
Zen: a High-Throughput Log-Free OLTP Engine
for Non-Volatile Main Memory

Gang Liu, Leying Chen, Shimin Chen
∗

SKL of Computer Architecture, ICT, CAS

University of Chinese Academy of Sciences

{liugang,chenleying,chensm}@ict.ac.cn

ABSTRACT
Emerging Non-Volatile Memory (NVM) technologies like 3DX-

point promise significant performance potential for OLTP databases.

However, transactional databases need to be redesigned because

the key assumptions that non-volatile storage is orders of magni-

tude slower than DRAM and only supports blocked-oriented access

have changed. NVMs are byte-addressable and almost as fast as

DRAM. The capacity of NVM is much (4-16x) larger than DRAM.

Such NVM characteristics make it possible to build OLTP database

entirely in NVM main memory.

This paper studies the structure of OLTP engines with hybrid

NVM and DRAM memory. We observe three challenges to design

an OLTP engine for NVM: tuple metadata modifications, NVM

write redundancy, and NVM space management. We propose Zen,

a high-throughput log-free OLTP engine for NVM. Zen addresses

the three design challenges with three novel techniques: metadata

enhanced tuple cache, log-free persistent transactions, and light-

weight NVM space management. Experimental results on a real

machine equipped with Intel Optane DC Persistent Memory show

that Zen achieves up to 10.1x improvement compared with existing

solutions to run an OLTP database as large as the size of NVM

while achieving fast failure recovery.

PVLDB Reference Format:
Gang Liu, Leying Chen, Shimin Chen. Zen: a High-Throughput Log-Free

OLTP Engine for Non-Volatile Main Memory. PVLDB, 14(5): 835 - 848, 2021.

doi:10.14778/3446095.3446105

1 INTRODUCTION
Byte-addressable, non-volatile memory (NVM) is a new type of

memory technology designed to address the DRAM scaling prob-

lem [1, 3, 18, 29, 39]. NVM delivers a unique combination of near-

DRAM speed, lower-than-DRAM power consumption, affordable

large (up to 6TB in a dual-socket server) memory capacity, and

non-volatility in light of power failure. By eliminating disk I/Os,

NVM can substantially improve the performance of systems with

persistence requirement. Therefore, OLTP databases using NVM as

primary storage is emerging as a promising design choice [5, 6, 20].

Recent studies in concurrency control methods have advanced

the single-machine main memory OLTP transaction throughput

∗
Shimin Chen is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.

doi:10.14778/3446095.3446105

(without persistence) to over one million transactions per sec-

ond [15, 24, 27, 32, 36, 41]. However, replacing DRAM with NVM

in a system tends to slow down the system because NVM performs

modestly (e.g., 2–3x) slower than DRAM, NVM writes have lower

bandwidth than reads, and persisting writes from CPU cache to

NVM incurs extra overhead. In this paper, we would like to rethink

the design of the OLTP engine for NVM by fully considering NVM’s

characteristics. Our goal is to achieve transaction performance sim-

ilar to those of pure DRAM based OLTP engines.

We observe three main challenges in achieving our goal:

TupleMetadataModifications: Concurrency control methods

typically keep a small amount of metadata per tuple in a main

memory OLTP engine [24, 27, 32, 36, 41]. The per-tuple metadata

is often modified not only by tuple writes but also by tuple reads.

As a result, tuple reads in an NVM based OLTP engine can incur

expensive NVM writes.

NVM Write Redundancy: OLTP databases typically rely on

logs and checkpoints/snapshots to achieve durability. If an NVM

based engine takes this approach, there will be substantial NVM

write redundancy because the same content is written to the logs,

the checkpoints/snapshots, in addition to the base tables. This re-

dundancy not only takes more NVM space, but also negatively

impacts the runtime performance.

NVM Space Management: First, NVM space allocation needs

to be persistent across power failure. Hence, every NVM memory

allocation and free may have to be protected by expensive NVM

persistence operations. Unfortunately, OLTP transactions often

perform non-trivial numbers of inserts, updates, and/or deletes,

potentially incurring significant overhead. Second, NVM may have

limited write endurance [29]. It is important yet challenging to

remove hot spots in the NVM frequently allocated and freed.

In this paper, we propose Zen, a high-throughput log-free OLTP

engine for NVM. Zen addresses the above three challenges with

the following three new techniques. It provides general-purpose

support for a wide range of concurrency control methods.

Metadata Enhanced Tuple Cache: We store base tables in

NVMwithout per-tuple metadata. Then we propose to build anMet-

Cache (Metadata enhanced tuple Cache) in DRAM to (i) cache tuples

that are used in currently running transactions or have recently

been used, and (ii) augment each tuple with per-tuple metadata

required by concurrency control methods. In this way, Zen performs

concurrency control mostly in DRAM, avoiding writing per-tuple

metadata in NVM for tuple reads, and reduces NVM reads for

frequently accessed tuples.

Log-Free Persistent Transactions: We eliminate NVM write

redundancy by completely removing logs and checkpoints for trans-

actions in our durability scheme. Each tuple in the base tables in

835

https://doi.org/10.14778/3446095.3446105
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446105

NVM has a tuple ID field and a Tx-CTS (Transaction Commit Times-

tamp) field. Tx-CTS identifies the transaction that produces the

version of the tuple. At commit time, Zen persists modified tuples

in a transaction from the Met-Cache to the relevant base tables

in NVM. It writes to newly allocated or garbage collected space

without overwriting the previous versions of the tuples. The most

significant bit in Tx-CTS is used as a LP (Last Persisted) bit. After

persisting the set of modified tuples in a transaction, Zen sets the LP

bit and persists the Tx-CTS for the last tuple in the set. Upon failure

recovery, Zen can identify if the modification of a transaction is

fully persisted by checking if the LP bit is set for one of the tuples.

If yes, then the new tuple versions will be the current versions. If

no, then the transaction is considered as aborted, and the previous

tuple versions are used.

Lightweight NVM SpaceManagement: We aim to reduce the

persistence operations for NVM space management as much as pos-

sible. First, we allocate large (2MB sized) chunks of NVM memory

from the underlying system, and initialize the NVMmemory so that

Tx-CTS=0. Second, we manage tuple allocation and free without

performing any persistence operations. This is because using the

log-free persistence mechanism, Zen can identify the tuple versions

that are most recently committed upon recovery. The old tuple ver-

sions are then put into the free lists. Third, the allocation structures

are maintained in DRAM during normal processing. Zen garbage

collects old tuple versions and puts them into free lists for tuple

allocations. Each thread has its own allocation structures to avoid

thread synchronization overhead.

The contributions of this paper are fourfold. First, we identify

the main design principles for NVM based OLTP engines by exam-

ining the strengths and weaknesses of three state-of-the-art NVM

based OLTP designs (§2). Second, we propose Zen, which reduces

NVM overhead by three novel techniques, namely the Met-Cache,

log-free persistent transactions, and light-weight NVM space man-

agement (§3 and §5). The three techniques push to the extreme

of minimizing NVM writes: for every tuple write, the only NVM

write is for the modified tuple itself. Third, we evaluate the runtime

and recovery performance of Zen using YCSB and TPCC bench-

marks on a real machine equipped with Intel Optane DC Persistent

Memory. Experimental results show that Zen achieves up to 10.1x

improvements over MMDBwith NVM capacity, WBL, and FOEDUS,

while obtaining almost instant recovery (§4). Finally, we prove the

wide applicability of Zen by supporting 10 different concurrency

control methods (§3 and §4).

2 BACKGROUND AND MOTIVATION
We provide background on NVM and OLTP, examine existing OLTP

engine designs for NVM, then discuss the design challenges.

2.1 NVM Characteristics
There are several competingNVM technologies, including PCM [29],

STT-RAM [39], Memristor [3], and 3DXPoint [1, 18]. They share

similar characteristics: (i) NVM is byte-addressable like DRAM; (ii)

NVM is modestly (e.g., 2–3x) slower than DRAM, but orders of mag-

nitude faster than HDDs and SSDs; (iii) NVM provides non-volatile

main memory that can be much larger (e.g., up to 6TB in a dual-

socket server) than DRAM; (iv) NVM writes have lower bandwidth

than NVM reads; (v) To ensure that data is consistent in NVM upon

power failure, special persistence operations using cache line flush

and memory fence instructions (e.g., clwb and sfence) are required

to persist data from the volatile CPU cache to NVM, incurring sig-

nificantly higher overhead than normal writes; and (vi) NVM cells

may wear out after a limited number (e.g., 10
8
) of writes.

From previous work on NVM based data structures and sys-

tems [4–6, 9–12, 17, 19, 20, 25, 26, 28, 33–35, 37, 38], we obtain

three common design principles: (i) Put frequently accessed data

structures in DRAM if they are either transient or can be recon-

structed upon recovery; (ii) Reduce NVMwrites as much as possible;

(iii) Reduce persistence operations as much as possible. We would

like to apply these design principles to the OLTP engine design.

2.2 OLTP in Main Memory Databases
Main memory OLTP systems are the starting point to design an

OLTP engine for NVM. We consider concurrency control and crash

recovery mechanisms for achieving ACID transaction support.

Recent work has investigated concurrency control methods for

high-throughput main memory transactions [15, 24, 27, 32, 36, 41].

Instead of using two phase locking (2PL) [7, 16], which is the stan-

dard method in traditional disk-oriented databases, main memory

OLTP designs exploit optimistic concurrency control (OCC) [21]

and multi-version concurrency control (MVCC) [7] for higher per-

formance. Silo [32] enhances OCC with epoch-based batch times-

tamp generation and group commit. MOCC [36] is an OCC based

method that exploits lockingmechanisms to deal with high conflicts

for hot tuples. Tictoc [41] removes the bottleneck of centralized

timestamp allocation in OCC and computes transaction timestamps

lazily at commit time. Hekaton [15] employs latch-free data struc-

tures and MVCC for transactions in memory. Hyper [27] improves

MVCC for read-heavy transactions in column stores by performing

in-place updates and storing before-image deltas in undo buffers. Ci-

cada [24] reduces overhead and contention of MVCC with multiple

loosely synchronized clocks for generating timestamps, best-effort

inlining to decrease cache misses, and optimized multi-version val-

idation. One common feature of the above methods is that they

extend every tuple or every version of a tuple with metadata, such

as read/write timestamps, pointers to different tuple versions, and

lock bits for validation and commit processing. These methods have

achieved transaction throughputs of over one million transactions

per second (TPS) without persistence.

Similar to traditional databases, mainmemory databases (MMDB)

store logs and checkpoints on durable storage (e.g., HDDs, SSDs)

in order to achieve durability [8, 14, 22, 23, 30, 43]. The main differ-

ence resides in the fact that all the data fits into main memory in

MMDBs. Hence, only committed states and redo logs need to be

written to disks. After a crash, an MMDB recovers by loading the

most recent checkpoint from durable storage into main memory,

then reading and applying the redo log up to the crash point.

2.3 Existing OLTP Engine Designs for NVM
In this paper, we focus on the case where all data and structures of

the OLTP engine can fit into NVM memory. We assume that the

computer system contains both NVM and DRAM memory, which

are mapped to different address ranges in the virtual memory of

836

DRAM NVM

Tuples

Index

Transaction

Volatile Memory
WAL Log

Checkpoint

DRAM

Tuple Cache

Index

Transaction
Tuples

WBL Log

NVM DRAM

Page Cache

Index

Transaction Log

Snapshot Pages

NVM DRAM

Met-Cache

Index

Transaction
Tuples

No Log

NVM

(a) MMDB with NVM Capacity (b) WBL (c) FOEDUS (d) Zen (our proposal)

Figure 1: OLTP engine designs for NVM.

software. For example, this corresponds to the App Direct mode in

3DXpoint based Intel Optane DC Persistent Memory (OptanePM).

A dual-socket server can have up to 6TB of OptanePM. The ratio 𝑃

of NVM to DRAM capacity is typically 4–16 in OptanePM.

MMDB with NVM Capacity. As shown in Figure 1(a), MMDB

can leverage the NVM capacity by treating part of NVM as slower

volatile memory when the OLTP database is larger than DRAM.

Like existingMMDB designs, the system stores tuples and indices in

volatile memory, and processes transactions completely in volatile

memory using normal load and store instructions. For durability,

the system places the write-ahead logs (WAL) and checkpoints

in NVM. It issues special persistence instructions (e.g., clwb and

sfence) to persist log entries and checkpoints. After a crash, tuples

and indices in volatile memory are considered lost. The recovery is

based on the logs and checkpoints in NVM.

This design suffers from two drawbacks. First, a modified tuple

is to be written to both the WAL and checkpoints, incurring two

additional NVM writes for the tuple. If it is stored in the volatile

part of NVM, the tuple is written three times in NVM. Second, as

the database size increases, more and more tuples reside in NVM.

Since per-tuple metadata is often modified even for tuple reads,

read transactions still perform a large number of NVM writes.

Recent studies propose several improved logging schemes using

NVM, including NV-Logging [19], Distributed-Logging [35], and

WBL [6]. We discuss WBL in the following.

WBL. As shown in Figure 1(b), write-behind logging (WBL) [6]

maintains indices and a tuple cache in DRAM. Tuples are fetched

into the tuple cache for transaction processing. WBL supports mul-

tiple versions of a logical tuple in NVM by enhancing the tuple with

per-tuple metadata, e.g., a transaction ID, commit timestamps, and

a reference to previous version of the tuple. A committing transac-

tion persists a modified tuple in the tuple cache by creating a new

version of the tuple in NVM. In this way, the previous version of

the tuple is available if a crash occurs at commit time. Unlike WAL,

the WBL log does not contain modified tuple data. A log entry is

written after a set of transactions commit. It contains a persisted

commit timestamp (𝑐𝑝), and a dirty commit timestamp (𝑐𝑑). Since

persist operations issue memory fence instructions (e.g., sfence),

the existence of this log entry indicates that any transactions with

a commit timestamp earlier than 𝑐𝑝 must have successfully been

persisted to NVM. Upon crash recovery, the system checks the last

log entry, and undoes any transactions with a timestamp in (𝑐𝑝 , 𝑐𝑑).

It rebuilds the indices in DRAM.

Compared to MMDB in Figure 1(a), WBL significantly reduces

the log size and does not maintain checkpoints. Therefore, it writes

a modified tuple exactly once to NVM, significantly decreasing

the number of NVM writes. However, WBL maintains per-tuple

metadata at every tuple in NVM. Therefore, it suffers from frequent

per-tuple metadata modifications.

FOEDUS. As shown in Figure 1(c), FOEDUS [20] stores tuple data

in snapshot pages in NVM, and employs a page cache in DRAM.

The page index in DRAM maintains dual pointers for a page, i.e. a

pointer to the page in the NVM snapshots, and a pointer to the page

in the page cache (if it exists). FOEDUS runs transactions in DRAM.

If the page containing a tuple required by a transaction is not in

the page cache, the system loads the page into the page cache and

updates the page index. At commit time, the system writes to the

redo logs in NVM. A background log gleaner thread periodically

collects logs and runs a map-reduce like computation to generate a

new snapshot in NVM.

FOEDUS deals with transactions completely in DRAM, thereby

avoiding per-tuple metadata writes in NVM. However, there are

three significant problems of this design. First, the page granularity

of caching results in NVM read amplification. A tuple read incurs

the much larger overhead of a page read. Second, the sophisticated

map-reduce computation causes many NVM writes. Finally, the

FOEDUS implementation uses the I/O interface to access NVM,

which does not take full advantage of the byte-addressable NVM.

3-tier Storage Manager with DRAM, NVM, and SSDs. Renen
et al. proposes a 3-tier storage manager that uses DRAM and NVM

as selective caches for data in SSDs [33]. Pages are loaded into

DRAM from SSDs for DB accesses. When a page is evicted from

DRAM, it can be placed into NVM for future reuse. In comparison

to the 3-tier design, we assume that the OLTP database fits into

NVM and propose an Met-Cache in DRAM for data in NVM. To

our knowledge, 6TB of NVM is large enough for a significant num-

ber of OLTP applications. Exploiting SSDs to support even larger

databases is an interesting direction in future work.

2.4 Design Challenges
Given the existing designs, we examine the three design challenges.

1. Tuple Metadata Modifications: In MMDB andWBL, per-tuple

metadata is stored with tuples in NVM. Unfortunately, concur-

rency control methods (e.g., OCC variants and MVCC variants)

may modify the metadata even for tuple reads. 2. NVMWrite Re-
dundancy: In MMDB and FOEDUS, a modified tuple is written

to tuple heaps, logs, checkpoints, and/or page snapshots in NVM.

The NVM write amplification can negatively impact transaction

performance. 3. NVM Space Management: WBL performs fine-

grain space allocation for tuples. The WBL paper does not describe

space management in detail. A naïve approach is to persist space

allocation metadata to NVM (e.g., with logging) for every allocation

and free calls. This may incur significant NVM persist overhead.

837

NVM-Tuple Heap

LP
(1 bit)

Tx-CTS
(63 bit)

Deleted
(1 bit)

Tuple ID
(63 bit)

Tuple Data
(Data Length)

0 0x0001 0 0x0001 X

1 0x0001 0 0x0002 Y

0 0x0002 0 0x0003 Z

1 0x0002 0 0x0004 W

0 0x0003 1 0x0001 X’

1 0x0003 0 0x0002 Y’

0 0x0004 0 0x0006 R

0 0x0004 0 0x0007 S

Clock
(1 bit)

Active
(1 bit)

Dirty
(1 bit)

Copy
(1 bit)

CC-Meta
Tuple ID
(64 bit)

NVM-Pointer
(64 bit)

Tuple Data
(Data Length)

1 0 0 0x0001 0x004 X’

0 0 0 0x0002 0x005 Y’

1 1 1 0x0006 0x006 R

Met-Cache (Shared)

HTable

cache

NVM Metadata

Map address

Pages of HTable

Table Schema

NVM Page Manager

DRAM NVM

Read Set

Write Set

Insert Set

Transaction

C0 C1

C0 C1

C3 C4

NVM-Tuple Manager

NVM-Tuple Allocator NVM-Tuple Collector

NVM Pages Free List Garbage Queue

X Y

Index

Primary Index Secondary Indices

PK Tuple ID
Met-Cache

Key
PK

persist
persist

Figure 2: Zen architecture.

Figure 1(d) compares our proposed design, Zen, with the three

existing designs side by side. First, Zen maintains the metadata

enhanced tuple cache (Met-Cache) in DRAM. Unlike the page cache

in FOEDUS, the granularity of Met-Cache is tuple. This avoids

FOEDUS’s NVM read amplification problem. Unlike WBL, Zen

modifies per-tuple metadata only in the Met-Cache for concurrency

control methods. Second, Zen completely removes logging. There is

no NVM write amplification for tuple writes. Finally, Zen proposes

a light-weight NVM space allocation design, which does no NVM

persist operations for tuple allocations and frees.

3 ZEN DESIGN
We propose Zen, a high-throughput log-free OLTP engine for NVM.

Zen supports OLTP databases much larger than DRAM, while ad-

dressing the three design challenges to achieve good performance

for both transaction processing and crash recovery.

3.1 Design Overview
Figure 2 overviews the architecture of Zen. There is a hybrid table

(HTable) for every base table. It consists of a tuple heap in NVM,

an Met-Cache in DRAM, and per-thread NVM-tuple managers.

Moreover, Zen stores table schemas and coarse-grain allocation

structures in the NVM metadata. Furthermore, Zen keeps indices

and transaction-private data in DRAM.

NVM-Tuple Heap. An NVM-tuple is a persistent tuple in NVM.

Zen stores all tuples in a base table as NVM-tuples in the NVM-

tuple heap. The heap consists of fixed-sized (e.g., 2MB) pages. Each

page contains a fixed number of NVM-Tuple slots
1
. An NVM-tuple

consists of a 16B header and the tuple data. The NVM-tuple heap

1
In this paper, for simplicity, we assume that the tuple size is fixed, e.g.,

by allocating the largest lengths for varchar fields. Note that it is easy

to extend our design to support variable-sized tuples. One can maintain

multiple page types such that the tuple slots in a type-𝑖 page are 2𝑖 bytes

large. Then, a tuple of length 𝐿 can be allocated in a type-𝑖 page such that

2
𝑖−1 < 𝐿 ≤ 2

𝑖
.

may contain several versions of a logical tuple. The tuple ID and

the transaction commit timestamp (Tx-CTS) uniquely identifies a

tuple version. The deleted bit shows if the logical tuple has been

deleted. The last persisted (LP) bit shows if the tuple is the last tuple

persisted in a committed transaction. The LP bit plays an important

role in log-free transactions (cf. Section 3.3). Note that the header

contains no field-specific to particular concurrency control methods.

The NVM-tuple slots are aligned to 16B boundaries so that an NVM-

tuple header always resides in a single 64B cache line. In this way,

we can use one clwb instruction followed by a sfence to persist the

NVM-tuple header.

Met-Cache. TheMet-Cache manages a tuple-grain cache in DRAM

for the corresponding NVM-tuple heap. An Met-Cache entry con-

tains the tuple data and seven metadata fields: a pointer to the

NVM-tuple if it exists, the tuple ID, a dirty bit, an active bit to indi-

cate that the entry may be used by an active transaction, a clock bit

to support the cache replacement algorithm, a copy bit to indicate

if the entry has been copied, and a CC-Meta field that contains

additional per-tuple metadata specific to the concurrency control

method in use. Zen supports a wide range of concurrency control

methods (cf. Section 3.3.2). Using the Met-Cache, Zen performs

concurrency control entirely in DRAM.

Indices in DRAM.Wemaintain indices for each HTable in DRAM.

We rebuild the indices upon crash recovery. A primary index is

required and secondary indices are optional. For the primary index,

the index key is the primary key of a tuple. The value points to the

latest version of the tuple in either (i) theMet-Cache or (ii) the NVM-

tuple heap. We use an unused bit of the value to distinguish the two

cases
2
. For secondary indices, the index value is the primary key of

a tuple. Zen requires that the index structures support concurrent

accesses, and transactions can see only committed index entries

(previously modified by other transactions).

2
Only 48 bits in a 64-bit virtual memory address are used in current systems.

Moreover, the highest bit is always 0 in user-mode programs.

838

Transaction-Private Data. Zen supports multiple threads that

handle transactions concurrently. Each thread reserves a thread-

local space for transaction-private data in DRAM. It records the

transaction’s read, write, and insert activities. OCC and MVCC vari-

ants maintain read, write, and insert sets as separate data structures.

2PL variants store the changes in the form of log entries.

NVM Space Management. Zen uses a two-level scheme to man-

age NVM space. First, the NVM page manager performs page-level

space management. It allocates and manages 2MB sized NVM pages.

The map address and the HTable pages in NVM metadata maintain

the mapping from NVM pages to HTables. Second, NVM-tuple man-

agers perform tuple-level space management. Each thread owns a

thread-local NVM-tuple manager for each HTable that the thread

accesses. Each NVM-tuple manager consists of an NVM-tuple allo-

cator and an NVM-tuple collector. The allocator maintains a disjoint

subset of free NVM-tuple slots in the HTable. There are two kinds of

free slots: empty slots in newly allocated pages or garbage collected

slots. We initialize NVM with all 0s at system setup time and use

Tx-CTS=0 to indicate empty slots. The collector garbage collects

stale NVM-tuples and puts them into the free list. All collectors of

the same HTable work cooperatively to recycle NVM-Tuples.

3.2 Metadata Enhanced Tuple Cache
For a HTable, we divide its Met-Cache into multiple equal-sized

regions, one per transaction processing thread. The NVM-tuple

heap is also divided into per-thread regions. A thread is responsible

for managing its Met-Cache region and its NVM-tuple heap region.

It can read tuples in all regions, but can only write to its own

region. For a cache hit, the thread can read the Met-Cache entry

in any region. If the thread wants to modify a tuple in another

Met-Cache region, it has to copy the entry into its own Met-Cache

entry before modifying it. It sets the copy bit of the original Met-

Cache entry. For a cache miss, the thread can bring an NVM-tuple

into its own Met-Cache region. If there is no empty entry in the

Met-Cache region, the thread has to pick and evict a victim tuple

from its region to make space for caching the missed NVM-tuple.

This design eliminates thread contention for managing Met-Cache

entries, and supports the binding of DRAMandNVMaddress ranges

to specific processor cores.

We employ the CLOCK algorithm for Met-Cache replacement.

The algorithm picks as the victim the first encountered entry whose

Active and Clock bits are both 0. If Active is set, the entry is being

accessed by an active transaction. The algorithm skips such an entry

so that it will not replace Met-Cache entries used by other running

transactions. If Clock is set, the entry has been used recently. We

would like to keep such entries in the cache. Active and clock bits

are modified using atomic compare-and-swap instructions.

We decide theMet-Cache size (𝐶𝑖) for HTable𝑖 given the available

DRAM capacity (𝑀), HTable𝑖 ’s size (𝑆𝑖), and the average number (𝑓𝑖)

of tuples accessed inHTable𝑖 per transaction. Assuming accesses are

uniformly distributed across a HTable, we can estimate the average

number of Met-Cache hits per transaction as Met-Cache Hits =∑
𝑖
𝑓𝑖𝐶𝑖

𝑆𝑖
. We would like to maximize the Met-Cache hits, while

satisfying the DRAM capacity constraint:

∑
𝑖 𝐶𝑖 ≤ 𝑀 . Moreover,

we would like to ensure that every HTable gets at least a minimum

amount of cache space to support concurrency control in DRAM.

That is, 𝐶𝑖 ≥ 𝐶𝑚𝑖𝑛 . If we denote 𝐶 ′
𝑖
= 𝐶𝑖 − 𝐶𝑚𝑖𝑛 . The resulting

problem is a knap-sack problem.We can employ the classical greedy

algorithm by assigning cache space to the HTables according to the

order of descending
𝑓𝑖
𝑆𝑖
.

Zen keeps no per-tuple metadata related to the concurrency

control method in NVM-tuples. When an NVM-tuple is fetched

from the NVM to Met-Cache, it is enhanced with the CC-Meta in

the Met-Cache entry. CC-Meta contains per-tuple metadata spe-

cific to the concurrency control method in use. After that, Zen can

run the concurrency control method entirely in DRAM because all

the tuples accessed by active transactions are in Met-Caches. This

design has the following benefits. (i) It shifts fine-grain per-tuple

metadata reads and writes from NVM to DRAM. Hence, Zen enjoys

fast per-tuple metadata accesses. (ii) Tuple reads will never lead

to NVM writes at the NVM-tuples. (iii) Aborted transactions do

not incur NVM-tuple write overhead. (iv) In-memory concurrency

control decreases the time that a transaction spends in the criti-

cal code zone, whether acquiring critical resources or performing

consistency validation. Consequently, the overall transaction abort

rate may be reduced.

3.3 Log-Free Persistent Transactions
3.3.1 Normal Processing.

Transaction processing in Zen consists of three components: (i)

Perform: Zen performs transaction processing in DRAM; (ii) Persist:

Zen persists newly written tuples to NVM; (iii) Maintenance: Zen

garbage collects stale tuples.

Figure 3 depicts the lifetime of a transaction. Suppose the table

keeps account balances for customers. Initially, X has $500, Y has

$100, and Z has $100. The transaction transfers $100 from X to Y and

$100 from X to Z. The upper part of Figure 3 shows the system state

before the transaction. The NVM-tuple heap contains five tuples,

among which R:d has been deleted and garbage collected. Q:300

is cached in Met-Cache. The index keeps track of the locations of

the valid tuples. It points to the Met-Cache entry if exists, as in the

case of Q. The allocator records the three empty NVM-tuple slots.

Perform. A transaction obtains a timestamp at start time. For

each tuple requested by the transaction, the transaction looks up its

location in the primary index. If the tuple is in NVM, the transaction

finds a (victim) entry in Met-Cache with the cache replacement

algorithm, builds the Met-Cache entry by reading the requested

NVM-tuple and enhancing it with per-tuple CC-Meta specific to the

concurrency control method in use, and updates the index with the

Met-Cache entry location. Note that Zen does not need to write the

victim entry to NVM for the following reasons. First, if the entry

is only read by previous transactions, then it is not changed and

can be discarded. Second, if the entry is generated/modified by a

previously committed transaction, then it must have already been

persisted to NVM at commit time. Third, if the entry is modified by

an aborted transaction, it is invalid and should be discarded.

Zen runs concurrency control entirely in DRAMwith the help of

Met-Cache. If there is no conflict and the transaction can commit,

Zen moves the transaction into Persist processing. If the transaction

has to abort, Zen checks if any Met-Cache entry accessed by the

transaction is dirty. For a dirty entry, Zen restores the entry from

839

NVM-Tuple Manager

f g h R:d
Allocator Garbage Collector

NVM-Tuple Manager

R:d X:a Y:b Z:c
Allocator Garbage Collector

Transaction Met-CacheIndex
…
…

Q:300

X:a
Y:b
Z:c
Q:γ

α
β
γ

Transaction Index Met-Cache
α X’:300

Y’:200
Z’:200

X:α
Y:β
Z:γ
Q:e

R: α, β, γ
W: α, β, γ β

γ X:500

Y:100

Z:100

R:200

Q:300

X’:300

Y’:200
Z’:200

a

b

c

d

e

f
g

h

NVM-Tuple Heap

X:500

Y:100

Z:100

R:200

Q:300a

b

c

d

e

f
g

h

NVM-Tuple Heap

Perform Persist

M
ain

ten
an

ce

1
2

3

LP

Figure 3: Lifetime of Transaction (X-=200; Y+=100; Z+=100).

the NVM-Tuple pointed by the NVM-Tuple pointer so that the retry

of the transaction will find the entry in Met-Cache.

The lower part in Figure 3 shows the system state after the

transaction. In Perform processing, Zen brings the three tuples

requested by the transaction, i.e. X, Y, Z, into Met-Cache. The index

is updated accordingly. The transaction modifies X to 300, Y to 200,

and Z to 200 in Met-Cache. The transaction-private data keeps track

of the read and write sets.

Persist. Zen persists the generated and modified tuples of a trans-

action to NVM with no logs. The challenge is to persist multiple

tuples without writing redo log records and the commit log record.

The basic ideas of our solution are as follows. First, we persist a

tuple to a free NVM-tuple slot. In this way, the previous version

of the tuple is intact during persist processing. Zen can fall back

to the previous version in case of a crash. This idea has already

been proven successful in WBL. Second, we mark the LP bit of the

last tuple to persist in the transaction using an NVM atomic write.

We ensure that all the tuples are persisted before persisting the

LP bit. In this way, the LP bit plays the same role as a commit log

record. During recovery, if the LP bit exists, then the transaction

has committed. All the tuples generated/modified by the transac-

tion must have been successfully persisted to NVM. Otherwise, the

crash occurs in the middle of persisting the transaction. Therefore,

Zen discards any NVM-tuples written by the transaction.

Algorithm 1 shows the persist processing for changed tuples. It

persists all the tuples except the line that contains the header of

the last tuple (Line 2-8). The cacheline size is 64B. The algorithm

persists 64B lines occupied by a tuple using for-loops (Line 4-5 and

7-8). Note that as long as the tuples are flushed to NVM, the order

of the flushes is not significant. Therefore, we need to issue only

a single sfence (Line 9) to ensure that all previous clwbs complete.

In the end, the algorithm sets the LP of the last tuple (Line 10),

and flushes the line that contains the header of the last tuple (Line

11). Note that the header must reside in a single 64B line because

NVM-tuple slots are 16B aligned and the header is 16B large.

Interestingly, the algorithm is optimized to not issue sfence af-

ter the last clwb. This is correct because recovery processing can

correctly handle either case where LP is set or not, as discussed in

the above. Moreover, any sfence later issued by this or other thread

will ensure the last clwb in the algorithm completes. For example, a

communication thread can issue a sfence before communicating a

set of transaction results to database clients.

Algorithm 1: Persist Processing
1 Function persistTuples(changed-tuples)
2 for (i=0; i<changed-tuples.size-1; i++) do
3 tuple= changed-tuples[i];

4 for (p=tuple.start; p<tuple.end; p+=64) do
5 clwb(p); /* clwb tuple */

6 last-tuple= changed-tuples[changed-tuples.size-1];

7 for (p=last-tuple.start+64; p<last-tuple.end; p+=64) do
8 clwb(p); /* clwb last-tuple except the first line */

9 sfence();

10 last-tuple.LP= 1;

11 clwb(last-tuple.start); /* clwb last-tuple’s header */

As shown in the lower-right part of Figure 3, Zen persists the

newly modified tuples X’, Y’, and Z’ using the three empty NVM-

tuple slots f, g, and h. Z’ is the last tuple to persist. Therefore, Zen

sets and flushes the LP bit in the header of Z’ after persisting X’, Y’,

and all but the first line of Z’.

Maintenance. To reduce contention, each thread has its private

NVM-Tuple allocator and garbage queue. A thread garbage collects

an NVM-tuple version when it finds that a more recent version

exists. The garbage collection decision is made in two situations.

First, when it commits a transaction that overwrites a tuple, the

thread garbage collects the old NVM-tuple version unless the Met-

Cache entry is copied from another region. Second, before it evicts

an entry 𝐸 from its Met-Cache region, the thread garbage collects

the NVM-tuple pointed by 𝐸 if 𝐸’s copy bit is set. Note that 𝐸 must

have been copied to another region by a committed transaction 𝑇 ,

and 𝑇 must have written a new version of the tuple
3
. In this way, a

thread garbage collects NVM-tuples only in its own region, and an

old tuple version is eventually garbage collected.

Entries in the garbage queue cannot be directly freed because the

related NVM-tuple versions may still be used by other transactions

(e.g., in MVCC). An entry contains the NVM-tuple pointer and its

Tx-CTS. Zen computes a global minimum Tx-CTS periodically by

taking the min of the last committed transaction’s Tx-CTS in every

thread. Hence, there are no running transactions that access entries

whose Tx-CTS < the minimum Tx-CTS. Such entries can be safely

moved from the garbage queue to the allocator free list.

As shown in the lower-left part of Figure 3, Zen puts the old

versions of X, Y, and Z into the garbage queue. Moreover, Zenmoves

the R:d entry from the garbage queue to the allocator free list when

it finds that the entry’s Tx-CTS < the minimum Tx-CTS.

3.3.2 Flexible Support for Concurrency Control Methods.
The above transaction processing design provides a framework

to flexibly support wide varieties of concurrency control methods.

We show the applicability of Zen to 10 concurrency control methods

in our experiments in Section 4.4, including three 2PL variants

(2PL with deadlock detection, wait and die, and no waiting [40]),

three OCC variants (OCC [21], Silo [32], and Tictoc [41]), three

MVCC variants (MVCC [7], Hekaton [15], and Cicada [24]), and a

partition-based method (HStore [31]). To support a concurrency

3
Note that𝑇 must have committed. If𝑇 were running, then 𝐸’s active bit

should be 1 and it could not be chosen as the victim. If𝑇 had aborted, then

𝑇 would have cleared 𝐸’s copy bit.

840

control method, we adapt the CC-Meta field of Met-Cache entries to

hold per-tuple metadata required by the method. For 2PL variants,

CC-Meta stores the locking bits. For OCC variants, CC-Meta can

include write timestamp, read timestamp, write lock bit, and/or

latest version bit. For MVCC variants, CC-Meta often contains

multiple timestamps and version link pointers. The concurrency

control method can process the metadata-enhanced tuples in Met-

Cache entirely in DRAM.

We consider the support of versions. Concurrency control meth-

ods can be divided into two categories: single-version methods and

multi-version methods. Note that it is Met-Cache that supports

the versions required by concurrency control methods. NVM-tuple

heap supports multiple versions for the purpose of removing redo

log. As described in Section 3.3, committed versions of NVM-tuple

are always persisted to NVM. This is regardless of the number of ver-

sions in Met-Cache. For single-version methods, Met-Cache holds

a single version for a tuple. While there can be multiple committed

NVM-tuple versions in NVM-tuple heap, only the latest version can

be cached in Met-Cache. For multi-version methods, Met-Cache

holds all the versions that are actively accessed by running transac-

tions. A transaction will create a new version in Met-Cache for an

overwrite. The cache replacement algorithm will not replace these

Met-Cache entries because their active bits are set. Zen clears the

active bit of an Met-Cache entry during garbage collection when

the entry’s Tx-CTS < the global minimum Tx-CTS. This guarantees

that all the tuple versions that are used by any running transac-

tions are kept in Met-Cache. The multi-version methods typically

maintain a linked list for the active versions of the same logical

tuple in Met-Cache. The primary index points to the most recent

version. Old active versions can be found in the version linked list.

3.3.3 Crash Recovery without Logs.
After a crash, the data structures in DRAM are lost, including

indices, NVM-tuple managers, Met-Caches, and transaction-private

data. We need to reconstruct the indices and the tuple-level NVM

space management structures in NVM-tuple managers. Met-Caches

and transaction-private data do not need to be recovered. NVM

persisted data include the NVM metadata (i.e. table schemas and

metadata for page-level NVM space management) and committed

NVM-tuples in NVM-tuple heaps.

Figure 4 depicts an example NVM-tuple heap after a system

failure. We see that the heap contains tuples written by four trans-

actions, i.e. 1000, 1003, 1015, and 1016. The LP bits of (tupleID,

Tx-CTS)=(101,1000) and (102,1003) are set. Thus, transaction 1000

and 1003 have committed. However, the other two transactions

have not completed because the LP bits of their tuples are all 0.

During recovery, Zen runs multiple threads. Each thread scans

an NVM-tuple heap region. A naïve algorithm scans the region

twice. The first scan computes the maximum committed transac-

tion timestamp by examining the LP bits. Then the second scan

identifies all the committed tuples by comparing their timestamps

with the maximum timestamp. We propose an improved algorithm

in Algorithm 2 to avoid scanning the data twice. The basic idea

is to use the maximum timestamp seen so far to identify as many

committed tuples as possible. Only uncertain cases need to be revis-

ited again. We find that the average number of revisits is𝑂 (𝑙𝑜𝑔(𝑛)),
where 𝑛 is the number of NVM-tuple slots in the region.

LP Tx-CTS Deleted Tuple ID Data

1 1000 0 101 X

0 1000 0 102 Y

0 1015 0 103 Z

0 1000 1 104 V

LP Tx-CTS Deleted Tuple ID Data

0 1016 0 101 X’’

0 1016 0 102 Bad Y’’

0 1003 0 101 X’

1 1003 0 102 Y’

Figure 4: An NVM-tuple heap region after failure.

Algorithm 2: Scan NVM-tuple heap region

1 Function updateIndexGC(ntup)
2 ptup= searchIndex(ntup);

3 if (ptup == NULL) then
4 insertIndex(ntup); return; /* no existing version */

5 if (ntup.Tx-CTS < ptup.Tx-CTS) then
6 putIntoFreeList(ntup); return; /* ntup is old */

7 updateIndex(ntup); putIntoFreeList(ptup); /* ptup is old */

8 Function scanRegion(region)
9 ts-commit= 0; pending-list= {};

10 foreach (ntup ∈ region) do
11 if (ntup.LP) then
12 ts-commit= max(ts-commit, ntup.Tx-CTS);

13 if (ntup.Deleted or ntup.Tx-CTS == 0) then
14 putIntoFreeList(ntup); continue;

15 if (ntup.Tx-CTS ≤ ts-commit) then
16 updateIndexGC(ntup); /* transaction committed */

17 else
18 put ntup into pending-list; continue; /* uncertain */

19 foreach (ntup ∈ pending-list) do
20 if (ntup.Tx-CTS ≤ ts-commit) then
21 updateIndexGC(ntup); /* transaction committed */

22 else
23 /* Crash occurs at commit time. Mark the slot empty */

putIntoFreeList(ntup); ntup.Tx-CTS=0; clwb(ntup);

24 sfence();

Algorithm Description. Algorithm 2 uses ts-commit to compute

the maximum committed timestamp seen so far. Zen updates ts-

commit whenever it encounters a tuple with LP set (Line 11-12).

If a tuple’s timestamp ≤ ts-commit, Zen considers the associated

transaction has committed. Zen updates the index with the tuple

(Line 16). If the index contains a version of the tuple, Zen compares

the current tuple with the version in the index. Zen keeps the new

version in the index, and puts the old version (if exists) into the free

list (Line 3-7). When a tuple’s timestamp > ts-commit, Zen cannot

tell the state of the associated transaction at this moment. It puts

the tuple into a pending list (Line 18).

After scanning the region, ts-commit is the maximum commit-

ted timestamp in this region. Then, Zen revisits the tuples in the

pending list. If a tuple’s timestamp ≤ ts-commit, then Zen updates

the index with the tuple and possibly garbage collects an old ver-

sion of the tuple in the index (Line 21). If a tuple’s timestamp >

ts-commit, the crash must occur when the associated transaction

is being persisted. Since a thread can write to only its own region,

all the tuple writes of a transaction go to the same region. This

means the scan has seen all the tuples written by the transaction,

but none of them has the LP set. Therefore, the transaction has not

841

completed. Zen discards the tuple by marking the tuple slot empty

(with Tx-CTS=0) and puts it into the garbage queue.

Correctness. Algorithm 2 correctly identifies all committed tuples

in the region. First, if Tx-CTS ≤ ts-commit, then transaction Tx-

CTS has committed. This is because the tuples in the region are

written by a single thread, and the transaction timestamp of the

same thread monotonically increases (though timestamps across

different threads may not have a total order in certain concurrency

control schemes). Second, the algorithm performs the checking

in the main scan loop, then it checks the uncertain pending cases

again. As a result, all the committed tuples are identified.

Moreover, the algorithm correctly reconstructs the index. It calls

updateIndexGC for committed tuples that are not deleted, which

puts the latest version of the tuple in the index. The algorithm

also collects all the unused NVM-tuple slots (i.e. old tuple versions,

deleted tuples, and empty tuple slots) into the free list.

Furthermore, Algorithm 2 is idempotent. It does not modify

committed tuples. It marks uncommitted tuples as empty slots. As

a result, when there is a crash during recovery, we can re-run the

algorithm to compute the same ts-commit, and rebuild the index

and the free list in the same way.

Finally, we consider the case where a crash occurs, the system

recovers and processes transactions for a while, then a second crash

occurs. The normal transaction processing and the recovery after

the second crash will not see any uncommitted tuples resulted from

the first crash because they have been marked as empty slots.

Efficiency. A tuple in the pending list is examined twice in Algo-

rithm 2. Therefore, the size of the pending list decides the benefit

of the proposed algorithm compared to the naïve algorithm. We

can prove the following theorem, which shows that the pending

list is quite small.

Theorem 3.1. The size 𝐿 of the pending list is𝑂 (𝑙𝑛(𝑛)) on average,
where 𝑛 is the number of NVM-tuple slots in the region.

3.3.4 Support for Long Running Transactions.
A long running transaction that updates a lot of tuples may

prevent the garbage collector from freeing up the tuples on NVM,

and may exceed the Met-Cache capacity. Zen identifies a long

running read-write transaction and switches to the exclusive mode

to run the transaction.

Detecting Long Running Transactions. A long running trans-

action is detected if one of the following conditions is true: (i) an

Met-Cache region runs out of available entries; or (ii) the number

of entries in a garbage queue is beyond a pre-defined threshold

(The threshold shows the NVM space is about to be used up). Zen

finds the running transaction that accesses the largest number of

tuples as the long running transaction.

Exclusive Mode. Zen has a global exclusive flag (G-EX). When

a long running transaction is detected, Zen atomically sets G-EX.

Each thread checks G-EX periodically. If it sees that G-EX is set,

a thread aborts its transaction if the transaction is not the long

running transaction. The long running transaction waits for all

other transactions to complete aborting. Then it resumes execution

in the exclusive mode. In the exclusive mode, the transaction enjoys

all the resources in the system. After it completes, the transaction

atomically clears G-EX. Then Zen threads resume normal execution.

3.4 Lightweight NVM Space Management
Our two-level NVM space management design incurs little NVM

persist overhead. First, only the page-level manager persists meta-

data. Since we allocate 2MB NVM pages, the persist operations for

recording the page allocation and page-to-HTable mapping in NVM

are infrequent. Second, the tuple-level manager performs garbage

collection and NVM-tuple allocation entirely in DRAM without

accessing NVM during normal processing. This is feasible because

the writing of a committed tuple serves the purpose of marking

the NVM-tuple slot as occupied. We do not need to record separate

per-tuple metadata in NVM for tuple allocations. During crash re-

covery, Zen scans the NVM-tuple heap and is able to determine the

state of each NVM-tuple slot by examining its header, as described

in Section 3.3.3. Consequently, Zen completely removes the cost of

NVM write and persist operations for tuple-level NVM allocation.

We design the NVM-tuple manager to be decentralized to de-

crease thread contention. Each thread manages its own NVM-tuple

heap region. It allocates NVM-tuple slots from its region. It collects

garbage and frees NVM-tuple slots in its region. When the free list

is empty, and there is a tuple allocation request, the NVM-tuple

manager asks the NVM page manager to allocate a new 2MB NVM

page. It divides the newly allocated page into empty slots and put

them into the free list. As describe previously, empty slots’ Tx-CTS

are 0 since NVM space is initialized with 0 at setup time.

Two implementation details help reduce the impact of garbage

collection on individual transaction latencies. (i) The per-thread

garbage queue and free list are implemented in DRAM without any

NVM overhead. Garbage collection does not have thread contention.

(ii) We limit the number of items to scan in the garbage queue per

transaction unless NVM space is used up. This bounds the impact

of garbage queue scan on the latency of a single transaction.

Moreover, Zen persists a tuple to a location different from its

previous version in NVM. This helps wear-leveling for hot tuples

because Zen decreases hot spot writes in NVM.

4 EVALUATION
We run real-machine experiments to compare the performance of

Zen with existing OLTP engine designs for NVM in this section.

4.1 Experimental Setup
Machine Configuration. The machine is equipped with 2 Intel

Xeon Gold 5218 CPUs (16 cores/32 threads, 32KB L1I, 32KB L1D,

and 1MB L2 per core, and a shared 22MB L3 cache). There are

384GB(12x32GB) DRAM and 1.5TB(12x128GB) 3DXPoint based

Intel Optane DC Persistent Memory NVDIMMs in the system. We

configure the system to run in the App Direct mode where both

NVM and DRAM can be mapped to the virtual address of software.

The machine runs Ubuntu 18.04.3 LTS with the 4.15.0-70-generic

Linux kernel. We install file systems with fs-dax mode to the NVM,

then use libpmem in PMDK to map NVMfiles to the virtual memory

of a process. We issue clwb and sfence to persist data to NVM. All

code is written in C/C++ and compiled with gcc 7.5.0. To avoid

NUMA effects, by default, we run the experiments on a single

CPU socket with its associated NVM and DRAM. There are 768GB

NVM and 192GB DRAM available to a single CPU socket. In our

experiments, we set the NVM size according to the database sizes

842

in the benchmarks, and vary the DRAM size to model the machines

with different ratio 𝑃 of NVM to DRAM. Presently, 𝑃 can be 4, 8,

and 16 for OptanePM [1]. For space constraint, we report results

with 𝑃=4 or 16. Results with 𝑃=8 show similar trends.

OLTP Engine Designs to Compare.We compare the following

four designs: (i) MMDB with NVM capacity (mmdb), (ii) Write-

behind logging (wbl), (iii) FOEDUS (foedus), and (iv) Zen (zen).
We control the NVM usage to a specific size by using pmem_mmap.

We limit the DRAM usage by allocating a large DRAM from the

system and manage DRAM space by ourselves. Note that the en-

gines run in main memory without accessing any data files on

disk. Therefore, they cannot leverage other DRAM space available

in the system, such as the OS page cache. We keep the indices

and transaction-private data in DRAM, and adapt the size of other

data structures (e.g., Met-Caches) to the remaining DRAM. For FOE-

DUS [20], we obtain the code from the author, and modify it to store

logs and snapshots in real NVM hardware. FOEDUS implements its

own concurrency control method. For MMDB, WBL, and Zen, we

write two implementations based on Cicada [24] and DBx1000 [40],

respectively. We measure transaction processing and crash recov-

ery performance using the Cicada based implementations. Then,

we use the DBx1000 based implementations to demonstrate the

applicability of our design to other 9 concurrency control methods

besides Cicada. For MMDB, we optimize the logging procedure

to combine the log records of a transaction, and write them to-

gether at commit time using sequential NVM writes, clwbs, and

a single sfence. We implement decentralized logs to reduce con-

tention. That is, each thread writes its log to a separate NVM space.

When the database cannot fit into DRAM, MMDB uses part of NVM

as volatile memory to store base tables. We disable checkpoints

when measuring transaction throughputs of MMDB. For WBL, our

implementation follows the description of the WBL paper closely

for persisting tuples, writing WBL logs, and recovery. It writes a

WBL log record roughly every 100us. We apply the light-weight

NVM space management to WBL. The Zen design is described in

detail in Section 3.

Benchmarks. we run YCSB [13] and TPCC [2] benchmarks.

YCSB is a widely used key-value workload representative of

transactions handled by web companies. In our experiments, the

YCSB database consists of a single table. Every tuple contains an

8B primary key and ten 100-byte columns of random string data.

The size of a tuple is approximately 1KB. Each YCSB transaction

consists of 16 random requests by default. Given the primary key, a

read request retrieves a tuple, and a write request modifies a tuple.

We vary two parameters in the workload: (1) Percentage of read

requests: Read-Only(RO, 100% read), Read-Heavy (RH, 90% read,

10% write), Balanced (BA, 50% read, 50% write), and Write-Heavy

(WH, 10% read, 90% write); and (2) The 𝜃 parameter of the Zipfian

distribution: No-Skew (𝜃 = 0), Low-Skew (𝜃 = 0.6), and High-Skew

(𝜃 = 0.95). Note that No-Skew has no request locality. It models the

worst case scenario for cross visiting different Met-Cache regions.

High-Skew models the scenario of high transaction contentions.

We use a 256GB YCSB database in most experiments so that the

database can fit into the NVM, but is larger than the available DRAM.

We use another 100GB YCSB database in the recovery experiments

to understand the impact of data size on recovery performance.

0.0

0.5

1.0

1.5

2.0

None Low High None Low High None Low High None Low High

Read Only Read Heavy Balanced Write Heavy

Th
ro

u
gh

p
u

t
(M

/s
) mmdb wbl foedus zen

Figure 5: YCSB performance with P=4 and 16 threads.

0.0

0.5

1.0

1.5

2.0

None Low High None Low High None Low High None Low High

Read Only Read Heavy Balanced Write Heavy

Th
ro

u
gh

p
u

t
(M

/s
) mmdb wbl foedus zen

Figure 6: YCSB performance with P=16 and 16 threads.

0.0

0.4

0.8

1.2

1.6

A B C D E
Th

ro
u

gh
p

u
t

(M
/s

)
YCSB workload

mmdb wbl zen

Figure 7: Standard workloads.
(Low skew, P=4, 16 threads)

0.0

0.2

0.4

0.6

0.8

0 4 8 12 16 20 24 28 32

Th
ro

u
gh

p
u

t
(M

/s
)

Thread Count

mmdb wbl foedus zen

Figure 8: YCSB scalability.
(High skew, Balanced, P=4)

TPCC simulates an order-entry application of a wholesale sup-

plier. There are five transaction types. Among the five types, New-

Order and Payment transactions modify the database and account

for 88% of all transactions. We conduct New-Order and Payment

transactions (TPCC-NP) in our experiments. The ratio of New-

Order transactions to Payment transactions is 45:43 as specified in

TPCC. We configure the benchmark to use 2048 warehouses and

100,000 items. The initial footprint of the database is about 205GB.

4.2 Transaction Performance
4.2.1 YCSB Performance.

Varying Read/Write Ratio and Data Skew. We run the YCSB

benchmark while varying the percentage of read requests and the

Zipf 𝜃 parameter. The main result is shown in Figure 5.

Among the four OLTP engines, FOEDUS has the worst perfor-

mance. It suffers from the NVM read amplification problem due

to page-grain caching. Moreover, the map-reduce computation to

merge logs to snapshots incur computation overhead as well as

NVM write cost. Finally, the implementation uses heavy-weight

file system interface and persists pages to NVM with msync. As a

side effect, we do not count clwb and sfence for FOEDUS.

WBL gives the second worst performance. WBL maintains per-

tuple metadata in NVM. Hence, it incurs a large number of NVM

writes and persists for the per-tuple metadata. This is confirmed

by Figure 9 and 10. First, WBL sees drastically more sfences than

MMDB and Zen. Second, when the workload has high skews, WBL

sees significantly more clwbs than MMDB and Zen.

MMDB achieves better performance than WBL. Unlike WBL,

MMDB considers the database to be in volatile memory. Therefore,

it does not persist per-tuple metadata. The main overhead is the

NVM write amplification problem. If a tuple is in the (volatile) part

843

1

10

100

1000

10000

100000

RO RH BA WH

C
lw

b
s

(M
) mmdb wbl zen

Figure 9: Clwb counts.
1

10

100

1000

10000

100000

RO RH BA WH

Sf
e

n
ce

s
(M

) mmdb wbl zen

Figure 10: Sfence counts.
0

20

40

60

80

100

RO RH BA WH

A
b

o
rt

 R
at

e
 (

%
) mmdb wbl zen

Figure 11: Abort rate.
0

1

2

3

4

5

RO RH BA WH

C
ac

h
e

 M
is

s
(%

) mmdb wbl zen

Figure 12: Cache miss.
0

20

40

60

80

100

RO RH BA WH

La
te

n
cy

 (
u

s) avg 95th 99th

Figure 13: Percentiles.

0.0

0.5

1.0

1.5

2.0

2.5

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

Read Only Read Heavy Balanced Write Heavy

Th
ro

u
gh

p
u

t
(M

/s
) zen-naïve zen-lightweight

Figure 14: NVM space management.

0.0

0.5

1.0

1.5

2.0

2.5

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

Read Only Read Heavy Balanced Write Heavy
Th

ro
u

gh
p

u
t

(M
/s

) zen-remote zen-numa-aware zen-local

Figure 15: NUMA effects.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

N
o

n
e

Lo
w

H
ig

h

Read Only Read Heavy Balanced Write Heavy

Th
ro

u
gh

p
u

t
(M

/s
) ideal mmdb (small) zen (small) zen

Figure 16: Zen vs. ideal MMDB.
(Figure 9–12: High skew, P=4, 16 threads; Figure 13: No skew, P=4, 16 threads Figure 14–16: P=4, 16 threads;)

of NVM, it is written to NVM twice, i.e. to the (volatile) part of

NVM and to the log in NVM. (Note that this set of experiments do

not perform checkpoints.)

Zen achieves better performance than MMDB mainly because

Zen performs fewer NVM writes. For a committed transaction, Zen

performs 1 NVM write per tuple write, and 0 NVM write for tu-

ple reads. In the case of MMDB with NVM capacity, when 𝑃 = 4,

75% of data reside in NVM. MMDB writes per-tuple concurrency

control metadata even for tuple reads. A tuple write also creates

a new version and incurs logging on NVM. Hence, MMDB per-

forms an average 0.75×(1+1)+1=2.5 NVMwrites per tuple write and

0.75×1=0.75 NVMwrite per tuple read. This explains the significant

advantage of Zen over MMDB for Read Only or No Skew/Low Skew

cases. For an aborted transaction, Zen frees resources without writ-

ing to NVM. In contrast, MMDB still writes the per-tuple metadata

and new tuple versions. Hence, it incurs an average 1.5 NVMwrites

per tuple write and 0.75 NVM write per tuple read. This explains

why Zen out-performs MMDB under High Skew.

Our proposed design, Zen, achieves the best performance. Com-

pared with MMDB, WBL, and FOEDUS, Zen achieves 1.25–5.29x

speedup for Read-Only, 1.00-7.86x speedup for Read-Heavy, 1.54x-

7.50x speedup for Balanced, and 2.16x-10.12x speedup for Write-

Heavy. Zen successfully addresses the three design challenges with

Met-Cache, log-free transactions, and light-weight NVM space man-

agement. As shown in Figure 9, Zen issues much fewer clwb in-

structions than MMDB and WBL for Read-Only because Zen does

no NVM writes for read requests, while MMDB and WBL still need

to persist their logs. As shown in Figure 10, Zen issues at most one

sfence per transaction. This is the same as MMDB, but much fewer

than WBL, which writes and persists per-tuple metadata to NVM.

Furthermore, the speedups of Zen over the other designs increase

as the workload becomes more write intensive. This shows the

benefit of Zen in reducing overhead for write requests.

We see two general trends for all the engine designs. First, trans-

action throughputs increase as the percentage of read requests

because there are fewer NVM writes and persists as shown in Fig-

ure 9. Second, higher skews bring two effects. Higher skews give

better performance for Read-Only, Read-Heavy, and Balanced be-

cause more data are found in DRAM. However, higher skews result

in more contention for Write-Heavy as shown in Figure 11. As a

result, we see lower transaction throughputs. Interestingly, Zen has

fewer aborts in Balanced and Write-Heavy for skewed workload

compared to MMDB and WBL. As writes become more, Met-Cache

may be more frequently updated. As a result, Zen has better cache

performance as shown in Figure 12. We attribute the reason to

our fine-grained Met-Cache because the cache provides data lower

accesses latency for hot tuples, which makes the process to detect

conflicts faster. In average, Zen spends less time in critical region for

concurrency control. Hence, transactions in Zen face less conflicts

because the writes keep the Met-Cache updated in time.

Varying NVM/DRAM Size Ratio. We show YCSB transaction

performance for P=16 in Figure 6. Zen is best performing OLTP en-

gine design among the four designs. Compared with MMDB, WBL,

and FOEDUS, Zen achieves 1.34-5.35x speedup for Read-Only, 1.13-

5.59x speedup for Read-Heavy, 1.02x-4.20x speedup for Balanced,

and 1.02x-5.58x speedup for Write-Heavy. We also observe similar

trends as P=4 compared with Figure 5. Moreover, as P increases and

DRAM becomes smaller compared to NVM, all engine designs see

decreasing throughput because more accesses have to visit NVM.

Furthermore, for the case of P=16, Write-Heavy or Balanced, and

No Skew, Zen and MMDB show similar performance because the

bottleneck is the NVM persist operations. Zen persists a modified

tuple to NVM-tuple heap, while MMDB persists the tuple to the

log. Both designs issue a single sfence per transaction.

Standard YCSBWorkloads.We run experiments for the five stan-

dard workloads of YCSB [13] under low skew, P=4, and 16 threads:

(A) 50% read, 50% update; (B) 95% read, 5% update; (C) 100% read;

(D) 95% read recent, 5% insert; and (E) 95% scan, 5% insert. Note that

the Read Only case in the previous experiments is workload (C),

and the Balanced case is workload (A). Figure 7 compares the per-

formance of MMDB, WBL, and Zen under the five standard YCSB

workloads. We see that Zen achieves 1.15–1.82x improvements over

MMDB, and 1.36–3.04x improvements over WBL.

YCSB Scalability. We study the scalability of the four OLTP en-

gine designs in Figure 8. We set P=4 and use Balanced, High Skew

requests in the experiments. We vary the number of threads from 1

to 32. From the figure, we see that Zen scales up better than MMDB,

WBL, and FOEDUS. First, Zen conducts concurrency control com-

pletely in DRAM. Second, the Met-Cache hit rate is 85% for High

844

Skew workloads. This makes Zen’s efficiency close to that of pure

in-memory database. Third, Zen incurs less cost for aborts because

an aborted transaction does not write to NVM.

Benefit of Light-Weight NVM Space Management. We com-

pare the transaction performance of Zen with and without the

light-weight NVM space management in Figure 14. The naïve de-

sign records and persists the metadata of every tuple allocation in

NVM. From the figure, we see that the two designs have similar per-

formance for Read-Only because there is few NVM-tuple allocation

requests. On the other hand, Zen significantly out-performs the

naïve design for the other cases. Compared to the naïve design, Zen

achieves 1.41–1.52x speedup for Read-Heavy, 1.32–2.26x speedup

for Balanced, and 1.30–2.52x speedup for Write-Heavy. Moreover,

Figure 13 studies the impact of garbage collection activities on

transaction latencies. Note that we choose no skew to minimize the

impact of transaction conflicts and aborts. The figure shows that

99th percentile latencies are only slightly larger than the average

latencies, indicating that garbage collection works smoothly.

NUMA effects. We demonstrate the NUMA effects in Figure 15.

Zen-local represents the Zen results in previous experiments, where

16 threads run on a single CPU socket using the affiliated local NVM

and DRAM. Zen-remote runs 16 threads on CPU socket 0 but uses

remote NVM and DRAM affiliated to socket 1. Zen-numa-aware

runs 8 threads on CPU socket 0, and 8 threads on CPU socket 1.

The threads allocate Met-Cache regions and NVM-tuple heaps from

their affiliated local DRAM and NVM. A thread may perform re-

mote reads but always write to its local Met-Cache and NVM-tuple

heap. As shown in Figure 15, zen-local is the best performing con-

figuration. Using NUMA-aware designs, zen-numa-aware achieves

1.12–2.34x improvements over zen-remote.

Comparison to ideal MMDB. We compare the performance of

Zen with ideal MMDB in Figure 16. For ideal MMDB, we reduce the

database size to 100GB and fit it into DRAM, then we run MMDB

without checkpointing. In this way, ideal MMDB performs no NVM

reads, and almost optimal number of NVM writes and persists for

write requests. Zen’s database is 256GB large. Zen (small) has a

100GB database as MMDB. Both Zen (small) and Zen can use 64GB

DRAM. As shown in Figure 16, we see that Zen (small) is only

slightly (6%–11%) slower than ideal MMDB, showing the benefits

of our proposed optimization techniques. Note that Zen (small)

performs better than Zen because a larger fraction of tuples of Zen

(small) are in Met-Cache.

4.2.2 TPCC-NP Performance.

TPCC-NP performance.We run the TPCC-NP benchmark while

varying the memory configuration and using 16 threads. As shown

in Figure 17, the TPCC-NP experiment shows the same trend as

the YCSB experiment. Zen is best performing OLTP engine design

among the four designs. Compared with MMDB, WBL, and FOE-

DUS, Zen achieves 1.44x–3.92x speedup when P=4, 1.67x–4.61x

speedup when P=8, and 1.65x–4.77x speedup when P=16.

TPCC-NP scalability. We study the scalability of the 4 OLTP

engine designs using TPCC-NP benchmark.We set P=4 and vary the

number of threads from 1 to 32. As shown in Figure 18, all designs

scale well to 32 threads. We attribute the good scalability to the

modestly low contention in the TPCC-NP workload. Zen performs

0.0

0.4

0.8

1.2

1.6

P=4 P=8 P=16

Th
ro

u
gh

p
u

t
(M

/s
)

Memory Configuration

mmdb wbl foedus zen

Figure 17: TPCC-NP
performance. (16 threads)

0.0

0.5

1.0

1.5

2.0

0 4 8 12 16 20 24 28 32

Th
ro

u
gh

p
u

t
(M

/s
)

Thread Count

mmdb wbl foedus zen

Figure 18: TPCC-NP
scalability. (P=4)

1

10

100

1000

4 M 16 M

Ti
m

e
 U

se
 (

s)

Transactions

mmdb wbl zen

(a) YCSB 100GB

1

10

100

1000

4 M 16 M

Ti
m

e
 U

se
 (

s)

Transactions

mmdb wbl zen

(b) YCSB 256GB

1

10

100

1000

4 M 16 M

Ti
m

e
 U

se
 (

s)

Transactions

mmdb wbl zen

(c) TPCC-NP 205GB

Figure 19: Recovery performance. (P=4, 16 parallel threads)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

hstore dl-delect no-wait wait-die occ silo hekaton mvcc tictoc cicada
Th

ro
u

gh
p

u
t

(M
/s

)

Concurrency Control Methods

mmdb wbl zen

Figure 20: YCSB performance with 10 concurrency control
methods. (P=4, High Skew, Balanced, 16 threads)

the best in all designs. Zen achieves a transaction throughput of 1.8

million transactions per second using 32 threads.

4.3 Recovery Performance
In this section, we evaluate the recovery time of the OLTP engine

designs using YCSB and TPCC benchmark. For each benchmark,

we first execute a fixed number of transactions, then force a hard

shutdown of the DBMS (SIGKILL). After that, we measure the time

for the system to restore to a consistent state, where the effects

of all committed transactions are durable and the effects of the

uncommitted transactions are removed. We configure the ratio

of NVM to DRAM capacity to be 4 and use 16 parallel threads

for recovery processing. We consider MMDB, WBL, and Zen for

recovery performance. We omit FOEDUS because it has the worst

transaction performance and the implementation does not provide

a straightforward way to perform recovery. For MMDB, we assume

that there is a checkpoint before running the benchmark. We do

not take more checkpoints during the benchmark. Therefore, the

recovery process reads the checkpoint and applies redo logs to

bring the database state up to date. For WBL, we read the WBL

to obtain the pairs of persisted commit timestamp (𝑐𝑝), and dirty

commit timestamp (𝑐𝑑). Then we scan the tuples in NVM while

comparing the tuple timestamps with the (𝑐𝑝 , 𝑐𝑑) pairs to identify

committed tuples. The reconstruction of indices is similar to Zen.

Recovery for YCSB. We use two database sizes, i.e. 100GB and

256GB, in the YCSB recovery experiments. We run 4 million and

16 million transactions before the system failure. As shown in

Figure 19(a), MMDB takes 85.9 seconds to recover from the system

failure for the 100GB database. In contrast, WBL and Zen take

2.6 seconds and 3.1 seconds for recovery, respectively. They are

845

orders of magnitude faster thanMMDB.MMDB spendsmost time in

loading the checkpoint and redoing logs. WBL and Zen spend most

time in scanning tuples in NVM and restoring the indices. However,

because of the uncertainty of the maximum committed transaction

timestamp, Zen needs to check the LP flag, Deleted flag, and Tx-CTS

for each NVM-Tuple, which accounts for additional time compared

with WBL. When we increase the number of transactions from 4

million to 16 million, MMDB takes additional 28.2 seconds to redo

logs, while WBL and Zen takes merely additional 0.49 and 1.12

seconds, respectively.

Comparing Figure 19(b) with Figure 19(a), as the size of the

database increases, MMDB, WBL, and Zen all take significantly

more time for recovery. Note that Zen spends most of the time

in scanning tuples and rebuilding indices. Therefore, persistent

indices may help significantly improve the recovery time of Zen.

We discuss persistent indices in Section 5.

Recovery for TPCC-NP. We conduct the TPCC-NP recovery ex-

periment. The TPCC database contains 2048 warehouses. We use 16

parallel threads. As shown in Figure 19(c), we observe similar trends

as the YCSB recovery experiment. MMDB takes 282.6 and 298.8

seconds for 4 million and 16 million transactions, respectively. WBL

takes 10.3 and 11.1 seconds for 4 million and 16 million transactions,

respectively. Zen takes 10.1 and 11.2 seconds for 4 million and 16

million transactions, respectively. Zen and WBL are dramatically

faster than MMDB for crash recovery.

4.4 Support for Concurrency Control
We demonstrate that Zen supports a wide variety of concurrency

control methods in Figure 20, including three 2PL variants (2PL

with deadlock detection, wait and die, and no waiting [40]), three

OCC variants (OCC [21], Silo [32], and Tictoc [41]), three MVCC

variants (MVCC [7], Hekaton [15], Cicada [24]), and a partition-

based method (HStore [31]). Our implementation for 9 of the above

10 methods (except Cicada) is based on DBx1000, an in-memory

OLTP testbed for concurrency control research. For completeness,

we include the Cicada results from Figure 5 in Figure 20. However,

note that the results are not directly comparable because the im-

plementations in DBx1000 and Cicada are different. For example,

DBx1000 simplifies space management by not reclaiming space for

old tuples (which is only OK for short test runs). We configure P

to be 4. We use a 160GB YCSB benchmark under High Skew and

Balanced configuration with 16 threads.

Comparing Zen with MMDB, we find the following. First, Zen

achieves 1.10x-2.46x speedup in all concurrency control methods.

Second, Zen achieves higher speedup for OCC and MVCC methods

compared with 2PL variants. This is because Zen has more chance

to process transactions in DRAM and writes no NVM. Moreover,

Zen costs less for aborts because aborted transactions do not write

to NVM in Zen. In contrast, in 2PL methods, conflicts are handled

at each data access, which limits the performance of Zen. Third,

Zen shows limited improvement in partition-based concurrency

control method because cross-partition transactions become the

bottleneck under High Skew. The coarse-grained lock of partition

limits the performance of all OLTP engine designs.

Comparing Zen with WBL, we see that Zen achieves 1.11x-4.58x

speedup in all concurrency control methods. Moreover, in OCC and

MVCC variants, the performance gains of Zen are larger. Zen fully

exploits DRAM for concurrency control, while WBL maintains con-

currency control related per-tuple metadata in NVM. Hence, WBL

sees small grained accesses in NVM, which limits its throughput.

5 DISCUSSION
In this section, we discuss two further design issues for Zen. To

support faster recovery, we discuss the use of persistent indices. To

support scaling out to a cluster of machines, we consider RDMA

network and log shipping. We also discuss the limitations of Zen.

Alternative Index Designs. In the current design, we put the in-

dices in DRAM and prove the scheme reasonable. Note that index

design is orthogonal to the three main techniques of Zen, i.e. Met-

Cache, log-free persistent transactions, and light-weight NVM space

management. It is possible to employ persistent indices like NV-

Tree [38], WB-Tree [10], FP-Tree [28], HiKV [37], and LB+tree [25]

to improve recovery performance. Moreover, we can exploit previ-

ous index designs to reduce DRAM space consumption for indices.

The dual-stage hybrid index architecture [42] saves space by plac-

ing aged index entries into a more compact structure. Selective

persistence in NV-Tree [38], FP-Tree [28], and LB+-Tree [25] places

non-leaf nodes of B+-Trees in DRAM and leaf nodes in NVM. Note

that these alternative designs have been shown to have similar

index performance compared to original DRAM-based indices.

Optional DRAM-Based Logs. Zen removes logging on NVM to

reduce NVM writes for better OLTP throughput. However, we can

optionally write DRAM-based logs for supporting log shipping to
a hot standby, and archive the logs for supporting point-in-time

recovery and disaster recovery. Since such logs are not required for

persistence in Zen, the logs do not need to be “write-ahead” and

can be handled with little impact on transaction performance.

Limitations of Zen. First, Zen cannot support OLTP databases

larger than NVM memory. It would be interesting to study Zen’s

optimizations to improve the 3-tier design [33]. Second, a long

running read-write transaction may trigger the exclusive mode

and delay other transactions. It is challenging to support such

transactions well in any OLTP design. Users may be advised to

rewrite the transaction as smaller tasks for better performance.

6 CONCLUSION
In this paper, we propose Zen, a high-throughput log-free OLTP

engine for NVM. Zen employs three novel techniques to reduce

NVM overhead, namely the Met-Cache, log-free persistent trans-

actions, and light-weight NVM space management. Experimental

results show that Zen achieves up to 10.1x improvements over

MMDB with NVM capacity, WBL, and FOEDUS, for YCSB and

TPCC benchmarks. Zen achieves a transaction throughput of 1.8

million transactions per second using 32 threads. The recovery

time of Zen is on the order of a few seconds for a database of a

few hundred GB in size. In conclusion, we believe Zen is a viable

solution to support OLTP transactions in NVM memory.

ACKNOWLEDGMENTS
This work is partially supported by National Key R&D Program of

China (2018YFB1003303) and NSFC (61572468).

846

REFERENCES
[1] 2019. Intel Optane DC Persistent Memory Architecture and Technology.

https://www.intel.com/content/www/us/en/architecture-and-technology/

optane-dc-persistent-memory.html.

[2] 2020. TPC benchmark C. http://www.tpc.org/tpcc/.

[3] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti

Tang, Daniel Lottis, KiseokMoon, Xiao Luo, Eugene Chen, Adrian Ong, Alexander

Driskill-Smith, and Mohamad Krounbi. 2013. Spin-transfer torque magnetic

random access memory (STT-MRAM). ACM J. Emerg. Technol. Comput. Syst. 9, 2
(2013), 13:1–13:35.

[4] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke Larson. 2018.

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory.

Proc. VLDB Endow. 11, 5 (2018), 553–565.
[5] Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. 2015. Let’s Talk About

Storage & Recovery Methods for Non-Volatile Memory Database Systems. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis,

Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 707–722.

[6] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-Behind Logging.

Proc. VLDB Endow. 10, 4 (2016), 337–348.
[7] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-

tributed Database Systems. ACM Comput. Surv. 13, 2 (1981), 185–221.
[8] Tuan Cao, Marcos Antonio Vaz Salles, Benjamin Sowell, Yao Yue, Alan J. Demers,

Johannes Gehrke, and Walker M. White. 2011. Fast checkpoint recovery algo-

rithms for frequently consistent applications. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011. 265–276.

[9] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking Database

Algorithms for Phase Change Memory. In CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings. 21–31.

[10] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile MainMemory.

Proc. VLDB Endow. 8, 7 (2015), 786–797.
[11] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,

Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: making persistent objects fast

and safe with next-generation, non-volatile memories. In Proceedings of the 16th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11, 2011.
105–118.

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-

jamin C. Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through

byte-addressable, persistent memory. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, Octo-
ber 11-14, 2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM,

133–146.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010. 143–154.

[14] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael

Stonebraker, and David A. Wood. 1984. Implementation Techniques for Main

Memory Database Systems. In SIGMOD’84, Proceedings of Annual Meeting, Boston,
Massachusetts, USA, June 18-21, 1984. 1–8.

[15] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,

Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s

memory-optimizedOLTP engine. In Proceedings of the ACMSIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013. 1243–1254.

[16] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. 1976. The

Notions of Consistency and Predicate Locks in a Database System. Commun.
ACM 19, 11 (1976), 624–633.

[17] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. 2011. High performance

database logging using storage class memory. In Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany, Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan

(Eds.). IEEE Computer Society, 1221–1231.

[18] D. H. Graham. 2019. Intel optane technology products - what’s avail-

able and what’s coming soon. https://software.intel.com/en-us/articles/3d-

xpointtechnology-products.

[19] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014. NVRAM-aware

Logging in Transaction Systems. Proc. VLDB Endow. 8, 4 (2014), 389–400.
[20] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis,

Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 691–706.

[21] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency

Control. ACM Trans. Database Syst. 6, 2 (1981), 213–226.

[22] Juchang Lee, Kihong Kim, and Sang Kyun Cha. 2001. Differential Logging: A

Commutative and Associative Logging Scheme for Highly Parallel Main Memory

Databases. In Proceedings of the 17th International Conference on Data Engineering,
April 2-6, 2001, Heidelberg, Germany. 173–182.

[23] Tobin J. Lehman and Michael J. Carey. 1987. A Recovery Algorithm for A High-

PerformanceMemory-Resident Database System. In Proceedings of the Association
for Computing Machinery Special Interest Group on Management of Data 1987
Annual Conference, San Francisco, CA, USA, May 27-29, 1987. 104–117.

[24] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: De-

pendably Fast Multi-Core In-Memory Transactions. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada

Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 21–35.

[25] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+-Trees: Optimizing Persistent

Index Performance on 3DXPoint Memory. Proc. VLDB Endow. 13, 7 (2020), 1078–
1090.

[26] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin

Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable Transactions with

Decoupling for Persistent Memory. (2017), 329–343.

[27] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable

Multi-Version Concurrency Control for Main-Memory Database Systems. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis,

Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 677–689.

[28] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang

Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree

for Storage Class Memory. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26
- July 01, 2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM,

371–386.

[29] Simone Raoux, Geoffrey W. Burr, Matthew J. Breitwisch, Charles T. Rettner, Yi-

Chou Chen, Robert M. Shelby, Martin Salinga, Daniel Krebs, Shih-Hung Chen,

Hsiang-Lan Lung, and Chung Hon Lam. 2008. Phase-change random access

memory: A scalable technology. IBM J. Res. Dev. 52, 4-5 (2008), 465–480.
[30] Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thomson. 2016.

Low-Overhead Asynchronous Checkpointing in Main-Memory Database Sys-

tems. In Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. 1539–
1551.

[31] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,

Nabil Hachem, and Pat Helland. 2007. The End of an Architectural Era (It’s

Time for a Complete Rewrite). In Proceedings of the 33rd International Conference
on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007.
1150–1160.

[32] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, 18–32.

[33] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi

Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.

Managing Non-Volatile Memory in Database Systems. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018, Hous-
ton, TX, USA, June 10-15, 2018, GautamDas, ChristopherM. Jermaine, and Philip A.

Bernstein (Eds.). ACM, 1541–1555.

[34] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: light-

weight persistent memory. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
2011, Newport Beach, CA, USA, March 5-11, 2011, Rajiv Gupta and Todd C. Mowry

(Eds.). ACM, 91–104.

[35] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging

Non-Volatile Memory. Proc. VLDB Endow. 7, 10 (2014), 865–876.
[36] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Concurrency

Control for Highly Contended Dynamic Workloads on a Thousand Cores. Proc.
VLDB Endow. 10, 2 (2016), 49–60.

[37] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index

Key-Value Store for DRAM-NVM Memory Systems. In 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017,
Dilma Da Silva and Bryan Ford (Eds.). USENIX Association, 349–362.

[38] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and

Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based Single

Level Systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015, Jiri Schindler
and Erez Zadok (Eds.). USENIX Association, 167–181.

[39] J. Joshua Yang and R. Stanley Williams. 2013. Memristive devices in computing

system: Promises and challenges. ACM J. Emerg. Technol. Comput. Syst. 9, 2
(2013), 11:1–11:20.

[40] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control

with One Thousand Cores. Proc. VLDB Endow. 8, 3 (2014), 209–220.

847

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://www.tpc.org/tpcc/
https://software.intel.com/en-us/articles/3d-xpointtechnology-products
https://software.intel.com/en-us/articles/3d-xpointtechnology-products

[41] Xiangyao Yu, Andrew Pavlo, Daniel Sánchez, and Srinivas Devadas. 2016. Tic-

Toc: Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and

Sam Madden (Eds.). ACM, 1629–1642.

[42] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin

Ma, and Rui Shen. 2016. Reducing the Storage Overhead of Main-Memory OLTP

Databases with Hybrid Indexes. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016. 1567–1581.

[43] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast

Databases with Fast Durability and Recovery Through Multicore Parallelism. In

11th USENIX Symposium on Operating Systems Design and Implementation, OSDI
’14, Broomfield, CO, USA, October 6-8, 2014. 465–477.

848

