Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 Sep 2024]
Title:miniLB: A Performance Portability Study of Lattice-Boltzmann Simulations
View PDF HTML (experimental)Abstract:The Lattice Boltzmann Method (LBM) is a computational technique of Computational Fluid Dynamics (CFD) that has gained popularity due to its high parallelism and ability to handle complex geometries with minimal effort. Although LBM frameworks are increasingly important in various industries and research fields, their complexity makes them difficult to modify and can lead to suboptimal performance. This paper presents miniLB, the first, to the best of our knowledge, SYCL-based LBM this http URL addresses the need for a performance-portable LBM proxy app capable of abstracting complex fluid dynamics simulations across heterogeneous computing systems. We analyze SYCL semantics for performance portability and evaluate miniLB on multiple GPU architectures using various SYCL implementations. Our results, compared against a manually-tuned FORTRAN version, demonstrate effectiveness of miniLB in assessing LBM performance across diverse hardware, offering valuable insights for optimizing large-scale LBM frameworks in modern computing environments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.