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ABSTRACT 

Fast and scalable analysis techniques are becoming increasingly 

important in the era of big data, because they are the enabling 

techniques to create real-time and interactive experiences in data 

analysis. Time series are widely available in diverse application 

areas. Due to the large number of time series instances (e.g., 

millions) and the high dimensionality of each time series instance 

(e.g., thousands), it is challenging to conduct clustering on large-

scale time series, and it is even more challenging to do so in real-

time to support interactive exploration.  

In this paper, we propose a novel end-to-end time series clustering 

algorithm, YADING, which automatically clusters large-scale time 

series with fast performance and quality results. Specifically, 

YADING consists of three steps: sampling the input dataset, 

conducting clustering on the sampled dataset, and assigning the rest 

of the input data to the clusters generated on the sampled dataset. 

In particular, we provide theoretical proof on the lower and upper 

bounds of the sample size, which not only guarantees YADING’s 

high performance, but also ensures the distribution consistency 

between the input dataset and the sampled dataset. We also select 

𝐿1 norm as similarity measure and the multi-density approach as 

the clustering method. With theoretical bound, this selection 

ensures YADING’s robustness to time series variations due to 

phase perturbation and random noise.  

Evaluation results have demonstrated that on typical-scale (100,000 

time series each with 1,000 dimensions) datasets, YADING is 

about 40 times faster than the state-of-the-art, sampling-based 

clustering algorithm DENCLUE 2.0, and about 1,000 times faster 

than DBSCAN and CLARANS. YADING has also been used by 

product teams at Microsoft to analyze service performance. Two of 

such use cases are shared in this paper. 

1. INTRODUCTION 
Fast and scalable techniques are becoming increasingly important 

in interactive data exploration in the era of big data. When 

conducting interactive data exploration, users often leverage 

different analysis techniques such as clustering, matching, filtering, 

and visualization, etc. to perform various tasks, e.g., understanding 

data characteristics, spotting patterns, and validating hypotheses, 

etc. These tasks help users obtain insights and make informed 

decisions [2]. The process of completing these tasks is usually 

iterative, which requires analysis techniques to be fast and scalable 

in order to create real-time and interactive exploration experiences. 

Time series are a common data type and they are widely used in 

diverse application areas, such as finance, economics, 

communication, automatic control, and online services, etc. 

Clustering time series is to identify the homogeneous groups of 

time series data based on their similarity. It is an important and 

useful technique for exploratory study on the characteristics of 

various groups in a given time series dataset.  

For instance, large datacenters may have tens of thousands or even 

more servers running and hosting different services [3] . In order to 

ensure service quality, various types of performance counters (e.g., 

CPU usage, disk I/O, network throughput, etc.) are continuously 

collected on each server. For analysis purpose, they are often 

aggregated at pre-defined time intervals (e.g., 5 minutes) on each 

server, resulting in time series representing certain performance 

characteristic of the service(s) under monitoring. 

In practice, such time series are a rich and important data source for 

software engineers to perform quality assurance tasks, including 

detecting abnormal states, diagnosing performance issues, and 

understanding the overall service health status, etc. Fast and 

scalable clustering of time series is essential to completing these 

tasks since grouping provides common performance profiles across 

servers or services. Moreover, clustering transforms time series 

data into categorical attributes, thus making it possible to analyze 

time series data together with other categorical attributes. For 

example, if a group of servers have similar network usage profiles 

that consist of unusual spikes, and they also share the same router, 

then it is reasonable for the engineers to suspect that the router may 

have issues related to the high network usage. 

Time series are well known for their high dimensionality. When 

combined with high dimensionality, the large scale of time series 

datasets poses great challenges to clustering with high 

performance, which is often required in interactive analysis in real 

practice. In the above example of service monitoring, the scale of 

datasets of performance counters ranges from ~10,000 to ~100,000 

instances each with ~100 to ~1,000 dimensions. The scale can 

easily increase to millions on e-Commerce related datasets that 

involve millions of users or transactions. 

Although the topic of time series clustering has been studied for 

about two decades [1], and hundreds of papers have researched on 

various aspects of time series data [4][5], few of the research works 

in literature are able to address the high-performance and scalability 

challenges. 

In this paper, we propose a novel end-to-end time series clustering 

algorithm, YADING, which automatically groups large-scale time 

series data with fast performance and quality results. YADING 
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consists of three steps: sampling the input dataset, conducting 

clustering on the sampled dataset, and assigning the rest of the input 

data to the clusters generated on the sampled dataset. In particular, 

we provide theoretical proofs at the first two steps of YADING to 

guarantee both high efficiency and high accuracy in clustering. 

At the sampling step, we provide theoretical proof on the lower and 

upper bounds of the size of the sampled dataset, which ensures the 

high accuracy of clustering results while significantly reducing the 

computational cost. This sample size is primarily determined by 

how well the distribution of the input dataset is preserved on the 

sampled dataset. It should be noted that the bounds of the sample 

size are independent of the size of the input dataset, which provides 

theoretical guarantee on YADING’s high performance.  

Our main clustering scheme employs 𝐿1  norm as similarity 

measure combined with multi-density based clustering. We provide 

theoretical bound on the robustness of YADING to the time series 

variations caused by phase perturbation and random noise. 

Specifically, our theoretical analysis reveals the relationships 

among cluster quality, data size and degree of variation. Such 

relationships provide quantitative estimation on the optimal 

parameters, e.g., the tolerance for preserving a certain clustering 

quality under a given data size. In addition, the simplicity of 𝐿1 

computation is compliant with our target of high efficiency.  

It should be noted that no single similarity measure can work well 

on every time series dataset due to various domain characteristics. 

In this paper, we focus on the domains where 𝐿1 (which is typical 

in 𝐿𝑝 family) is a reasonable similarity measure. In fact, a wide 

range of real time series applications (e.g., performance counters in 

datacenters) belong to these domains [12]. 

In addition, we also propose two algorithms to automatically 

estimate the parameters used at different stages of YADING based 

on the given time series dataset. The first algorithm determines the 

frame length in PAA (Piecewise Aggregate Approximation) [13], 

which is used to reduce the dimensionality of a time series instance. 

In multi-density based clustering, the second algorithm calculates 

the number of densities using a model-based approach. These two 

algorithms remove the need of manually setting these parameters, 

thus making YADING fully automatic. 

Several product teams at Microsoft have used YADING to conduct 

quality analysis for online services, and provided positive feedback. 

The high performance of YADING is key to enabling the 

engagement with those teams. 

The contributions of our work are summarized as follows: 

 We propose a novel end-to-end time series clustering 

algorithm, YADING, which clusters large-scale time 

series data with fast performance and quality results. 

 We provide theoretical proof on the bounds to determine 

the size of the sampled dataset which is independent of 

the size of the input dataset, thus guaranteeing 

YADING’s high performance, as well as the distribution 

consistency between the sampled dataset and the input 

dataset. 

 We provide theoretical bound on the robustness of 

YADING (i.e., 𝐿1 distance combined with multi-density 

based clustering) to the time series variations due to 

phase perturbation and random noise. Specifically, our 

theoretical analysis reveals relationships among cluster 

quality, data size and degree of variation.  

 We have conducted thorough testing on both simulation 

datasets and real datasets to demonstrate YADING’s 

high performance and quality. Several teams at Microsoft 

have used YADING to help analyze time series data and 

provided positive feedback. 

This paper is organized as follows. Section 2 discusses the related 

work. Section 3 describes in detail the YADING algorithm. Section 

4 reports the evaluation results. Section 5 illustrates the application 

examples in practice. Section 6 discusses YADING’s future work, 

and Section 7 concludes the paper. 

2. RELATED WORK 
The topic of time series clustering has received a lot of attention in 

the research community. Two survey papers [4][5] provide 

extensive studies on the large amount of work published on this 

topic. In this section, we first summarize the work specifically 

focusing on time series clustering, which is highly relevant to our 

work. Then we discuss three most commonly used techniques in 

time series clustering, which are also general to clustering 

problems: similarity measurement, clustering method, and data 

reduction. As an end-to-end solution, YADING leverages all of 

these techniques. 

2.1 Overview of Time Series Clustering 
Most of the existing time series clustering algorithms fall into two 

categories, depending on whether the similarity measures are 

defined directly on input data, or on the features extracted from 

input data. 

In the first category, Golay et al. [27] studied three different 

distance measures of time series, the Euclidean distance and two 

cross-correlation based distances. Liao et al. [28] adopted DTW 

(Dynamic Time Warping)and employed genetic clustering to group 

the time series data generated from battle simulation.  

In the second category, time series instances are considered to be 

generated by underlying models or probability distributions. Two 

time series instances are considered similar when their 

corresponding models are similar. ARIMA (Auto-Regressive 

Integrated Moving Average) is used in [29]. Other models such as 

Gaussian mixture model [30] are also used to measure the similarity 

of time series. The time complexity of the model-based techniques 

is usually high due to the complexity of model learning. 

Most of the above algorithms focus on improving the clustering 

accuracy by proposing or leveraging sophisticated similarity 

measures. While the aforementioned similarity measures can help 

improve the clustering accuracy, their time complexity is usually 

high. In the context of fast clustering, similarity measures with low 

computational cost are preferred. 

2.2 Similarity Measurement 
We list as follows the similarity measures that are commonly used 

in clustering problems. 

𝐿𝑝 norm is the most popular class of dissimilarity measures [12]. 

Among the measures with different p values, 𝐿1 is known for its 

robustness to impulsive noise [12]. The measures with 𝑝 ≥ 3 often 

suffer from the curse of dimensionality [18].  
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Pearson’s correlation [6] is another widely used similarity measure. 

Its primary advantage is its invariance to linear transformation. 

Since its calculation involves standard deviation and covariance, it 

is about 4~10 times slower than calculating 𝐿𝑝 norm, according to 

our simulation tests. 

DTW (Dynamic Time Warping) [7] calculates the optimal match 

of two time series instances with certain constraints. It allows the 

two instances to have different lengths, and it is robust to phase 

perturbation. Generally, computing DTW requires 𝑂(𝐷2) (𝐷 is the 

length of each time series instance), which is one order of 

magnitude slower than calculating 𝐿𝑝 norm.  

2.3 Clustering Methods 
Two categories of clustering methods [8] are most related to our 

context: partitioning methods and density-based methods.  

Partitioning methods identify k partitions of the input data with 

each partition representing a cluster. Partitioning methods need 

manual specification of k as the number of clusters. k-means and k-

medoid are typical partitioning algorithms. CLARANS [19] is an 

improved k-medoid method, and it is more effective and efficient.  

Density-based algorithms [22] treat clusters as dense regions of 

objects in the spatial space separated by regions of low density. A 

well-known algorithm in this category is DBSCAN [17]. Density-

based methods are able to identify clusters with arbitrary shapes, 

and they can detect outliers as well. The time complexity of 

DBSCAN is fairly low. DBSCAN has two major issues. One issue 

is that it requires manual specification of two parameters: Eps, 

which is the maximum radius of the neighborhood; and MinPts, 

which is the minimum number of points in an Eps-neighborhood of 

that point. The other issue is that it can only handle datasets with 

single density. Various techniques [23] [24] are further proposed to 

address these issues.  

In addition, grid-based methods slice the object space into cells 

[21], and perform clustering on the grid structure of the cells. Other 

clustering methods such as Hierarchical clustering and model-

based clustering [20] usually have high computational cost. 

2.4 Data Reduction 
Data reduction can significantly impact the clustering performance 

on large-scale datasets. Data reduction includes reducing the 

dimensionality of time series instances and reducing the size of 

time series.  

Discrete Fourier Transform (DFT) is used to represent time series 

in frequency domain [9], and Discrete Wavelets Transform (DWT) 

is used to provide additional temporal information [10].  Singular 

Value Decomposition (SVD) and Piecewise Aggregate 

Approximation (PAA) are used in [11] and [13], respectively. 

Compared to other techniques, PAA is faster and simpler for 

mining time series [25].  

Sampling techniques are adopted to reduce the size of time series 

dataset [16]. DENCLUE 2.0 [36] employs random sampling with 

different sample sizes to reduce the number of iterations for density 

attractor estimation. The experiment results show that 20% 

sampling rate is sufficient to achieve good clustering results on a 

specific synthetic dataset. However, the sample size is chosen in an 

ad hoc manner in DENCLUE 2.0, and how to set proper sample 

size for arbitrary large-scale time series datasets is still unknown 

and challenging. Kollios et al. [14] utilize biased sampling to 

capture the local density of datasets. Zhou et al. [15] leverage 

random sampling due to its simplicity and low complexity.  

3. ALGORITHMS 
In this section, we introduce the YADING algorithm in detail. 

Overall, YADING consists of three steps: data reduction, clustering, 

and assignment. Data reduction is conducted via sampling the input 

dataset, and reducing the dimensionality of the input time series 

instances. Clustering is then conducted on the sampled dataset. 

Finally, all the input time series are assigned to the clusters resulted 

from the sampled dataset. In the rest of this section, we will 

introduce in detail our choice of algorithm at each step, discuss how 

high performance and good accuracy are achieved, and how 

parameters are estimated automatically. 

3.1 Data Reduction 
Suppose that there are N input time series instances denoted as 

𝒯𝑁×𝐷 ≔ {𝑇1, 𝑇2, … , 𝑇𝑁}. Each time series instance, also referred to 

as object for brevity, is denoted as 𝑇𝑖 ≔ (𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝐷), 𝑇𝑖 ∈
𝒯𝑁×𝐷 , where 𝐷  indicates the length of 𝑇𝑖 . 𝑇𝑖  is a D-dimensional 

vector, and 𝒯𝑁×𝐷  is a set of N such vectors. The goal of data 

reduction is to determine values 𝑠  and 𝑑 , such that a sampled 

dataset 𝒯𝑠×𝑑  of 𝒯𝑁×𝐷  satisfies the following constraints: 𝑠 ≤ 𝑁 , 

𝑑 ≤ 𝐷, and 𝒯𝑠×𝑑 preserves the underlying distribution of 𝒯𝑁×𝐷. 

3.1.1 Random Sampling 
Sampling is the most effective mechanism to handle the scale of the 

input dataset. Since we want to achieve high performance and we 

do not assume any distribution of the input dataset, we choose 

random sampling as our sampling algorithm. 

In practice, a predefined sampling rate is often used to determine 

the size 𝑠 of the sampled dataset. As N, the size of the input dataset, 

keeps increasing, 𝑠 also increases accordingly, which will result in 

slower clustering performance on the sampled dataset. Furthermore, 

it is unclear what impact the increased number of samples may have 

on the clustering accuracy. 

We come up with the following theoretical bounds to guide the 

selection of 𝑠.  

Assume that the ground truth of clustering is known for 𝒯𝑁×𝐷, i.e. 

all the 𝑇𝑖 ∈ 𝒯𝑁×𝐷 belong to k known groups, and 𝑛𝑖 represents the 

number of time series in the ith group. Let 𝑝𝑖 =
𝑛𝑖

𝑁
 denote the 

population ratio of group i. Similarly, 𝑝𝑖
′ =

𝑛𝑖
′

𝑠
 denotes the 

population ratio of the ith group on the sampled dataset. |𝑝𝑖 − 𝑝𝑖
′| 

reflects the deviation of population ratio between the input dataset 

𝒯𝑁×𝐷 and the sampled dataset 𝒯𝑠×𝑑. We formalize the selection of 

the sample size 𝑠 as finding the lower bound 𝑠𝑙 and upper bound 𝑠𝑢 

such that, given a tolerance 𝜖  and a confidence level 1 − 𝛼 , (1) 

group i with 𝑝𝑖  less than 𝜖  is not guaranteed to have sufficient 

instances in the sampled dataset for  𝑠 < 𝑠𝑙, and (2) the maximum 

of ratio deviation |𝑝𝑖 − 𝑝𝑖
′|, 1 ≤ 𝑖 ≤ 𝑘, is within a given tolerance 

for 𝑠 ≥ 𝑠𝑢. Intuitively, the lower bound constrains the smallest size 

of clusters that are possible to be found; and the upper bound 

indicates that when the sample size is greater than a threshold, the 

distribution of population ratio on the sampled dataset is 

representative of the input dataset. Such distribution consistency 

tends to produce close enough clustering results on both datasets, 

which coincides with intuition and is also evidenced by 

experimental results (Section 4). 
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Lemma 1 (lower bound): Given m, the least number of instances 

present in the sampled dataset for group i, and the confidence level 

1 − 𝛼 , the sample size 𝑠 ≥
𝑚+𝑧𝛼(

𝑧𝛼
2

+√𝑚+
𝑧𝛼

2

4
)

𝑝𝑖
 satisfies 𝑃(𝑛𝑖

′ ≥

𝑚) > 1 − 𝛼. Here, 𝑧𝛼/2  is a function of 𝛼, 𝑃(𝑍 > 𝑧𝛼/2) = 𝛼/2, 

where 𝑍~𝑁(0, 1). 

With confidence level 1 − 𝛼, Lemma 1 provides the lower bound 

on sample size 𝑠 that guarantees m instances in the sampled dataset 

for any cluster with population ratio higher than 𝑝𝑖. For sample, if 

a cluster has 𝑝𝑖 > 1%, and we set 𝑚 = 5 with confidence 95% (i.e. 

1 − 𝛼 = 0.95), then we get 𝑠𝑙 ≥ 1,030. In this case, when 𝑠 <
1,030 , the clusters with 𝑝𝑖 < 1%  have perceptible probability 

(>5%) to be missed in the sampled dataset. 

It should be noted that the selection of m is related to the clustering 

method applied to the sampled dataset. For example, DBSCAN is 

a density-based method, and it typically requires 4 nearest 

neighbors of a specific object to identify a cluster. Thus, any cluster 

with size less than 5 is difficult to be found. The consideration on 

clustering method also supports our formalization for deciding 𝑠𝑙. 

Proof: Based on the property of random sampling, the probability 

of a sample belonging to the ith group is 𝑝𝑖. Since each sample is 

independent, the number of samples belonging to the ith group 

follows Binomial distribution 𝑛𝑖
′~𝐵(𝑠, 𝑝𝑖). 

Considering 𝐵(𝑠, 𝑝𝑖)~𝑁(𝑠𝑝𝑖 , 𝑠𝑝𝑖(1 − 𝑝𝑖)) when 𝑠 is large, and the 

distribution is not too skewed, 𝑛𝑖
′  approximately follows 

𝑁(𝑠𝑝𝑖 , 𝑠𝑝𝑖(1 − 𝑝𝑖)). Denote 𝜎 = √𝑠𝑝𝑖(1 − 𝑝𝑖).  

Event {𝑛𝑖
′ ≥ 𝑚} ↔ {

𝑛𝑖
′−𝑠𝑝𝑖

𝜎
≥

𝑚−𝑠𝑝𝑖

𝜎
} ↔ {𝑍 ≥

𝑚−𝑠𝑝𝑖

𝜎
} . 

𝑛𝑖
′−𝑠𝑝𝑖

𝜎
= 𝑍 

is true because 𝑛𝑖
′~𝑁(𝑠𝑝𝑖 , 𝑠𝑝𝑖(1 − 𝑝𝑖)). Therefore, 

𝑃(𝑛𝑖
′ ≥ 𝑚) > 1 − 𝛼 ↔  𝑃 (𝑍 ≥

𝑚−𝑠𝑝𝑖

𝜎
) > 1 − 𝛼 ↔  

𝑚−𝑠𝑝𝑖

𝜎
≤

−𝑧𝛼, where 𝑚 ≤ 𝑠𝑝𝑖.  

The last inequality above can be equally transformed to  

(𝑝𝑖 −
𝑚 + 𝑧𝛼

2/2

𝑠 + 𝑧𝛼
2 )

2

≥ (
𝑚 + 𝑧𝛼

2/2

𝑠 + 𝑧𝛼
2 )

2

−
𝑚2

𝑠(𝑠 + 𝑧𝛼
2)

, 𝑚 ≤ 𝑠𝑝𝑖 

Considering that the value of 𝑧𝛼  usually falls in [0, 3], which 

implies  𝑠 ≫ 𝑧𝛼
2 , we get 𝑠 + 𝑧𝛼

2 ≈ 𝑠 . When applying this to the 

inequality above, we get a simplified version  𝑠 ≥

𝑚+𝑧𝛼(
𝑧𝛼
2

+√𝑚+
𝑧𝛼

2

4
)

𝑝𝑖
, hence the lemma is proven. 

Lemma 2 (upper bound): Given tolerance 𝜖 ∈ [0,1] , and the 

confidence level 1 − 𝛼 , we have sample size 𝑠 ≥
𝑧𝛼/2

2

4𝜖2  satisfying 

𝑃(|𝑝𝑖 − 𝑝𝑖
′| < 𝜖, 1 ≤ 𝑖 ≤ 𝑘) > 1 − 𝛼.  

Lemma 2 implies that the sample size 𝑠  only depends on the 

tolerance 𝜖 and the confidence level 1 − 𝛼, and it is independent of 

the input data size. For example, if we set 𝜖 = 0.01 and 1 − 𝛼 =
0.95 , which means that for any group, the difference of its 

population ratio between the input dataset and the sampled dataset 

is less than 0.01, then the lowest sample size to guarantee such 

setting is 𝑠 ≥
𝑧0.025

2

4×0.012 ~9,600; and more samples than 9,600 are not 

necessary. This makes 𝑠 = 9,600 the upper bound of the sample 

size. Moreover, this sample size does not change with the size of 

the input dataset given 𝜖 and 1 − 𝛼. 

Proof: 𝑝𝑖
′ =

𝑛𝑖
′

𝑠
~𝑁(𝑝𝑖 ,

𝑝𝑖(1−𝑝𝑖)

𝑠
)  𝑌 ≔ 𝑝𝑖

′ − 𝑝𝑖~𝑁(0,
𝑝𝑖(1−𝑝𝑖)

𝑠
).  

Event {|𝑝𝑖 − 𝑝𝑖
′| < 𝜖} ↔ {|𝑌| < 𝜖} ↔ {|𝑍| <

𝜖

𝜎
}  where  𝜎 =

√
𝑝𝑖(1−𝑝𝑖)

𝑠
. So when  

𝜖

𝜎
> 𝑧𝛼/2 , 𝑃 (|𝑍| <

𝜖

𝜎
) > 1 − 𝛼  holds. 

Expanding 𝜎 in 
𝜖

𝜎
> 𝑧𝛼/2 , we get the range value of 𝑠 ≥

𝑝𝑖(1−𝑝𝑖)

𝜖2 𝑧𝛼 2⁄
2 .  Note that 𝑝𝑖(1 − 𝑝𝑖) ≤

1

4
, so 𝑠 ≥

𝑧𝛼/2
2

4𝜖2 , which is 

independent of 𝑖, and satisfies 𝑃(|𝑝𝑖 − 𝑝𝑖
′| < 𝜖, 1 ≤ 𝑖 ≤ 𝑘) > 1 −

𝛼 . Hence the lemma is proven. 

Lemma 2 provides a loose upper bound since we replace 𝑝𝑖(1 − 𝑝𝑖) 

with 
1

4
 to bound all the ratio values. Hence, a sample size smaller 

than 9,600 may still preserve reasonable ratio distribution while 

increasing clustering performance. In practice, we vary the sample 

size 𝑠 from 1,030 (lower bound) to 10,000 and conduct clustering 

accordingly on real datasets. We choose 𝑠 = 2,000  since we 

achieve close clustering accuracy when 𝑠 > 2,000.   

3.1.2 Dimensionality Reduction 
We adopt PAA for dimensionality reduction because of its 

computational efficiency and its capability of preserving the shape 

of time series. Denote a time series instance with length 𝐷 as 𝑇𝑖 ≔
(𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝐷) . The transformation from 𝑇𝑖  to 𝑇𝑖

′ ≔

(𝜏𝑖1, 𝜏𝑖2, … , 𝜏𝑖𝑑)  where 𝜏𝑖𝑗 =
𝑑

𝐷
∑ 𝑡𝑖𝑘

𝐷

𝑑
𝑗

𝑘=
𝐷

𝑑
(𝑗−1)+1

 is called PAA. 

PAA segments 𝑇𝑖 into d frames, and uses one value (i.e. the mean 

value) to represent each frame so as to reduce the length of 𝑇𝑖 from 

D to 𝑑.  

One key issue in applying PAA is to automatically determine the 

number of frames 𝑑. As proved by the Nyquist-Shannon sampling 

theory, any time series without frequencies higher than B Hertz can 

be perfectly recovered by its sampled points with sampling rate 

2*B. This means that using 2*B as sampling rate can preserve the 

shape of a frequency-bound time series. Although some time series 

under our study are often imperfectly frequency-bound signals, 

most of them can be approximated by frequency-bound signals 

because their very high-frequency components usually correspond 

to noise. Therefore, we transform the problem of determining d into 

estimating the upper bound of frequencies. 

In this paper, we propose a novel auto-correlation-based approach 

to identify the approximate value of the frequency upper bound of 

all the input time series instances. The number of frames d is then 

easily determined as the inverse of the frequency upper bound. 

In more details, we first identify the typical frequency of each time 

series instance 𝑇𝑖 by locating the first local minimum on its auto-

correlation curve 𝑔𝑖, which is denoted as 𝑔𝑖(𝑦) = ∑ 𝑡𝑖𝑗𝑡𝑖(𝑗+𝑦)
𝐷−𝑦
𝑗=1 , 

where 𝑦 is the lag. If there is a local minimum of 𝑔𝑖 on a particular 

lag 𝑦′, then 𝑦′ relates to a typical half-period if 𝑔𝑖(𝑦′) < 0. In this 

case, we call  1/𝑦′ the typical frequency for 𝑇𝑖. The smaller 𝑦′ is, 

the higher the frequency it represents.  

After detecting all the typical frequencies, we sort them in 

ascending order; and select a high percentile, e.g., the 80th 

percentile, to approximate the frequency upper bound of all the time 

series instances. The reason why we do not use the exact maximum 
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typical frequency is to remove the potential instability caused by 

the small amount of extraordinary noise in some time series 

instances. 

In our implementation, the auto-correlation curves 𝑔𝑖(𝑦) can be 

obtained efficiently using the Fast Fourier transforms: (1) 𝐹𝑔(𝑓) =

𝐹𝐹𝑇[𝑇𝑖]; (2) 𝑆(𝑓) = 𝐹𝑔(𝑓)𝐹𝑔
∗(𝑓); (3) 𝑔(𝑦) = 𝐼𝐹𝐹𝑇[𝑆(𝑓)], where 

IFFT is inverse Fast Fourier transforms, and the asterisk denotes 

complex conjugate. Table 1 shows the algorithm of automatically 

estimating the frame length. 

The time complexity of obtaining the number of frames and 

applying PAA is 𝑂(𝑠𝐷 log 𝐷)  and 𝑂(𝑁𝐷) , respectively. 

Therefore, the overall complexity of data reduction is 

𝑂(𝑠𝐷 log 𝐷 + 𝑁𝐷). 

Table 1. Auto estimation of the frame length 

FRAMELENGTH(𝓣𝒔×𝑫
′ ) 

    for each 𝑻𝒊 ∈ 𝓣𝒔×𝑫
′ ) 

    𝒈𝒊(𝒚)  auto-correlation applied to 𝑻𝒊 

    𝒚𝒊
∗  get first local minimum of 𝒈𝒊(𝒚) 

𝒚∗  80% percentile on sorted {𝒚𝟏
∗  ~ 𝒚𝒔

∗} 

return 𝒚∗ 

 

3.2 Multi-Density Based Clustering 
Using 𝐿1 distance as the similarity measure, we perform multi-

density based clustering on the sampled dataset 𝒯𝑠×𝑑 . In this 

section, we first discuss why we choose the combination of 𝐿1 and 

multi-density based clustering. Then we propose a novel algorithm 

to automatically estimate the densities, which are key to multi-

density based clustering algorithms. We present the complete 

procedure of our algorithm at the end of the section. 

3.2.1 Overview 
We adopt 𝐿1 distance as similarity measure because of both its high 

computational efficiency and its robustness to impulsive noise. We 

do not have any assumptions on the distribution of the input dataset, 

which means that the input dataset may have arbitrary shapes and 

different densities.  We select multi-density based clustering as our 

clustering algorithm because it is the most suitable approach to 

handle datasets with such characteristics. 

Datasets with irregular shapes and different densities are common 

in practice. Using a time series dataset 𝒯𝑁×𝐷  obtained from 

monitoring online services, we visualize its spatial distribution by 

projecting each instance onto the 2-dimensional principal subspace 

using PCA. In the example in Figure 1, the projected time series 

instances preserve 91% of the total energy of  𝒯𝑁×𝐷, which means 

that the 2D projection is a good approximation of the spatial 

distribution of 𝒯𝑁×𝐷. The time series groups shown in Figure 1 have 

irregular shapes and different densities. There are also noisy 

instances that do not belong to any group.  

 

Figure 1. A real time series dataset projected onto 2D PCA map 

with 91% energy preserved 

In addition to irregular shapes and different densities, time series 

themselves have variations such as phase perturbations and random 

noise, which also impacts clustering accuracy. The combination of 

𝐿1 distance and multi-density based clustering makes YADING 

robust to time series variations, i.e., phase perturbations and 

random noise.  

Two intuitions help understand the aforementioned robustness. One 

is that, if two time series instances have small phase differences, 

then their 𝐿1 distance is also small. The other is that, as the size of 

the input dataset increases,  two time series instances with large 

phase difference can still be clustered together by density-based 

clustering, because they can be connected by a series of 

intermediate time series instances each with small phase shift. 

In order to obtain quantitative analysis results, we provide 

theoretical bound on the tolerance to phase perturbations and noise. 

We formalize the problem of bound estimation as finding the 

relationship among three variables: the data size n, the upper bound 

∆ of phase perturbation, and the probability P corresponding to the 

event: {time series instances with phase perturbation less than ∆ are 

successfully clustered together}. Based on such relationship, ∆ can 

be determined given n and P. Next, we first define some notations 

and then present the lemma followed by proof. 

Denote a time series 𝑇(𝑎) = {𝑓(𝑎 + 𝑏), … 𝑓(𝑎 + 𝑚𝑏)}, where 𝑎 is 

the initial phase, 𝑏  is the time interval at which time series are 

sampled, and 𝑚 is the length. 𝑇(𝑎) is generated by an underlying 

continuous function 𝑓(𝑡) . Here, we assume 𝑓(𝑡)  is an analytic 

function. Another time series with phase perturbation 𝛿  is 

represented by  𝑇(𝑎 − 𝛿) = {𝑓(𝑎 + 𝑏 − 𝛿), … 𝑓(𝑎 + 𝑚𝑏 − 𝛿)} . 

Now suppose we have 𝑛 time series 𝑇(𝑎 − 𝛿𝑖), which only differ 

from 𝑇(𝑎) by a phase perturbation 𝛿𝑖. Without loss of generality, 

let 𝛿𝑖 ∈ [0, ∆] . We assume that these time series are generated 

independently, with 𝛿𝑖 uniformly distributed in the interval [0, ∆]. 
Denote the distance threshold in the density-based clustering as 𝜀. 

If the distance between a specific object and its kth Nearest 

Neighbor (kNN) is smaller than 𝜀, then it is a core point (same 

definition as [17]). Denote event:  

𝐸𝑛 ≔ {𝑇(𝑎 − 𝛿𝑖), 𝑖 = 1, 2, … 𝑛.  𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 }. 

Lemma 3: 𝑃(𝐸𝑛) ≥ 1 − 𝑛(1 −
𝜀

𝑚𝑀𝑘∆
)𝑛 

Proof: Step 1, we prove the following inequality:  

∃𝑀, 𝑠. 𝑡. , 𝐿1(𝑇(𝑎), 𝑇(𝑎 − 𝛿)) ≔ ∑|𝑓(𝑎 + 𝑖𝑏) − 𝑓(𝑎 + 𝑖𝑏 − 𝛿)|

𝑚

𝑖=1

≤ 𝑚𝑀𝛿 

It indicates that the 𝐿1 distance can be arbitrarily small as long as 

the phase perturbation is small enough. The detailed proof is 

provided at our project website [35] due to page limit. 

Step 2, we divide the interval [0, ∆] into buckets with length equal 

to 
𝜀

𝑚𝑀𝑘
. According to the mechanism of DBSCAN, if each bucket 

contains at least one time series, then 𝐿1(𝑇(𝑎), 𝑖𝑡𝑠 𝑘𝑁𝑁) ≤ 𝑘 ×

𝑚𝑀 ×
𝜀

𝑚𝑀𝑘
= 𝜀. Therefore, all the objects become core points, and 

they are density-connected [17]. Hence, all the time series are 

grouped into one cluster. 

Step 3, denote event 𝑈𝑗 ≔ {𝑗𝑡ℎ𝑏𝑢𝑐𝑘𝑒𝑡 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦}, then  

Extremely dense
Fairly dense
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𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑏𝑢𝑐𝑘𝑒𝑡 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦) = 𝑃(⋃ 𝑈𝑗𝑗 ) ≤ ∑ 𝑃(𝑈𝑗)𝑗 =

𝑛(1 −
𝜀

𝑚𝑀𝑘∆
)𝑛. Note that event  {𝑛𝑜 𝑒𝑚𝑝𝑡𝑦 𝑏𝑢𝑐𝑘𝑒𝑡} is a subset of 

𝐸𝑛 , so  𝑃(𝐸𝑛) ≥ 𝑃(𝑛𝑜 𝑒𝑚𝑝𝑡𝑦 𝑏𝑢𝑐𝑘𝑒𝑡) = 1 − 𝑃(⋃ 𝑈𝑗𝑗 ) ≥ 1 −

𝑛 (1 −
𝜀

𝑚𝑀𝑘∆
)

𝑛
. Hence the lemma is proven. 

The theoretical analysis on the robustness to random noise is 

available at [35] due to page limit. 

3.2.2 Density Estimation 
Density estimation is key to density-based clustering algorithms. It 

is performed either manually or with slow performance in most of 

the existing algorithms [17][23][24]. In this section, we define a 

concept density radius and provide theoretical proof on its 

estimation. We use density radius in YADING to identify the core 

points of the input dataset and conduct multi-density clustering 

accordingly. 

We define  𝑘𝑑𝑖𝑠 of an object as the distance between this object and 

its kNN. A 𝑘𝑑𝑖𝑠 curve is a list of 𝑘𝑑𝑖𝑠 values in descending order. 

Figure 2 shows an example of 𝑘𝑑𝑖𝑠 curve with 𝑘 = 4 . We define 

density radius as the most frequent  𝑘𝑑𝑖𝑠  value. Intuitively, most 

objects contain exactly 𝑘 nearest neighbors in a hyper-sphere with 

radius equal to density radius. 

We transform the estimation of density radius to the identification 

of the inflection point on 𝑘𝑑𝑖𝑠 curve. Here, inflection point takes 

general definition of having its second derivative equal to zero. 

Next, we provide the intuition behind this transformation followed 

by theoretical proof. 

Intuitively, the local area of an inflection point on  𝑘𝑑𝑖𝑠 curve is the 

flattest (i.e. the slopes on its left-hand and right-hand sides have the 

smallest difference). On 𝑘𝑑𝑖𝑠 curve, the points in the neighborhood 

of a inflection point have close values of  𝑘𝑑𝑖𝑠. 

For example, in Figure 2, there are three inflection points with 

corresponding  𝑘𝑑𝑖𝑠  values equal to 800, 500, and 200. In other 

words, most points on this curve have  𝑘𝑑𝑖𝑠  values close to 800, 

500, or 200. According to the definition of density radius, these 

three values can be used to approximate three density radiuses. 

We now provide theoretical analysis on estimating density radius 

by identifying the inflection point on 𝑘𝑑𝑖𝑠 curve. We first prove that 

the Y-value,  𝑘𝑑𝑖𝑠, of each inflection point on the 𝑘𝑑𝑖𝑠  curve equals 

to one unique density radius. Specifically, given a dataset with 

single density, we provide an analytical form to its 𝑘𝑑𝑖𝑠  curve, and 

prove that there exists a unique inflection point with Y-value equal 

to the density radius of the dataset. We further generalize the 

estimation to the dataset with multiple densities.  

To make the mathematical deduction easier, we use 𝐸𝐷𝐹𝑘(𝑟) ≔
|{𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑤ℎ𝑜𝑠𝑒 𝑘𝑑𝑖𝑠≤𝑟}|

𝑁
 to represent   𝑘𝑑𝑖𝑠 curve equivalently. EDF is 

short for Empirical Distribution Function. It is the  𝑘𝑑𝑖𝑠  curve 

rotated 90 degrees clockwise with normalized Y-Axis. The X-value 

of inflection point on  𝐸𝐷𝐹𝑘(𝑟) equals to the Y-value of inflection 

point on  𝑘𝑑𝑖𝑠  curve.  

Lemma 4:  𝐸𝐷𝐹𝑘(𝑟) ≈ ∑ 𝑃(𝐸𝑚,𝑟)𝑁
𝑚=𝑘+1 , where 𝑃(𝐸𝑚,𝑟) =

𝐶𝑁−1
𝑚−1𝑃𝑟

𝑚−1(1 − 𝑃𝑟)𝑁−𝑚 , 𝑃𝑟 =
𝑉𝑟

𝑉
=

𝑐𝑑×𝑟𝑑

𝑉
, 𝐶𝑛

𝑘  is the notation of 

combination, and 𝑉𝑟 ≔ 𝑐𝑑 × 𝑟𝑑, is the volume of the hyper-sphere 

in the 𝑑 -dimensional 𝐿𝑝  space, e.g., in Euclidean space, 𝑐𝑑 =
𝜋𝑑/2

Γ(
𝑑

2
+1)

. 

  

Figure 2. 4-dis curve of a time series dataset 

Lemma 4 provides an analytical form of the 𝐸𝐷𝐹𝑘(𝑟) of a dataset 

with single density, which implies the existence of inflection point 

(the detailed proof is available at [35]). 

Lemma 5: Y-value of inflection point on  𝑘𝑑𝑖𝑠  curve is density 

radius. 

Proof: Denote 𝑟𝑖 as the X-value of inflection point of 𝐸𝐷𝐹𝑘(𝑟), so  
𝑑2𝐸𝐷𝐹𝑘(𝑟)

𝑑𝑟2 |𝑟=𝑟𝑖
= 0 by definition. Recall that the first derivation of 

𝐸𝐷𝐹𝑘(𝑟)  is the probability density function, so the second 

derivation equal to zero indicates that 𝑟 = 𝑟𝑖  has the maximum 

likelihood. In other words, 𝑟𝑖 is the most frequent value of  𝑘𝑑𝑖𝑠, 

which conforms to the definition of density radius. Since the X-

value of inflection point on  𝐸𝐷𝐹𝑘(𝑟) equals to the Y-value of 

inflection point on  𝑘𝑑𝑖𝑠  curve, the lemma is proven. 

Based on lemma 4 and 5, we generalize the estimation to datasets 

with multiple densities. For a dataset with l different density 

radiuses, there exist l corresponding inflection points on the 𝑘𝑑𝑖𝑠  
curve.  

In our implementation, we first find the inflection point with the 

minimum difference between its left and right-hand slopes. We 

then recursively repeat this process on the two sub-curves 

segmented by the obtained inflection point, until no more 

significant (a pre-defined threshold to indicate the significance) 

inflection points are found (Table 2).  

Table 2. Algorithm for estimating density radiuses 

Function 1 DENSITYRADIUSES(𝒌𝒅𝒊𝒔) 

    length  |𝒌𝒅𝒊𝒔| 

allocate res as list 

INFLECTIONPOINT(𝒌𝒅𝒊𝒔, 0, length, res) 

return res 

Function 2 INFLECTIONPOINT (𝒌𝒅𝒊𝒔, s, e, res) 

    r  -1, diff  -1 

    for i  s to e 

    left  SLOPE (𝒌𝒅𝒊𝒔, s, i) 

    right  SLOPE (𝒌𝒅𝒊𝒔, i, e) 

    if left or right greater than threshold1 

        continue 

    if |left - right| smaller than diff 

        diff  |left-right| 

        r  ith  element of 𝒌𝒅𝒊𝒔  

if diff smaller than threshod2 /*record the 

inflection point, and recursively search*/ 

    add r to res 

    INFLECTIONPOINT (𝒌𝒅𝒊𝒔, s, r-1) 

    INFLECTIONPOINT (𝒌𝒅𝒊𝒔, r+1, e) 
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The time complexity of estimating density radiuses is as follows. 

The generation of 𝑘𝑑𝑖𝑠  curve costs 𝑂(𝑑𝑠2) due to the calculation 

of distance between each pair of objects on the sampled dataset. 

Multi-density estimation costs 𝑂(𝑠 log 𝑠) since it adopts the divide-

and-conquer strategy. 

3.2.3 Clustering 
Once we obtain the density radiuses, the clustering algorithm is 

straightforward. With each density radius specified, from the 

smallest to the largest, DBSCAN is performed accordingly (Table 

3). In our implementation, we set 𝑘 = 4, which is the MinPts value 

in DBSCAN. The complexity of DBSCAN is 𝑂(𝑠 log 𝑠). Since it 

is performed at most 𝑠 times, the total complexity is 𝑂(𝑠2 log 𝑠). 

Table 3. Algorithm for multi-density based clustering 

/* p: the sample data set. 

    radiuses: the density radiuses. */ 

MULTIDBSCAN(p, radiuses) 

for each radius ∈ radiuses 

    objs  cluster from  DBSCAN(p, radius) 

    remove objs from p     

mark p as noise objects 

3.3 Assignment 
After clustering is performed on the sampled dataset, a cluster label 

needs to be assigned to each unlabeled time series instance in the 

input dataset. Intuitively, the assignment process involves 

computing the distance between every pair of unlabeled and labeled 

instances, which has complexity 𝑂(𝑁𝑠𝑑). Such complexity is the 

highest among all the steps. Therefore, it is important to design an 

efficient assignment strategy to significantly reduce the time cost 

of this step, which further improves the overall performance of 

YADING. In this section, we propose an efficient pruning strategy 

as well as the corresponding data structure design, which aim to 

save unnecessary distance computation between the unlabeled time 

series instances and the labeled instances.  

Assignment criteria. For an unlabeled instance, find its closest 

labeled instance. If their distance is less than the density radius of 

the cluster that the labeled instance belongs to, then the unlabeled 

instance is considered to be in the same cluster as the labeled 

instance. Otherwise, it is labeled as noise. 

 

Figure 3. Illustration of the pruning strategy in assignment 

Let us use an example to illustrate our pruning strategy. In Figure 

3, there are a set of labeled and unlabeled points. If an unlabeled 

object 𝑎  is far from a labeled object 𝑏 , i.e. their distance dis is 

greater than the density radius 𝜀 of b’s cluster, then the distances 

between a and the labeled neighbors of 𝑏 (within 𝑑𝑖𝑠 − 𝜀 ) are also 

greater than 𝜀  (according to triangle inequality). Therefore, the 

distance computation between a and each of b’s neighbors can be 

saved. 

We design a data structure named Sorted Neighbor Graph (SNG) 

to achieve the above pruning strategy. When performing density-

based clustering on the sampled dataset, if an instance 𝑏  is 

determined to be a core point, then b is added to SNG, and its 

distances to all the other instances in the sampled dataset are 

computed and stored in SNG in ascending order. Quick-sort is used 

in the construction of SNG, so the time complexity of SNG is 

𝑂(𝑠2 log 𝑠). Such pruning can improve the performance by 2~4 

times in practice depending on data distribution, which reduces 

time cost significantly. In the worst case, 𝑂(𝑁𝑠𝑑) is still needed. 

Table 4 shows the detailed algorithm. 

Table 4. Algorithm for assignment 

/* uObj: the list of unlabeled objects*/ 

ASSIGNMENT(SNG, uObj) 

for each obj ∈ uObj 

    set the label of obj as “noisy”    

    for each o ∈ {keys of SNG} 

        if o has been inspected 

            continue; 

        dis  L1 distance between o and obj 

        if dis less than density radius of o 

            mark obj with same label of o  

            break 

        mark o as inspected 

        jump  dis - density radius of o 

        i  BINARYSEARCH(SNG[o], jump)  

        for each neighbor ∈ SNG[o] with index greater than i 

            if density radius of neighbor is less than jump 

                mark neighbor as inspected 

            else break /*this is a sorted list*/ 

3.4 Time Complexity 
Based on the discussion on time complexity in the previous 

subsections, the overall time complexity of YADING is 𝑂(𝑁𝑠𝑑 +
𝑁𝐷 + 𝑠2 log 𝑠 + 𝑠𝐷 log 𝐷) . Considering 𝑠 ≤ 𝑁, 𝑑 ≤ 𝐷  and the 

independence of 𝑠 with respect to 𝑁 (Section 3.1.1), in practice, the 

last two items are much smaller than the first two when 𝑁 is large. 

When the last two items are ignored, our algorithm is 

approximately linear to the size of the input time series dataset, and 

the length of each time series instance.  

4. EVALUATION 
In this section, we evaluate YADING on both simulation datasets 

and one real dataset to answer the following research questions. 

RQ1. How efficiently can YADING cluster time series data? 

RQ2. How does sample size affect the clustering accuracy? 

RQ3. How robust is YADING to time series variation? 

4.1 Setup 
Hardware Our experiments were conducted on a machine with 2.4 

GHz Intel Xeon E5-2665 processor and 128 GB RAM. To set the 

comparison ground, single-thread implementation is used for 

YADING and the four comparison clustering algorithms.  

Datasets We first utilize simulation data in order to perform the 

evaluation on datasets with large scale and ground-truth labeling. 

We use five different stochastic models (AR(1), Forced Oscillation, 

Drift, Peak, and Random Walk [35]) to generate the simulation time 

series data. These models cover a wide range of characteristics of 

time series. Using these stochastic models, we create data 

generation templates to generate simulation datasets with 

configurable parameters N and D, representing the size of the 

dataset and the length of each time series, respectively. 

Specifically, we use Template A for RQ1 and RQ2. For RQ3, we 

𝑑𝑖𝑠

𝑑𝑖𝑠 − 𝜀
Labeled points

Unlabeled points𝑎

𝑏
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use Template A and Template B to evaluate against random noise 

and phase perturbation, respectively. 

Each template consists of a set of time series groups. Each group is 

generated by a randomly selected model with arbitrarily chosen 

parameters. Represented by the population ratio, the group size 

varies significantly. For example, Template A consists of 15 

groups, with group size ranging from 0.1% to 30%. According to 

the requirements of each evaluation, the datasets are generated 

accordingly with given N and D. Both the templates and the 

simulation datasets are available at [35]. 

In addition, we select StarLightCurves from the UCR library [34] 

as the real dataset. StarLightCurves is the largest-scale (data_size * 

dimensionality) time series dataset (Table 5) in the UCR library. 

This dataset is also labeled with clustering ground truth. More real 

datasets are available at [35]. Our results on these datasets are 

similar to those on StarLightCurves in terms of performance and 

clustering quality.   

Table 5. One real large-scale dataset 

Name # clusters data size dimensionality 

StarLightCurves 3 9,236 1,024 
 

Measures We use execution time to evaluate performance. We use 

two widely used measures to evaluate clustering accuracy. One is 

Normalized Mutual Information (NMI) [31], which incorporates 

both precision and recall into one score in [0, 1]. The value of NMI 

equals 1 when the clustering result exactly matches the labels, and 

0 when the result is completely irrelevant. The other accuracy 

measure is NCICluster which is the number of correctly identified 

clusters. 

Comparison algorithms We select DENCLUE 2.0, DBSCAN, 

and CLARANS as end-to-end comparison algorithms. In addition, 

we compare YADING’s multi-density estimation component 

against DECODE [24]. 

DENCLUE 2.0 is a highly efficient density-based clustering 

algorithm. It improves the efficiency of DENCLUE 1.0 by adopting 

a fast hill-climbing procedure and random sampling to accelerate 

the computation. DBSCAN is a widely used density-based 

clustering algorithm. CLARANS is an efficient partitioning-based 

clustering algorithm. We implement these three comparison 

algorithms carefully by following the corresponding instructions, 

pseudo-code and parameter recommendations. The source code of 

the three algorithms is available at [35]. For DENCLUE 2.0, we use 

the same sample size as used in YADING, since no guidelines are 

provided on how to specify sample size. For DBSCAN, we set 

𝑀𝑖𝑛𝑃𝑡𝑠 to 4 (same as YADING’s setting) and 𝜀  as the best-

estimated density radius (since DBSCAN only supports single 

density, we set it to the most significant density radius used in 

YADING’s setting). CLARANS requires the number of clusters as 

input, so we set it to the ground-truth value for each simulation 

dataset. 

It should be noted that, DENCLUE 2.0 typically deals with 

relatively low-dimensional datasets. The dimensionality is 16 for 

the evaluation dataset in [36]. When evaluated on our high-

dimensional datasets, e.g., D=1,024, both its performance and 

clustering quality are far from satisfactory when using the default 

parameters. Therefore, we carefully tuned several key parameters 

to make DENCLUE 2.0 suitable to dealing with high-dimensional 

datasets. The corresponding details are available at [35]. 

DECODE is the most recent algorithm for estimating multiple 

densities of a spatial dataset. It models the multiple densities as a 

mixture of point processes, and conducts multi-density estimation 

by constructing a Bayesian mixture model and using the Markov 

Chain Monte Carlo (MCMC) algorithm. We use the source code of 

DECODE provided by the authors, and set the parameters 

according to the recommendations in [24]. 

4.2 Results 
We present the evaluation results for the three research questions 

in this section.  

4.2.1 Results of RQ1 
Using the aforementioned Template A in Section 4.1, 10 simulation 

datasets are generated with dimensionality 𝐷 = 103  and size 𝑁 

ranging from 104  to 105 ; and 5 datasets with 𝑁 = 105  and 𝐷 

ranging from 64 to 1,024. The performance results of YADING, 

DENCLUE 2.0, DBSCAN, and CLARANS against N and D on the 

simulation datasets are shown in Figure 4. Note that logarithmic 

scale is used on the Y-Axis in both charts. The comparison 

indicates that across all the datasets with different scales, YADING 

is about 1-order-of-magnitude faster than DENCLUE 2.0, and 3-

order-of-magnitude faster than DBSCAN and CLARANS. Another 

observation is that YADING’s performance is approximately linear 

to the size of input dataset and dimensionality, which is consistent 

with our time complexity estimation in Section 3.4. 

 

Figure 4. Performance comparison against data size N (left) 

and dimensionality D (right) 

To further demonstrate YADING’s high performance, we evaluate 

it on a simulation dataset with 1 million time series and 

dimensionality equal to 2,000. The execution time of YADING is 

91.7 seconds, demonstrating consistent linearity to N and D. 

The performance results of YADING, DENCLUE 2.0, DBSCAN, 

and CLARANS on StarLightCurves are shown in Table 6. 

Although the scale of StarLightCurves is much smaller than that of 

our simulation datasets, YADING still significantly outperforms 

the other three algorithms. 

The NMI results in Table 6 show that YADING’s accuracy on 

StarLightCurves is comparable to that of DBSCAN and 

CLARANS. The reason why the NMI of the three algorithms 

(except DENCLUE 2.0) is not high is because of the specific 

distribution of this dataset. The time series instances with cluster 

label 1 and 3 are relatively close. Therefore, all three algorithms 

group these instances together into one cluster. 

We use the aforementioned 15 datasets to evaluate the multi-

density estimation. The densities estimated by YADING and 

DECODE are based on the same sampled sub-datasets, with sample 

size equal to 2,000. The different densities are represented by 

density radiuses (Section 3.2.2). Here, the corresponding parameter 

k is set to 4 for both YADING and DECODE (note that this is also 

the default value in DECODE).  
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Table 6. Evaluation results on StarLightCurves 

Algorithm 

             
 

Measure 

YADING DENCLUE 

2.0 

DBSCAN CLARANS 

Performance 
(second) 

3.1 28.6 145.1 91 

NMI 0.60 0.23 0.55 0.61 
 

Table 7. Multi-density estimation results on Template A 

How Found Number of Densities 

Ground truth 58 

YADING 55 

DECODE 40 

Found by both YADING and DECODE 37 

 

We use the number of different sharp changes on the  𝑘𝑑𝑖𝑠 curve as 

ground truth for the number of densities. As shown in Table 7, there 

are 58 densities in total; YADING identifies 55, and DECODE 

identifies 40. In addition, YADING identifies most (37 out of 40) 

of the densities identified by DECODE. The detailed results on 

each individual dataset is available at [35]. Regarding the 

performance of density identification, the average time cost for 

running the multi-density estimation module in DECODE is more 

than 500 seconds, while the corresponding time cost of YADING 

is less than 100ms. 

4.2.2 Results of RQ2 
In order to evaluate YADING’s clustering accuracy with varied 

sample size, we generate two datasets with {𝑁 = 104, 𝐷 = 103} 

and {𝑁 = 105, 𝐷 = 103}, respectively, based on Template A. We 

conduct clustering on these datasets with different sample size s, 

and repeat this experiment 100 times. The average NMI of 

clustering and the average NCICluster are shown in Table 8 and 9, 

respectively. 

Table 8. NMI with different sample sizes 

      Sample 

            Size 
 

Data Set 

200 500 1K 2K 5K Full 

DS1 (10K) 0.915 0.932 0.948 0.952 0.956 0.965 

DS2 (100K) 0.857 0.919 0.939 0.943 0.946 0.960 
 

When the sample size 𝑠 = 200  and  𝑠 = 500 , although the 

corresponding NMI scores are not significantly lower than those 

with 𝑠 ≥ 103  (Table 8), the corresponding numbers of correctly 

identified clusters are much lower (Table 9).  In fact, 8-out-of-15 

and 6-out-of-15 groups are missed on Dataset 1 when 𝑠 = 200 

and 𝑠 = 500, respectively, and these missed groups include all the 

groups with < 1%  population. When 𝑠 = 103 , the 4 smallest 

groups are missed, but the other two small groups, with 0.5% and 

0.8% population ratio, respectively, are preserved in final 

clustering result. Further inspection reveals that, the 4 unidentified 

groups have fewer than 5 instances in the sampled dataset (based 

on their population ratio). These results are consistent with our 

theoretical analysis, and they demonstrate the effectiveness of the 

lower bound of sample size (1,030) as proved in Section 3.1.1. 

The NMI score of 𝑠 = 2,000 is close to that of 𝑠 > 2,000 (Full 

means no sampling in Table 8 and 9), and NCIClusters are similar 

when 𝑠 ≥ 2,000. This indicates that when the sample size exceeds 

2,000, there is little improvement on the clustering accuracy by 

adding more samples. This result is consistent with the concept of 

upper bound on the sample size discussed in Section 3.1.1. 

Regarding the value of the upper bound, 2,000 is a good choice as 

shown in the evaluation results. Although the theoretical value is 

9,600 with 1% deviation on the population ratio (Section 3.1.1), in 

practice, this upper bound may be set lower as suggested in this 

evaluation. 

Table 9. NCICluster with different sample sizes 

      Sample 

            Size 
 

Data Set 

200 500 1K 2K 5K Full 

DS1 (10K) 

 

7.0 

±0.7 

8.9 

±0.3 

10.6 

±0.1 

11.3 

±0.1 

11.6 

±0.1 
12 

DS2 (100K) 

 

6.3 

±0.6 

8.7 

±0.4 

10.3 

±0.1 

11.3 

±0.1 

11.3 

±0.1 
12 

 

4.2.3 Results of RQ3 
We evaluate the robustness of YADING to random noise and phase 

perturbation, respectively. We perform clustering using YADING, 

DENCLUE 2.0, DBSCAN and CLARANS on the 15 datasets 

generated in Section 4.2.1 (10 datasets with varied N values, and 5 

datasets with varied D values). Since all the 15 datasets have 

random noise added to each of its time series data during 

generation, these datasets are suitable for evaluating YADING’s 

robustness against random noise. For each clustering method, we 

compute its clustering accuracy as the average NMI score across 

the 15 datasets. The results in Table 10 show that YADING 

achieves high clustering accuracy (0.925) with small variance 

(0.027) on the datasets, thus demonstrating its robustness to random 

noise. In addition, YADING’s average accuracy is higher than that 

of DENCLUE 2.0, DBSCAN and CLARANS on the 15 datasets. 

Table 10. Average clustering accuracy on 15 datasets 

Algorithm               

 

Measure 

YADING DEN- 

CLUE 

2.0 

DBSCAN CLARANS 

NMI 
0.925± 
0.027 

0.523± 
0.057 

0.820± 
0.071 

0.804± 
0.018 

 

We use Template B to evaluate YADING’s robustness against 

phase perturbation. Template B consists of 8 time series groups. 

Two of the 8 groups are generated using the forced oscillation 

model. We change the phase parameter 𝛽 in the model to create 

phase perturbation. Two datasets are created based on Template B 

with {𝑁 = 104, 𝐷 = 103} and {𝑁 = 105, 𝐷 = 103}, respectively. 

The detailed information of Template B and the corresponding 

datasets can be found in [35]. 

On both datasets, YADING achieves high clustering accuracy, 

0.982 and 0.988, respectively; and it correctly groups the two sets 

of time series with phase perturbation. Figure 5 plots the time series 

instances in one of the groups identified by YADING. Using the 

black curve (with no phase perturbation and random noise) as 

reference, the amount of phase perturbation and random noise is 

illustrated. 

 

Figure 5. Time series instances with phase perturbation and 

random noise grouped by YADING 
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5. APPLICATIONS IN PRACTICE 
Based on YADING, we have built an interactive multi-dimensional 

analysis tool for time series. With easy-to-use user interface, our 

tool allows users to group large-scale time series data on the fly. 

The grouping results transform time series into categorical 

attributes, which enables users to analyze time series data along 

with other categorical attributes.     

Engineers from several online-service teams at Microsoft have used 

our tool to analyze time series data related to service performance. 

We present two usage examples below to demonstrate how 

YADING helps with analysis in practice via its high performance.  

5.1 Clustering Performance Counters 
Team A manages a large number of servers across several 

datacenters. Performance counters are an important data source for 

Team A to monitor, understand, and trouble-shoot performance 

issues of servers and services. Such performance counters include 

hardware and OS level metrics, e.g., CPU and memory utilization; 

as well as application level metrics, e.g., response time of service 

requests and request throughput, etc.  

Hundreds of performance counters are continuously collected at 

each server. For analysis purpose, the data for each type of 

performance counter is often aggregated at pre-defined time 

interval, e.g., 5 minutes, thus resulting in a time series instance. Due 

to the large number of servers, the dataset of a performance counter 

usually contains tens of thousands of time series instances. 

Typically, the analysis window varies from hours to days or a week. 

If the aggregation time interval is 5 minutes, then the length (i.e. 

dimensionality) of each time series is in the range of (~100, 

~1,000).  

One dataset that Team A loaded into our tool consists of two types 

of data for a server: two time series datasets and one categorical 

attribute named ClusterID (servers are organized in clusters in 

datacenters). The time series datasets represent CPU and memory 

utilization, respectively, for 46,000 servers; and each time series 

instance has 1,008 data points. The analysis task is to obtain an 

overall understanding on the CPU and memory utilization across 

all the servers, and find out how these two aspects relate to each 

other.  

 

Figure 6. Top groups of CPU utilization 

After the above dataset is loaded into our tool, 21 groups of CPU 

utilization are immediately obtained in about 4.5 seconds. The 

major groups with population ratio greater than 1% are shown in 

Figure 6. In the chart for each group, all the time series instances 

are plotted in blue. The single black curve is the median of the 

group, (i.e. median is used to aggregate all the time series instances 

in the group). Such design of visualization provides an intuitive 

understanding of the group characteristics. 

The above groups reveal different patterns of CPU utilization of 

different servers. For example, servers in group 2 have very low 

CPU utilization; servers in group 1 and 6 have medium CPU 

workload; and servers in group 3, 4 and 5 have high CPU usage 

with different patterns.     

YADING’s high-performance clustering algorithm enables real-

time and interactive drill-down analysis in our tool. In this analysis 

task, following the observation on the CPU utilization groups, one 

question worth exploring is why the CPU usage is so low on about 

a quarter of servers (group 2, 25.63%). The servers in group 2 may 

then be pivoted on other attributes, e.g., memory utilization. When 

doing so, the time series of memory utilization for the servers in 

group 2 are grouped immediately in our tool. Please note that this 

clustering is performed on-demand, and it is performed in real-time 

due to the high performance of YADING.  

The above analysis task can be carried down further with more 

attributes such as topology information, job information, etc., to 

reveal where the servers in group 2 are located, and how 

computation tasks are scheduled to them, etc. This will help quickly 

gain insights and take appropriate actions to improve the resource 

allocation. 

5.2 Clustering Error Distributions 
Team B runs a cloud service that spans multiple datacenters, and 

the team closely monitors the health status of their servers. For this 

purpose, one important type of data they collect and analyze is 

called “error distribution”. Specifically, Team B defines a set of 

error events, and records the occurrences of the events that are 

associated with the state change of server health. 

An error distribution is a discrete curve 𝑂𝑐𝑐𝑢𝑟(𝑒𝑖)  to represent the 

error pattern of a server within a time window, where 𝑒𝑖 is an error 

type, and the value is the occurrences of 𝑒𝑖  within a given time 

window. The error types are listed in a fixed order in order for the 

error distribution to be well defined. Typically, there are about 100 

error types and 10,000 Machines; the time window is usually set to 

24 hours. 

Error distribution is an important data source for diagnosing service 

performance issues since it can provide clues on problematic 

servers or service components. Team B lacked effective methods to 

quickly analyze error distribution data at scale. In order to evaluate 

whether our tool is capable to meet their requirements, the 

engineers in Team B selected a historical dataset and loaded it into 

our tool. This dataset consisted of 1-day error distribution data from 

a large number of servers. Some of the servers experienced a 

performance problem. Our tool clustered all the error distribution 

curves into 16 groups in less than 1 second. Two example groups 

are shown in Figure 7 (the data scale and detailed error information 

are skipped for confidentiality reason). 

 

Figure 7. Two example groups generated by YADING 
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Combining the grouping results with their domain knowledge on 

error distribution, the engineers of Team B easily found out that 

group 1 was relatively healthy, and group 2 might have experienced 

problems. They further drilled down into group 2 by pivoting on 

other attributes of the servers. When pivoting on the topological 

attribute, they found out that all the servers in group 2 belong to 

server cluster X. When drilling down one step further, they 

identified that there were versioning issues for the software 

installed on those servers. These insights helped the engineers 

rapidly narrow down the investigation scope to cluster X and the 

particular version of service components. Using our tool, it took 

only several minutes for the engineers to complete the analysis 

process . In comparison, they spent almost a full day to obtain these 

findings when they diagnosed this performance issue in the past.   

Team B was satisfied with our tool due to its effectiveness and its 

highly interactive experience enabled by the high performance of 

YADING. Team B started to consider applying YADING in more 

diagnosis scenarios, e.g., constructing a knowledgebase for 

historical performance issues. In this scenario, large amount of 

error distribution data related to past performance issues would be 

grouped by YADING. The resultant groups could be labeled with 

description and resolution to solving the corresponding problems. 

Such knowledgebase can be used to reduce the diagnosis effort 

when new suspicious error distribution occurs. 

6. DISCUSSION 
The current implementation of YADING is single-threaded. We 

use the performance of this implementation to compare with other 

clustering methods, and as the baseline for us to further improve 

YADING’s performance. From the discussion of YADING’s 

algorithm in Section 3, it is obvious that YADING’s 

implementation can be easily parallelized, especially the 

assignment step which is most expensive. Thus, YADING’s 

performance can be significantly improved through parallelization. 

Locality-Sensitive Hashing (LSH) [32] can be used to speed up the 

assignment step of YADING. Considering that the assignment step 

can be easily parallelized and the potential impact on clustering 

accuracy brought by LSH, we will evaluate the practical benefit of 

employing LSH as part of our future work. 

iSAX [37] is a technique used for indexing time series data. It 

discretizes the real values at the epochs of time series instances into 

symbols, and obtains a compact representation that significantly 

reduces the storage size, and improves the query performance. 

However, the cardinality b, which indicates the granularity of the 

discretization, needs to be manually specified. In addition, as iSAX 

is a lossy compression, it could potentially bias the density 

estimation. Therefore, we did not utilize such indexing techniques 

in our approach. 

We utilize the straightforward pair-wise calculation to obtain the 

kNN when conducting density estimation during multi-density 

clustering. We also tried other sophisticated data structures such as 

𝑅∗tree [26] to speed up this computation, and we found that the 

performance is worse due to the high dimensionality of the time 

series data. A thorough analysis on how dimensionality impacts the 

performance of such techniques can be found in [33]. 

Currently, YADING requires that the input time series have equal 

lengths. In the real applications discussed in Section 5, the equal-

length property is guaranteed by the underlying data pipeline. In 

general, it is common for datasets to have equal-length time series. 

In order to handle time series with variable lengths, preprocessing 

is needed before data is input into YADING. One possible 

technique is to apply down-sampling to align the lengths of time 

series. Specifically, down-sampling by integer factor (retaining 

only every mth sample creates a new time series) is simple and 

efficient with trade-off on accuracy. More sophisticated sampling 

techniques, such as interpolation filter, incur smaller error with 

higher computation cost. 

We have demonstrated that by selecting 𝐿1 distance as similarity 

measure combined with multi-density based clustering, YADING 

achieves high effectiveness in clustering. In addition, the 

framework of YADING can also support other types of similarity 

measures, as long as those measures satisfy the mathematical 

properties of metric: non-negativity, symmetry, and triangularity. 

This is because YADING adopts multi-density estimation, and the 

concept of density is meaningful only in a metric space. The general 

𝐿𝑝  norm can be adapted into YADING’s framework almost 

seamlessly, and it only needs a modification of the volume 

coefficient of the d-dimensional hyper-sphere used for multi-

density estimation, which can be found in mathematical handbooks. 

Some similarity measures used in model-based clustering can also 

be adapted into the framework of YADING. For example, Piccolo 

[29] proposed the Euclidean distance on cepstral coefficients 

derived from the ARIMA model parameters. To adopt YADING, 

preprocessing is needed to transform each time series instance into 

the model-parameter space. Some other similarity measures, such 

as DTW [7] and Pearson correlation [6], cannot be supported by 

YADING easily, because they are not mathematical metrics.  

Most steps of YADING can be adapted to handle streaming data 

except PAA (Section 3.1.2). The calculation of 𝐿1  distance 

between two time series can naturally be updated incrementally. A 

distance matrix is needed to record the 𝐿1 distance between all pairs 

of time series instances, which provides sufficient information for 

estimating densities, performing multi-density based clustering, 

and conducting assignment. Apparently, the memory consumption 

and execution time are constant with respect to the length of time 

series, which complies with the efficiency requirement of data 

streams clustering [38]. The dimensionality reduction step is 

difficult to adapt to handle data streams, because the auto-

correlation estimation cannot be updated incrementally. We leave 

it to the future work of YADING to design a dimensionality 

reduction algorithm suitable for streaming data. 

7. CONCLUSION 
We present YADING, a novel end-to-end clustering algorithm that 

automatically clusters large-scale time series with fast performance 

and quality results. The theoretical proof on the sampling bounds 

guarantees that YADING’s time complexity is linear to the scale of 

input datasets. When selecting 𝐿1  distance as similarity measure 

and the multi-density approach as the clustering method, we 

provide theoretical bound to ensure YADING’s robustness to phase 

perturbation and random noise of time series. We also report how 

YADING is used in practice to help analyze service monitoring 

data with its high performance. 
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