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I I I . THE INSTANTIATION FRAMEWORK path-s. 
A powerful and widely used mechanism for 

bringing the knowledge encoded in 
structured-object representations to bear is 
instant iat ion, a process by which the knowledge 
contained in a Generic object is applied to the 
construction of a similarly structured terminal 
object. In spite of the ubiquity of instantion in 
frame or object-centered systems, few languages 
exp l ic i t l y support this process. One of these 
rare cases is LOOPS [33] with i ts composite 
objects, but even here only a r ig id recursive 
mechanism is provided. XRL f i l l s this gap with a 
generalized instantiation engine discussed below. 
A. Instantiation tasks 

Central to the instantiation framework is the 
concept of task. The task is the processing unit 
of the instantiation system. Tasks may represent 
?eneric objects in course of instant iat ion, AOT-s 

o be created or operated upon or arbitrary MSP 
expressions to be evaluated. Each of this is 
allocated an instantiation region on the 
blackboard. Considering the House unit ( f i g .2 ) , 
the system w i l l associate a task to the unit as a 
whole and several subtasks to each of i ts s lots. 
Among the latter we note an ADT to be created (the 
cost s lot) and a LISP expression to be evaluated 
(the maintainance-cost s lo t ) . The tasks generated 
for room-types and rooms belong to the 
description-based programming layer to be 
discussed later on. As i l lust rated by the 
example, there exists a task-subtask hierarchy 
stemming from the structured nature of units and 
inducing a tree-structured organization of 
agendas. 
B. Specifying task processing 

Task processing is accomplished according to 
an instantiat ion protocol. This protocol is 
defined as a convention about the meaning of a 
number of selectors involved in message passing 
ac t iv i t ies triggered by the various components of 
the instantiat ion system. 

The instantiat ion protocol specifies the 
following issues: (1) The conditions under which a 
slot is to be processed as a subtask. (2) The 
pre-conditions enabling a task to be selected for 
execution. (3) The post-conditions for successful 
task processing. (4) Colateral actions to be 
performed before or after task processing. (5) 
Task p r io r i t y ; a given task may decide on i ts own 
pr io r i ty as well as on the p r io r i t i es of i ts 
subtasks or of other tasks whose results are 
needed for i ts own processing. (6) Actions to be 
carried out for executing a task. (7) 
Descriptions of exceptional events and of the 
associated event handling ac t i v i t i es . 

Some of this possib i l i t ies are i l lust rated in 
f i g .2 , the self s lot . 
C. Communication and synchronization 

In order to allow tasks to communicate to each 
other and to provide mechanisms for programming 
task placement in the agenda, the system 
introduces two new primit ives. The path primit ive 
(see slot is-affordable? from f i g . 2 ) specifies 
dynamic access paths to the instantiat ion regions 
of other tasks. Thus, (path owner income) creates 
an access link to the income slot of the 
instantiat ion region associated to the unit 
f i l l i n g the owner slot of House unit . Path-s 
automatically schedule the tasks using them after 
the value they need becomes available. 

The second primitive is the using construct 
(see also slot is-affordable? in f ig .2) which 
binds variables to the objects referenced by i ts 
inner paths. In f i g .2 , variable income w i l l 
receive the value of the owner's income (when 
available). 

To program various control pol ic ies, the 
message passing protocol allows ( I ) any task to 
modify i ts own or i r . r i ty , (?) a task to modify the 
pr ior i ty of the tasks it references through 

Fig. 3: Instantiation system for house design 
An IS is composed of an agenda and a number of 

spaces (blackboard zones). In each space a 
network of instantiat ion regions generated by the 
f rocessing of an i n i t i a l unit can be constructed, 

ach IS may be individually manipulated by the 
programmer. This means it can be created, run, 
interrupted, resumed, modified. This mechanism 
offers f l e x i b i l i t y in dividing the i n i t i a l problem 
into subproblems and in handling the interactions 
between them. For example, we used it in a number 
of design applications to manage dif ferent phases 
of the process such as specif ication, preliminary 
design, detalied design, evaluation [8]. 

The system also provides a dependency handling, 
f a c i l i t y . Dependencies are created by exp l ic i t 
paths or by referencing slot names in the methods 
or expressions used in a unit (see f i g .2 ) . 
F. Control regimes 

Besides instant iat ion, other control regimes 
are available at this level. Dependency driven 
backtracking exploits the dependency records 
allowing selective network modification by tracing 
back the elements from which the offending value 
was derived. 

The replay regime allows reprocessing a 
network modified by dependency driven backtracking 
by re insta l l ing "seed" tasks in the agenda and 
reusing previously derived results when processing 
these tasks. 

The event handling regime, entered whenever an 
event is generated, offers an encompassing set of 
event handling options. In f i g . 9 some of the 
slots and units involved in declaring events and 
specifying handlers Are exemplified. The 
not-affordable event is raised by the violat ion of 
the task post-condition and is treated by the 
House Not Afdb routine. 

It is now possible to understand how the House 
unit w i l l be treated if passed to this problem 
solver. Al l i ts slots (including those inherited) 
w i l l be considered as subtasks and sequentially 
processed. The unit w i l l not be processed unless 
thp user approves i t . Because of the existing 
dependency relations the is-affordable? subtask 
w i l l be scheduled after the owner's income, cost 
and maintainance-cost tasks. 

IV. DESCRIPTION BASED PROGRAMMING 
The PBP layer is an attempt to formalize a 

notion of higher level (HL) structured object and 
to create a programming system based on i t . 

Programs written in terms of HL structured 

564 KNOWLEDGE REPRESENTATION 



Barbuceanu, Trausan-Matu, and Molnar 565 



566 KNOWLEDGE REPRESENTATION 



[TaskProcessingProc 
self (a SemanticProcedureMetaUnit 

supers (DataParameterizedProc)) 
arguments (task) 
args-types (task) 
test task:state 
possible-values (new active ...done) 
error-signalig (error "task state inexistent") ] 

(a TaskProcessingProc 
new <processing for the new state) 
active processing for the active state> 
done <processing for the done state)) 

Fig. 6: TaskProcessingProc def in i t ion and use 
Comparing the unit for using the construct 

with the LISP code shown earl ier we note the 
following clear advantages: 

(1) The notation is easier to perceive and 
understand as things like the prog and cond 
struetures,the tests in each cond clause, the way 
of accessing the task state and the local variable 
do not appear. Their function is automatically 
provided by the semantic construct. 

(2) Knowledge about the problem domain, 
such as the possible task states, is embedded in 
the def in i t ion of TaskProcessingProc and 
automatically applied when the construct I s 
ut i 1 ized . 

(3) Programming discipl ines, such as the 
manner of error signaling, can be clearly 
enforced. 

(4) Programming knowledge, e.g. the manner 
of accessing the state of a task, is also embedded 
in the concept def in i t ion and automatically 
applied. 

In fewer words, the semantic construct is more 
understandable as it clearly relates the 
information it contains to the problem domain and 
is knowledge intensive as it embedds a variety of 
knowledge about the problem domain and the 
programming process. 

More than that, the structured-object 
representation is easier to modify. Several kinds 
of semantic manipulations which ae useful for 
maintainance can be t r i v i a l l y accomplished in this 
representation in a fu l ly automatic manner: 

(1) Identifying and modifying the 
existing task states 

(?) Identifying the processing associated 
to a given task state 

(3) Identifying and modifying the error 
signaling part 

( 4 ) Ident i fy ing and modifying the state 
access mechanism. 

On the i n i t i a l LISP representation neither of 
these manipulations is easy to automate. The 
major reason is that in the semantic construct the 
relevant information is semantically tagged and 
thus easily accessible and interpretable. In the 
usual (LISP) representation only complex analysis 
of the code would eventually reveal the semantic 
role of the syntactic constructs used (e.g. the s 
variable, the cond or the prog). Another reason 
is that the semantic construct has a local i ty 
property [21]. Information spreading 
optimizations typical at the code level (such as 
the caching of the task state) have no place at 
this level. 
B. Structured object support for semantic 

constructs 
Three kinds of services are provided for 

programming with semantic constructs. 
1) Organization into inheritance lat t ices. 

This allows semantic concepts to be e f f ic ient ly 
composed by combining various features available 
from other constructs in the la t t i ce . 

2) Compilation. Semantic constructs can be 
e f f i c ien t ly compiled into executable code by 
attaching code generation methods activated by the 
instantiat ion processor. Code i n i t i a l l y scattered 
on leaf instances of the instance tree is latter 
assembled in parent instances un t i l the f ina l code 

is produced. 
3) Semantic edit ing. This is the profess by 

which the behaviour of a program is changed 
according to a given purpose. As semantic 
constructs expl ic i t ly represent semantic 
information, semantic editors can e f f ic ient ly 
retrieve and interpret this information to achieve 
thei r goals. 

Co n s ) de r t he Ta s k Eligible .' routine from fig.1 
which determines task e l i g i b i l i t y for execution by 
the instantiation processor. Suppose one needs to 
produce a new version which would not consider 
not-yet as a possible answer to s ta r t - i f and 
resume-if messages. (These may be needed for 
customizing the system to a specific application). 
F i rst , this request can be reformulated as "remove 
the not-yet entry from the msg-pos-answ s lot" . To 
carry it out, a generic semantic editor for this 
type of semantic editing would have to perform (by 
i t se l f ) the following simple actions: (1) remove 
the specified entry from the msg-pos-answ slot; 
(2) retrieve, for each task state, the places 
where the removed value is used. As the use of 
message passing is restricted to a few semantic 
constructs ' such as Messaqed singcase ) defined in 
advance, this is quite easy to do, (3 ) edit the 
above found constructs. For MessagePassingCase-s 
(and similar ones) this amonts to removing the 
not-yet slot and eventually creating some new 
units, which take primitive operations in the 
language. Domain specific demons can augment this 
general editor by checking whether the suspended 
state of the task, which was set in this case. 
does not become superfluous. If it does, new 
editing is triggered this time on 1 ho Task 
abstract data type. 
CTaskFligible? 
self (a SemanticProcedureMetaUnit 

supers (TaskProcess ingProc 
MessagePass ingProtIn terpProc ) ) 

msg (select- i f resume-if) 
msg-pos-answ ((select- i f t drop not-yet f a i l ) 

(resume-if t drop not-yet f a i l ) ) 
def au 1 t-msg-answ ((select- i f t ) ( resume--i f t ) ) 
not-in-range-event (select-val-not-in-range ) 
new (a MessagePassIngCase 

selector select-if 
send-to Task:Instance 
t <select task > 
drop <do not select) 
not-yet <make task suspended) 
f a i l <exit instantiation system)) . . .J 

Fig. 7: Task Eligible? unit 
C. Discussion 

When designing semantic constructs, the 
programmer must have already acquired a good 
understanding of the application domain. Semantic 
editors appear as local mutation mechanisms able 
to turn an existing construct into a class of 
different useful and meaningful constructs. What 
constitutes a meaningful mutation must be decided 
in advance for each construct. Meaningful 
mutations can be seen as modifying some previous 
assumption made during program design. This idea 
may be f r u i t f u l for further developments of this 
approach. 

This explains why with semantic constructs the 
programmer is not designing a single program, but 
a class of potential programs any of which can 
become real by appropriate semantic edi t ing. This 
helps enforce a kind of design for change. 

The Programmmer s Apprentice [22] uses plans 
to capture middle level programming knowledge. 
Our semantic constructs are aimed more at 
representing problem specific knowledge. This 
makes semantic editing possible and dist inct from 
what is ment in [233 by knowledge-based edi t ing. 
This dist inct ion also explains the use of a 
special plan language in [22] and the use of a 
more general representation language for semantic 
constructs. The Draco [24] system also uses 
problem oriented languages, but i ts major goal is 
to achieve reuasbiiity and the technology used 
qui te d i f ferent . 
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