frame or object-centered systems, few languages
exp l ic i t l y support this process. One of these
rare cases is LOOPS [33] with i ts composite
objects, but even here only a r ig id recursive
mechanism is provided. XRL f i l l s this gap with a
generalized instantiation engine discussed below.
A. Instantiation tasks

Central to the instantiation framework is the
concept of task. The task is the processing unit
of the instantiation system. Tasks may represent
?eneric objects in course of instant iat ion, AOT-s

o be created or operated upon or arbitrary MSP
expressions to be evaluated. Each of this is
allocated an instantiation region on the
blackboard. Considering the House unit (f i g .2) ,
the system w i l l associate a task to the unit as a
whole and several subtasks to each of i ts s lots.
Among the latter we note an ADT to be created (the
cost s lot) and a LISP expression to be evaluated
(the maintainance-cost s lo t) . The tasks generated
for room-types and rooms belong to the
description-based programming layer to be
discussed later on. As i l lust rated by the
example, there exists a task-subtask hierarchy
stemming from the structured nature of units and
inducing a tree-structured organization of
agendas.
B. Specifying task processing

Task processing is accomplished according to
an instantiat ion protocol. This protocol is
defined as a convention about the meaning of a
number of selectors involved in message passing
ac t iv i t ies triggered by the various components of
the instantiat ion system.

The instantiat ion protocol specifies the
following issues: (1) The conditions under which a
slot is to be processed as a subtask. (2) The
pre-conditions enabling a task to be selected for
execution. (3) The post-conditions for successful
task processing. (4) Colateral actions to be
performed before or after task processing. (5)
Task p r io r i t y ; a given task may decide on i ts own
pr io r i ty as well as on the p r io r i t i es of i ts
subtasks or of other tasks whose results are
needed for i ts own processing. (6) Actions to be
carried out for executing a task. (7)
Descriptions of exceptional events and of the
associated event handling ac t i v i t i es .

Some of this possib i l i t ies are i l lust rated in
f i g .2 , the self s lot .
C. Communication and synchronization

In order to allow tasks to communicate to each
other and to provide mechanisms for programming
task placement in the agenda, the system
introduces two new primit ives. The path primit ive
(see slot is-affordable? from f i g . 2) specifies
dynamic access paths to the instantiat ion regions
of other tasks. Thus, (path owner income) creates
an access link to the income slot of the
instantiat ion region associated to the unit
f i l l i n g the owner slot of House unit . Path-s
automatically schedule the tasks using them after
the value they need becomes available.

The second primitive is the using construct
(see also slot is-affordable? in f ig .2) which
binds variables to the objects referenced by i ts
inner paths. In f i g .2 , variable income w i l l
receive the value of the owner's income (when
available).

To program various control pol ic ies, the
message passing protocol allows (I) any task to
modify i ts own or i r . r i ty , (?) a task to modify the
pr ior i ty of the tasks it references through

Fig. 3: Instantiation system for house design
An IS is composed of an agenda and a number of

spaces (blackboard zones). In each space a
network of instantiat ion regions generated by the
f rocessing of an i n i t i a l unit can be constructed,

ach IS may be individually manipulated by the
programmer. This means it can be created, run,
interrupted, resumed, modified. This mechanism
offers f l e x i b i l i t y in dividing the i n i t i a l problem
into subproblems and in handling the interactions
between them. For example, we used it in a number
of design applications to manage dif ferent phases
of the process such as specif ication, preliminary
design, detalied design, evaluation [8].

The system also provides a dependency handling,
f a c i l i t y . Dependencies are created by exp l ic i t
paths or by referencing slot names in the methods
or expressions used in a unit (see f i g .2) .
F. Control regimes

Besides instant iat ion, other control regimes
are available at this level. Dependency driven
backtracking exploits the dependency records
allowing selective network modification by tracing
back the elements from which the offending value
was derived.

The replay regime allows reprocessing a
network modified by dependency driven backtracking
by re insta l l ing "seed" tasks in the agenda and
reusing previously derived results when processing
these tasks.

The event handling regime, entered whenever an
event is generated, offers an encompassing set of
event handling options. In f i g . 9 some of the
slots and units involved in declaring events and
specifying handlers Are exemplified. The
not-affordable event is raised by the violat ion of
the task post-condition and is treated by the
House Not Afdb routine.

It is now possible to understand how the House
unit w i l l be treated if passed to this problem
solver. Al l i ts slots (including those inherited)
w i l l be considered as subtasks and sequentially
processed. The unit w i l l not be processed unless
thp user approves i t . Because of the existing
dependency relations the is-affordable? subtask
w i l l be scheduled after the owner's income, cost
and maintainance-cost tasks.

IV. DESCRIPTION BASED PROGRAMMING
The PBP layer is an attempt to formalize a

notion of higher level (HL) structured object and
to create a programming system based on i t .

Programs written in terms of HL structured

564 KNOWLEDGE REPRESENTATION

Barbuceanu, Trausan-Matu, and Molnar 565

566 KNOWLEDGE REPRESENTATION

[TaskProcessingProc
self (a SemanticProcedureMetaUnit

supers (DataParameterizedProc))
arguments (task)
args-types (task)
test task:state
possible-values (new active ...done)
error-signalig (error "task state inexistent")]

(a TaskProcessingProc
new <processing for the new state)
active processing for the active state>
done <processing for the done state))

Fig. 6: TaskProcessingProc def in i t ion and use
Comparing the unit for using the construct

with the LISP code shown earl ier we note the
following clear advantages:

(1) The notation is easier to perceive and
understand as things like the prog and cond
struetures,the tests in each cond clause, the way
of accessing the task state and the local variable
do not appear. Their function is automatically
provided by the semantic construct.

(2) Knowledge about the problem domain,
such as the possible task states, is embedded in
the def in i t ion of TaskProcessingProc and
automatically applied when the construct I s
ut i 1 ized .

(3) Programming discipl ines, such as the
manner of error signaling, can be clearly
enforced.

(4) Programming knowledge, e.g. the manner
of accessing the state of a task, is also embedded
in the concept def in i t ion and automatically
applied.

In fewer words, the semantic construct is more
understandable as it clearly relates the
information it contains to the problem domain and
is knowledge intensive as it embedds a variety of
knowledge about the problem domain and the
programming process.

More than that, the structured-object
representation is easier to modify. Several kinds
of semantic manipulations which ae useful for
maintainance can be t r i v i a l l y accomplished in this
representation in a fu l ly automatic manner:

(1) Identifying and modifying the
existing task states

(?) Identifying the processing associated
to a given task state

(3) Identifying and modifying the error
signaling part

(4) Ident i fy ing and modifying the state
access mechanism.

On the i n i t i a l LISP representation neither of
these manipulations is easy to automate. The
major reason is that in the semantic construct the
relevant information is semantically tagged and
thus easily accessible and interpretable. In the
usual (LISP) representation only complex analysis
of the code would eventually reveal the semantic
role of the syntactic constructs used (e.g. the s
variable, the cond or the prog). Another reason
is that the semantic construct has a local i ty
property [21]. Information spreading
optimizations typical at the code level (such as
the caching of the task state) have no place at
this level.
B. Structured object support for semantic

constructs
Three kinds of services are provided for

programming with semantic constructs.
1) Organization into inheritance lat t ices.

This allows semantic concepts to be e f f ic ient ly
composed by combining various features available
from other constructs in the la t t i ce .

2) Compilation. Semantic constructs can be
e f f i c ien t ly compiled into executable code by
attaching code generation methods activated by the
instantiat ion processor. Code i n i t i a l l y scattered
on leaf instances of the instance tree is latter
assembled in parent instances un t i l the f ina l code

is produced.
3) Semantic edit ing. This is the profess by

which the behaviour of a program is changed
according to a given purpose. As semantic
constructs expl ic i t ly represent semantic
information, semantic editors can e f f ic ient ly
retrieve and interpret this information to achieve
thei r goals.

Co n s) de r t he Ta s k Eligible .' routine from fig.1
which determines task e l i g i b i l i t y for execution by
the instantiation processor. Suppose one needs to
produce a new version which would not consider
not-yet as a possible answer to s ta r t - i f and
resume-if messages. (These may be needed for
customizing the system to a specific application).
F i rst , this request can be reformulated as "remove
the not-yet entry from the msg-pos-answ s lot" . To
carry it out, a generic semantic editor for this
type of semantic editing would have to perform (by
i t se l f) the following simple actions: (1) remove
the specified entry from the msg-pos-answ slot;
(2) retrieve, for each task state, the places
where the removed value is used. As the use of
message passing is restricted to a few semantic
constructs ' such as Messaqed singcase) defined in
advance, this is quite easy to do, (3) edit the
above found constructs. For MessagePassingCase-s
(and similar ones) this amonts to removing the
not-yet slot and eventually creating some new
units, which take primitive operations in the
language. Domain specific demons can augment this
general editor by checking whether the suspended
state of the task, which was set in this case.
does not become superfluous. If it does, new
editing is triggered this time on 1 ho Task
abstract data type.
CTaskFligible?
self (a SemanticProcedureMetaUnit

supers (TaskProcess ingProc
MessagePass ingProtIn terpProc))

msg (select- i f resume-if)
msg-pos-answ ((select- i f t drop not-yet f a i l)

(resume-if t drop not-yet f a i l))
def au 1 t-msg-answ ((select- i f t) (resume--i f t))
not-in-range-event (select-val-not-in-range)
new (a MessagePassIngCase

selector select-if
send-to Task:Instance
t <select task >
drop <do not select)
not-yet <make task suspended)
f a i l <exit instantiation system)) . . .J

Fig. 7: Task Eligible? unit
C. Discussion

When designing semantic constructs, the
programmer must have already acquired a good
understanding of the application domain. Semantic
editors appear as local mutation mechanisms able
to turn an existing construct into a class of
different useful and meaningful constructs. What
constitutes a meaningful mutation must be decided
in advance for each construct. Meaningful
mutations can be seen as modifying some previous
assumption made during program design. This idea
may be f r u i t f u l for further developments of this
approach.

This explains why with semantic constructs the
programmer is not designing a single program, but
a class of potential programs any of which can
become real by appropriate semantic edi t ing. This
helps enforce a kind of design for change.

The Programmmer s Apprentice [22] uses plans
to capture middle level programming knowledge.
Our semantic constructs are aimed more at
representing problem specific knowledge. This
makes semantic editing possible and dist inct from
what is ment in [233 by knowledge-based edi t ing.
This dist inct ion also explains the use of a
special plan language in [22] and the use of a
more general representation language for semantic
constructs. The Draco [24] system also uses
problem oriented languages, but i ts major goal is
to achieve reuasbiiity and the technology used
qui te d i f ferent .

Barbuceanu, Trausan-Matu, and Molnar 567

568 KNOWLEDGE REPRESENTATION

