A 3-D RECOGNITION AND POSITIONING ALGORITHM USING
GEOMETRICAL MATCHING BETWEEN PRIMITIVE SURFACES

0.D. PAUGERAZS and M. HEBERT
I.N.R.I.A
Domaine de Voluceau, Rocquencourt
B.P. 195, 79133 LE CHESNAY CEDEX

FRANCE

ABSTRACT
In this paper, we describe an
efficient algorithm for 3-0 scene
anal>sis. This algorithm uses

segmentation of the surfaces te be
identified into geometrical primitives ,
the original data being obtained by a
laser range finder. Moreover, the
algorithm estimates precisel> the location
and orientation of an identified object of
the scene. Results are presented on real
objects.

| INTRODUCTION

In applications of Scene Analysis
techniques to Robotics it is interesting
not only to recognize objects in the scene
but also to estimate as accurately as
possible their position and orientation.
In both cases symbolic descriptions of
objects must be available. Such
descriptions are usually obtained by
segmenting the scene into regions
homogeneous with respect to some criterion
and representing the result as a graph
where nodes are regions labelled with
features and arcs are relations between
regions. In many cases the relations are
topological (neighbor, inside....) and
sufficient for recognition but. not for
positioning. In order to achieve
recognition and positioning we need to
introduce the constraint of rigidity which
is global and therefore not very well
suited to the graph representation. Our
representation is purely geometrical in
the sense that objects are segmented into
regions approximated by simple
parameterized primitives such as planes.
and quadiics [I-51 which implicitely embed
the rigidity constraint. The geometrical

matcher presented here is part of a
general 3-D Vision system including
automatic data gathering, segmentation,

model construction and Scene Analysis.

Il GEOMETRICAL MATCHING

A geometrical description G of gy

object is a set {P(Ui))izl..l of regions
which are approximations of geovmetrical
primitive saurfaces, {e.q. planes or

quadries), U; being the parameter vector

of the ith primitive. A matching Ddetween
two descriptions G and L' is 3 set of
pairs (P(Ui),P'(Uj)) where P and P' are

primitives of & and G' respectively, The
parameters U, and Uj are not expressed in
the same coordinate system because G' and
G are usually the descriptions of a wmedel
and of the obs=rved scene, respectively,

More precisely, the pavameters of G' are
calculated in an object-centered Froame
while those of G 1re culeculated ipn 2
vigwer-centered frame. e smal) say that

the tateching M Is consistent if the twn
paired sets of primitives describe the
same object. Simce we are dealing with
rigid solids, the matching s perfectly
consgistent if and only iF there exists a
vrigid transformation T which maps each
primitive P' of G' pnto its corresponding
primitive P with respect toa the matching
M. This tranaformation 7T provides the
crientation and location of the identified
object of the scene.

The basis of Lthe recognition
algorithm is a measure of consistency
which allows us to control a2 tree search
procedure. This measure must be compatible
with the condition of perfect conseistency
as defined above. 5o, we define our
consistency Mmeasure by :

(L gM)=min 37 -Tw ]

where T(UB) ise the vector of the

parameters of the the primitive P'(Uj)

transformed by T.

This measure of consistency
involves the estimation of the best
transformation defined by the matching in
the least-squares sense. The algorithms
which perform this estimation are
presented in part III.



In our case, we uBe 2 simple
gepmetrical description in which the scene
is described by a list of almost planar
regions with the purameters of their
fFitting planes. These descriptions are
obtained by algerithms of segmentation
[5-7] which use the 3-D data obtained by a

Iaser range finger [7]. Moreoser, t he
acquisition syster provides 3 complete
medel  of each object which is E]

seqmentation of the whole surface of the
vbject into planar regions. Fjigs.Z and 3
ashow two examples of seqmentatiop, each

shade of gray cortrespending to a planar
regivn identified oy the alguorithms of
segrentition in a view of the object of

fig.l. Figs.2 and 3 correspand to two
different methods of segmentatinon which
ire called the "Hough transform" and the
"region growing methnd" [5-

1espectively. The reference mode! of  bthe
tomplete wbject is ubtairned in the same
w3y and 1s shown or fiq.4.

Il SSTIMATION JF THE BEST TRANSFORMATIAON

In this part we present an  algoiithm
which camputes the best estimate of the
transformation T of relatien {1). A plane
P is represented by two parameters w and d
where w ts the urnilt vector normal to P and
4 is the signed distance of the plane P Lo
the prigin 0. Since the surfiaces that we
have segmented are boundaries of solids,
we assume thit w is 1lways oriented to the
outside of the pbject. Fur computational
purposes, it is convenjient tu associate to
P ] point M nf P, therefure
dzw.0M (where "." is the inner product).

‘et T=t*R be a transformation with
its associated translation and rotation,
The notation "t*R" indicates that we apply
the rotation First. This decompositicn 1is
not unigque in general but we assume that
the axis of ratation contains the origin
of the reference coordinate system and
this condition implies the wunigueness aof
the decomposition. When we apply T ta the

plane P{w,d}) we obltain a new plane
Pl(ﬂl,dl) where :
(2) W =Rw and dy=wj.t+d

If M=(P(v;,dy), P (v3,di)) oy s 3

matching with N pairs, we @seek t and R
which minimize the sum {l) which is given
by

(33 ZTI|lvg-rey [Bewe e adya gt |

1

where W le a weighting factor. This sum
can bhe decomposed in two terms, a sum Over

"vi-Rvinz which allows us to determine the
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beat rotation and a sum cwer di‘di"i°t|2
which determines the translation. We
present the twe algorithms used for
minimizing these two sums,

Estimation of the totation

The problem of the estimation of
the rotatjon is the most difficult because
a rotation cannot be lineatrly represented
by matural pacrameters such as the Fuler's
angles and classical least-square methods
cannot be directly applied.

The first natural representation of
rotations is the composition of three
elementary rotations around the three axis
of courdinates,

The secand representation is
ubtained by using the axis w and the angle
r of the rutation, the rotation is then
Qiven by the Euler formula

{4) Resvell-cos{t))walwav)esin{r)way
Where A is the outer preduct. In both
cases, we h3ve to minimize an  expreasion
of the Form

) P2 2T -f e DI

where p is the vector of the pavrameters of
R and f is a nen-linear function.

The resnlution of this wminimisation
prublem uses gradient-]like algurithms
whose convergence is nol ensured. At last,
the rotation can be represented by a J by
3 matrix R subject to the constraint

RtR=Id, this leads tn an iterative
minimisation of a quadratic criterion
subject to six guadratic constraints.

We present now a representation
which sgeems to 4be the simplest one
according to the minimization problem and
uses the notion of quaternion. A
quiternion g is a pair {v,s) where v is 1
vector of E3 and s is a scalar {many other
gdefinitions exist, see [B]). The set of
guaternions H is isemorphic to £4 and has
2 stucture of non-commutative algebra, the
product vf two quaternions being defined
by :

(8) (v,8) * (W' 8" )z{vav'es'vasv' 88" —v,.v')

In the sequel, we identify tLhe
vectors v of EJ with the gquaternions (v,0)
and the scalars s with {0,s). The
conjugate § of a guaternion is : Gzl(-v,s)

if q=(v,s) and ite norm is given by "qu=q

* E:“u"z+sz. An impartant property of this
norm is that it is "multiplicative" -

(7) q9,*qs =[q1|. qul'

Notice that if g ie regarded as a
of Ea4, |q| ja its euclidian norm.

vector
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The quaterninons canm 9e regarded as a3
generalization of the coemplex numbers, the
vector v in q col1respanding toe the cumplex
part of a+¢ib. 5%ince the complex numbers of
madule | represent the rotations of F2, it
in matural that the same property wolds in
H. More precisely, there exists an
inpmorpnis® h frox the group of rotatiens
af £E3 te the graup UH/Eq where UH is  the
greup of the quzterrions of upit nore and
Eq is the gquivalence rtelaltivn
q Eq q' iff gs-q' or g=q'.
Moreover if R is 3 rotatinn 23nr3d q is 2
element of h{R), then the fullewing
relation holds for every wvector u in £3
{0) Ruzgq * v * g .

{the vector u and the quiternion {u,0) are
identified in this relatian.}

This property means bthat
and narmatiized

The equivaleerce relatior Fq reflects
the fact that 1 rotation has twn
axis/angle representatians, {w,r) and
{-w,-r}. The rapping h is very simple. Let
R be a rotation of axis w and angle r, the
associated quaterninns are :

{9} g=(sin{r/2}w,cos{:/2)) and -q.

In the sequel, we only consider the
determination af h{R} such that <cos{1/2)
is positive and for natation canvenience,
the vectors of £3 or F4 are jdentified
with 1l-row matrices. Notice that the
rntaglun of null angle is the quaternion
(2,11,

totations

Corvetsely, if q={+,s] is a
quiaternien of UH such that s is positive
then the corresponding rotatien is  given

by

{10) r=2.Accos{s) and wav/sin{r/2)} if r#0.
Qur minimization problem {5) is now

1 minimization over the set UH, t he

expression fo be minimized is :

(1) P= S77Ivs-9%v 15l
1

This new form is legal because the norm of
the qusterniens is an extension of tYthe
euclidian norm of E3, Relatien (7) can he
applied by right multiplying t he
expression {11} by gq which is of unit
norm, sa expression {11} becomes -

(12) P= 21:“‘1"1'“"3"2 .

Therefore, the problem is to minimize (12)
gsubject to the constraint q =1, This
leads to a simple eigenvalue problem
because the expression vi*q-q*\i ia a

linear function of the 4-vector g, so it
existe a 4 by &4 matrix A; such that :

(13) vi*q-q¥v}] =q.A; .

{q is now n | by 4 matrix.)
therefore the criterion f  of expression
{11) is a guadratic criterion :

{La) F= Z::q_ai_Ai.qt=q.B.qt
1

. . e==,t
where Bs= Z?-Ai'“i

is 4 symmetric matrix.
S0, w2 hive ta minimize F subject to
the constrairt |p"=1. This is 1 classical
problem, Eﬂ and Fmin 18 The seal lest
eigenvalue of B, The solutiun Uy ip OF {5)

is the eigenvector of unit norem  and  of
positive fourth cuordinate corresponding
te the eigenvalue F

nine
Thus, we hxwe reduced our initial
preblem  to l he ramputat ian of t he
eigenvaltues of a symretric mntrix af

dimension four. [n order to complete the
algorithe, we have to compute the matrix B
which is defined 9y relatian (14). We
first couwmpute the matrices ﬂi af relation

{13).

Let gs{w,s) be a quaterrion, and
and v' two vectors of F3, iF q'=v*g-g*v'
then :
£19) @'={{v'+vi A wenlaon '), w.{n?=v))

a matrix u® is associated to each vector u
of £3, this matrix is defimed by :

£16) u u'=u'.u® for all uw' of E3,
Mureover, if Uz(uI’UZ'UB) then

o, Us,-uy
(17) uPzl-ug, 0 L uy
MUy, D

we derive from relation (4} and definitian
{16} that the matrix A such that g'=zq.A is

0 (v-v")
{18) A = fmr-commmmcmceceees
{(vroudt {(v'+rv)0P
eo, the matrix B of {l4) is the sum of the
matrices ri‘“{'ﬁi {19)which are easily

derived from relation {18),

The matrix Rmin correspending te the

quaternion qminz(u,s) i given by :

(20) Rz (1d+(1-cos(r}}wolenin{rIwe)!

Estjmation of the translation

We have to determine the vector
t which minimizes the sum :



- 2
(21) 5= 3T_|d'i-di+wi.t|

Where da,d ind w} are the pararceters of

i
the planes uf the matching M of relation
£3). The ginimizatiorn of S is 1 simple
least-squires prablem and is solved 5y the
poeudo-inverse method :

let N 9e number of pairs , A the N

: t
hy 5 matrix [“1---r"x] and 7 the

N-vertor E1;‘dl""dﬁ‘d¥]t then

sellz-at iz .

And the estimate of the best transfiatiun
according to thez criterion (21} is
(atar-latyz

122} tein®

And the errol 1s givern 9y

f 3 e \
{z3) drint L vz nH:rl'.ir?‘ .

The estimation nf  the translatior
cneplebes the algoniithm of estimation uf
the best  trarsformatior relabive to A
matening M. The culresponding  onnsistency
measure J{M] is given by

(24) olM)=F o500

wherte W is 1 weighting factor, F in the

min
nvalue of  the matrix 1]

sraliest eigen
{14), and 5 is  defined by

(2
defined by (14 rin
{23). Simple and pnwerful 1s it is, Gthis
technique his several weaknesses which Te
analyzed now, The estieation procedures
are not jterative in the following sense

if we add a new pair (pV+i'P*+l) to  a

Jiven matching #, we can't use the
transformatior T{M} to compute
T(M'(DN+1'PQ¢1)) berause al though t he

matrix B of {14} can he easily updated,
its eigenvalues must be recomputed. This
increqases the time of cowmpubation in  the
treg-search algorithm. The second problem
is that = teqpeforraiion T computed Dy
the two presious algorithms is nat
necessarily unique because the
determinatian of  the rotation {reap.
transiation] requires at least two pairs
of non parallel planes {(resp. three pairs
of independent planes)., These constraints
cin Jive rise to indeterminatiorns in  the
tree search algorithm. Thie oproblem is
that we use "infinite" planes a8
primitives.
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Iv THE MATCHING ALGNRITHM

We present nw the recognitiaon
algurithm which is a simple tree-seacch
orocedute [10]. For the sake of clarity,
we denote the two descriptions to  be
malched by two sets of tasels G=(1..%) and
G'={1..N') where each 1a2el corregponds to
a plane as described above. So, 2 matching
M is 1 list of pairs {i,j). Moreover, we
assure that ne label of G or G appears
Tole than onrce in M and  we  denote by
(M,{i,j})} the new matching nbtiined by
adding a nmew pair {i,j) to M, At last, we
assume thi3t O oand G are the  Jdeseriptinns
of the oasztee ] coere and of the o aodel of
it nagert, respectively. The output wf the
Algorithe is 3 xatching M which cortains
the primitives nf the model identified inm
the scene, the cortespanding vptimal
transforzation which gives the position of
the object im the scene  and  the quiality
meanure giMY.

The basic algmiithe can be Jdescribed
By # retursive procedure MATCH{M,i) whose
arquments are the current matchiny M and
the current lane!l i of G, The pracedure
updates 1 matching Hmin which is the Dbest
une arcurding to the criterion g {eqg. Z4).

Procedure MATCH(M,i)

. Try te Find a label § which
has not been alrteady tested such
that the error g{M,{i,j)} is
icceptable.
[F none exists then Return
Flse
1F i=¥ then
[F {M,{N,3)) is better
than Hmin then

M =(M,{N, 53]

min't
Clse MATCH((M,{i,j)},i+1}

The standard algurithm must be
todified in order to take into account the
prublems inherent to the estimation of
g{#}, At first, the evaluatian of g{M) is
rot very fast because it requires some
malrix computations such 18 eigenvalues
calculations, mureower if 2 pair {i,j) is
strongly incoansistent with a matching M,
it is not necessary to compute a precise
error. Su, we use a pew parameter c(™M,1i,j)
which is called the "local consistency™.
This parameter is used as a rough estimate
of the geometrical consistency aof the new
pait (1,j) with the maktching M and it
enables us to perform a fast elimination
of strongly inconsistent pairs.

Im our ctase, the primitives are
planes and the lncal corsistency can be
defined by ;

{29) C(H,la,jj)=|\i.\in-\3.vhu
where (ig,jq) is the pair to be tested,

{i,j) is some pair in M and the vectors v
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are the normals to  the corresponding
planes. This relatjon comes from the Fact
that there exists a rotatior ronsistent
with the pairing (fi.J),fin,jj)) if  and

only if w. .y

i ijz‘h"hq' Anather pussibility
is to define c by :
{26) F{H'itjjzil‘\i.nb:} .

where R is the vrotation defined hy Lthe
natching M. Althouqgh they are very simple,
these two functions provide a good measure
af inconsistency and speed up the
algor ithm drastically.

Another problem is the possible
indetermination in the computation of the
transfoimation T defined oy {11). As
previously ®entiomed, we need twoe pairs of
non-patailel planes in arder ta  estimate
the rotation and three for the
translation, It means that we hive to
explote the first three levels of the tree
befose checking the geumetgical
cunsistency. This is the main Jifference
with the Z-1 case in which 3
transformation can De precisely estimated
with uniy one pair of primitives [lq.
Thus we use only the "1totational
corsistency” F . defined 2y relations (57
and {i3) for the control of the =search,
the complete comsistency gfiM) being wused
for selecting the best solutions among
several ones at the battom of the tree.

The last probler is that the
estimatinn of the ratation is nat
"recursive” which means that we cannot use
the estimated rotation R of M in order ta
estimate the rotation &' of (M,fi,j)).
This is 3lso an important difference with
the 2-D problem as presented in [11].
Nevertheleas, we can perform suTe
calculations in an iterative way. More
precisely, if B is the matrix defined by
relation (14) far Yhe matching M, the new
matrix B' corvesponding to the matching
(M, {i,§)Y is : B'=8+C(i,j), where <¢{i,j)
is the matrix of relation {19) for the
pair (ti,»a}. Conversely, if we remove a
pait (i, j) from the matching M, the new
matrix is : B'sB-C(i,j), 80 we can easily
update the least-equares matrix B at each
l¢vel of the search. Moreover, we store
the matrices £{1i,j) that have been already
camputed so that each matrix € is computed
only once. At last, if
H=((1.j1),..,{b.jL}) is the current
matching at some level of the search, we
store the rotation matrices (Rp)p_2 L1

and the errors {Fp )p=2...,t-l
corresponding to ite ancestors in the
search,

H2={(llj1)l{2ljz)>)ln'

HL_1={(laJl)u.-.{L-l.JL_l)).

Tnis last improvement allows us  naot to
tecorpute the parameters of the ancestor
mitchings when backbtracking occurs. In
summaly, matrix computations occur when we
add a new pair to a partial matching, in
this caise we hive to compute the new
egtimate af t he rotatiaon and t he
correspanding error, the matrix { defined
by relation {19) being computed only if
the new 1it has never Dbeen encountered
before. These improvements give rire to A
very fast algorithm  in  spite nf t he
cemplexity of the numerical algnyithms of
Part. 111,

v IHE RESULTIS

Results a2re new presented on 2 simple
scent built with th: object of Ffig. 1.
Fig., 5 shows the segrentation of the acens
in planar tegians, only regions of  high
quality are considered. Figs.6 and 7 show
the result of the identification of the
firet part. The egstimated orientation of
the ohject is shown on fig.6 where the
black regions are the identified regions
of the rodel . Fig.? Shows the
sunerposition of the identified regions of
the scene fsalid lines) with t he
corresponding legivns of the model {(dotted
lines}, t he superposition uses the
estimation of the transformaticn. FPinally,
the regions 12,2 amd 1 have not Dbeen
recognized but are sliminated by a simple
superposition test.

The coumputation time is about 15
secpnds that may appear very fast,but it
illustrates the efficiency of t he
geometrical compatibility testa., Finally,
the precision of the transformation
estimation is rather good, the mean angle
between v and Rv' is about D.04 radians
and the translation error is 3abput Y mm.
These values are related te the accuracy
of the acquisition which is 3hout 1 mm.

VI EXTENSION 70 QUADRIC SURFACES

As previously mentioned, the
recognition method is quite general and
can be extended to other classes aof
primitive eurfaces provided that there
existe an algurithm for the estimation of
the transformation , In this Section, we
briefly show how the previous algorithm

could be extended to the case of quadric
surfacen.
The general equation of a quadric
surface ie :
{27)  x'aX+C.X+D=0
A transformation 7T=t*R mapms a quadric

(q,C,D) onts 8 quadric (Q,,C;,0)) euch

that :



(2d) 0y =raR%, € scezrtat, D =Datlar

S, if
M:(Pfﬂi,fi.Di),P'(Qi,ti,ni))i=l’..’N is a

matching with % pairs of qu3idrics, we hive
te minimize a sum similar tu (3)

{31) F= ’__"ﬂi'RDiRtlF

1

o og-cr-zrt 2o, fog-ng-ttage |2,

where the Wi's are weighting facters  and
. ls 3 watrix norm defined by

(30) {ja J|Z=1rlatQ)

where Tr{Aa} denotes the trace uf the
matrix A.
The ftranslatiuon can be eqnily

estimated by a linenar least-squares
method, Thez most difficult proalem i5  the
estimation nf R, The expression c¢an  Je
simplified Dy using the definiticr {39)

and thz relations Q:Z]t and RRY:z1d. S5, the
new expression to be minimized is

£33 F*= Z::Tr(qinqir{*) .
i

The theory nf the Lagrange multipliers can
be applied to this problem. Precisesly, 2
quaternion with wnit norm is a local
extremum of ' only if there exists a real
k such that :
f34) Hi(qg,k)= égl_kqi:ﬁ For i=l,..,8 .
Aq;

The partial derivative is 1
polynomial function of degree three of the
qi's. We assume that we know 3 reotation

q°, then, we seek qi and g; which maximize

the criterion (33), the other varinbles
being Ffixed. This wmaximization is an
elimination hetween the polypomials Hi's
and the comstraint. Notice that we compute
the abnaolute maximum of F'(q9y,q7,05%,q,4°)

with respect te the variables q, ~and ajz.

So, We chtain a new golution
(9],45,935%,q4") which is better than q°.

This method can be iteratively applied to
the other variables. At each step, Lhe new
solution gq is better than the previous one
according to the criterion {33). 5o, the
method converges to a local maximum of the
function F'. The only assumption that we

have made 1is the existence of an
a-priori estimate g°%.
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This estimate could be obtained by
computing the transformation using only
planner regions, the matching of the
quad lies beinq used to validate or reject
the matching of planes.

V11 CONCLUSIO N

We have presented an algorithm of 3-D
recognition using primitive surfaces which
gives a precise estimation of the
positions of the objects. We are in the
process of extending the algorithm to more
complex primitive surfaces such as quidric
surfaces. Our future work is to include
this recognition module in a complete
vision system including automatic data
acquisition, segmentation, model
construction and scene analysis.
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Fig.l. Photograph of an automebile part.

-

“ig.3. Segmentation using the region growing method.
Fig.4. Reference model of the object of Fig.l.

fig.6. Estimated Orientation of the first object.,

~——— 1 recognized regifons of the scepe.
..... : corresponding regions of the model.
----- : regions eliminated after the recognition.

Fig.7. Superposition of the scene and the recogni-
zed model.




