
X-AiD: A SHELL FOR BUDLDINO HIGHLY INTERACTIVE AND ADAPTIVE USER INTERFACES 

Hans-Werner Hein, Gen M. Kellcrmann, Christoph G. Thomas 

GMD Schloss Birlinghoven 
D-5205 Sankt Augustin, West Germany 

hein@gmdzi.uucp 

ABSTRACT 
X-AiD is an intelligent shell to design and operate user interfaces. Its 

surface offers an integrated and extendable structure of icons, windows, 
menus, natural text, universal operations, and special service functions. 
X-AiD consists of a set of specialized knowledge interpreters, implemented 
as asynchronous processes exchanging messages. 

X-AiD operates based on declarative knowledge. It embodies common 
sense about "working with a computer" in general, expert knowledge about 
the supported applications behind it, and collected knowledge about each of 
its users. Knowledge is described using the representation language HAL. 
HAL enables comfortable declaration of object schemes with multiple 
inheritances and extensive default-handling. All HAL object schemes may 
contain specialized rulcsets related to human-computer communication 
topics (eg. syntax, semantics, display). 

The system is prepared to work in a "learning by being used"-mode 
where it memorizes protocols about all occuring actions, including 
undo/redo operations. Later on it analyses those protocols extracting new 
object schemes, fluctuation of defaults, new semantics rules, and frequent 
plans-of-action which the specific user mainly followed. This learned 
knowledge is applied vice versa to aid this user eg. by preparing for him 
situation-dependent menus and object instances down the mainstream of his 
work or explaining to him his dialog state and how he got there. 

L Introduction 
Human-computer interfaces are commonly considered to play a very 

important role in future computer systems. Many statements concerning 
this are made. We at GMD felt already 1983 that besides the classical field 
of Natural Language Processing Al can contribute much to the development 
of smarter human-computer interfaces. So with the beginning of 1984 the 
research group Man-Machine Communication at the GMD Institute for 
Applied Information Technology started developing a system called AiD 
[1]. The following primary system characteristics then had been defined: 

VlmaH/Q-Hindltn 

* AiD is a computer interface which is special to each user but similar 
for any application. 

* AiD is a knowledge-based system which learns "by being used" and 
is able to act on its own initiative. 

* AiD is an application independent assistant for users of any stage of 
computer literacy. 

The resulting system, now X-AiD, has been implemented on Symbolics 
36xx machines using CommonLisp and Flavors for the functional kernel. 
All the Knowledge Bases and other parts of the X-AiD system are declared 
using the knowledge representation language HAL. X-AiD provides users 
with a rich set of facilities including rapid prototyping with HAL, 
structure-oriented editing of object instances, different UNDO/REDO 
strategies, following predefined plans-of-action, holopttrasted displays, 
active help, and different types of learning. 

2. X-AiDSyi iem Overview 
The main functional X-AiD components are a collection of asynchronous 

knowledge interpreters fSpecialiati) and some additional programs 
(Sfiyjfifil). The main declarative X-AiD components are the Sliik and 
Dynamic Knowledge B«CJ described in the language HAL. 

The Specialists are providing the knowledge-based support of a user's 
dialog with his collection of interactively manipulateable object instances in 
the Dynamic Knowledge Bases. We call the set of all user-accessible 
operations of the Specialists the Univefttli (or Unlver-I Opgratinml of 
X-AiD. Specialists in the X-AiD repertoire, generally applicable across a 
wide range of X-AiD applications, are handlers for: 

* dialog with the user, 
* input/output according different media, 
* memory of object schemes and instances, 
* displaying independent of the medium, 
* navigating within the logical structure of object instances, 
* constructing operations inside object instances, 
* semantical evaluations across larger parts of the knowledge bases, 
* active helping. 

AudlQ-1/Q-handttri 

Wt^nl-Y-AiDAichil 

H#tn, Koltoriran, and Thomas §7 



Fig. 1 shows the modular design of the X-AiD system with the Dialog 
Handler at the center serving a monitor role in initiating and coordinating 
communication among the other Specialists. Not shown in this diagram are 
the collection of rule interpretation strategies accessible to the Dialog 
Handler and to each of th* Specialists in the system, together with the 
Knowledge Bases over the user and dialog history, each of which are 
(potentially) consulted at every interaction cycle with the user in order to 
interpret his command with respect to the current state and the diverse 
knowledge embedded in the computing environment. 

It has been an important milestone in the X-AiD development when in 
1986 we finished the implementation of the first versions of Constructor, 
Navigator, and Displayer. These three Specialists are forming an universal 
syntax-directed editor for instances of any possible HAL object scheme (for 
more about Specialists see [2]). 

3. The Knowledge Representation Language HAL 

The Knowledge Bases of X-AiD consist of objects declared by using the 
knowledge representation language HAL [3J and are organized in three 
dimensions: 

* first they are divided into Static Knowledge Bases, containing object 
schemes and Dynamic Knowledge Bases, containing object instances, 

* second they are modularized thematically according to a semantical 
classification of the objects, 

* third they are grained by means of the object formalism itself, because 
in HAL all represented knowledge for any object strictly is contained 
inside this object. 

Fig. 2 shows an example of a HAL object scheme ("Town") and the 
resulting default display of a 'Town" instance. 

(OBJECT-SCHEME Town :PUBLIC 
^DOCUMENTATION (purpose "IJCAI Town example")) 
(•.INHERITANCE X-AiD-basic-object) 
(rATTRIBUTES 

(postal-code :DISPLAY (:INSTANCE-OF Primitive-String) 
: UNDEFINED) 

(Town-name :DISPLAY (:INSTANCE-OF Identifier) 
UNDEFINED) 

(country :DISPLAY (:P01NTER-TO Country) UNDEFINED) 
(icon .HIDDEN (:INSTANCE-OF Icon) 

((picture-file "aid-host: aid; graphics; icons; town.pic") 
(width 79) (height 69)))) 

OSYNTAX 
((postal-code) -> (:OR european-postal-code us-zip-code)) 
((european-postal-code)-> ((:AND {country-code"-"} 

COPT 1 5 digit)))) 
((country-code) -> (:OR " I " "GB" "F" "D")) 
((US-zip-code) -> ((:AND US-country-code (:OPT5 5 digit)))) 
((US-country-code) -> (:OR "NY" "CA" "MA" "TX" "PA" "MD" )) 
((digit) -> (:OR "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"))) 

(rSEMANTICS 
((:AND (:IS country-name "Italy")) 

-> (:AND (<-town-name "Milano") (<- postal-code "1-20123")) 
((:AND (:IS Town-name "Los Angeles")) 

-> (:AND (<-postal-code "1-20123") (<- country USA)) 
((:AND (:IS postal-code "D-7500")) 

-> (:AND (otown-name "Karlsruhe") (<- country W-Germany))) 

OHEURISTICS) 
(tDISPLAY) 

END Town) 

Figure 2: A HAL object scheme and instance 

HAL is easily extendable with new features, i.e. the current slots are not 
fixed ultimately. For example a new slot :ALIASES may be useful in 
realizing a multi-language user interface, in which for each English 
object-name and attribute-name there is specified a 
Japanese/German/Arabic etc. alias. 

Within X-AiD a very wide range of knowledge is represented in HAL: 

* common sense about the business world, office environment and human 
communication (e.g. object schemes "Organization", "Document"), 

* knowledge of prototype applications concerning spreadsheets (CalcAiD), 
electronic mail (MailAiD), papers (AuthorAiD) etc., 

* system internals, e.g. knowledge necessary for communicating with and 
supporting the user(dialog-management. user-profile, plan-of-action,...). 

It is a long-term goal of the X-AiD-project to describe as much of the 
shell itself in terms of HAL object schemes and instances. This facilitates a 
portation of X-AiD to target computers, since only the procedural kernel of 
the system, written in the "development host language" CommonLisp, 
needs to be transformed into other programming languages ("target host 
languages"). 

Currently we are developing a declarative description of HAL in HAL, 
that yields a syntax directed editor for HAL schemes, when finished. An 
interesting consequence of "HAL-in-HAL" is the fact, that this consequently 
removes the difference between schemes and instances (at least in theory), 
because all HAL schemes become instances of the root scheme 
"HAL-in-HAL". With "HAL-in-HAL" we create a remarkable object 
scheme which is recursive in the sense that it is an instance of itself. 

A main feature of HAL is the modularization of the rules first by 
inserting them into the object schemes and second by dividing them into 
different classes. A common property of all strategies and of all HAL rule 
interpreters is the independence from rule-ordering. Therefore it is not 
possible to hide an algorithm in a rule sequence. 

The :SYNTAX rules take the form of productions of a context-free 
grammar with an attribute name as the start symbol. They restrict the 
feasible values of the attribute in question to the formal language specified 
by the relevant rules. When the user inserts or alters a value for this 
attribute, the typed input is parsed character-wise by an interactive 
parser-generator associated with the :SYNTAX slot of the HAL scheme. 

The SEMANTICS rules permit the examination and comparison of 
attribute values on the left-hand side and the setting of them (perhaps with 
access to some other attribute values) on the right-hand side. There arc 
different strategies available for interpreting semantics rules: DO ALL, DO 
ONE, WHILE ALL, WHILE ONE as in LOOPS [4]. The programming of 
side-effects in the rule's action part is enabled through hostlanguage calls, 
e.g. "(:LISP <arbitrary CommonLisp expression>)". 

The ;HEURlgTICS rules are used for controlling the dynamic behaviour 
of instances. With heuristics rules the functioning of the universals can be 
adjusted to a particular task. While the X-AiD Universals are the default 
meiliojis of the object-based language HAL, the :HEURISTICS rules offer a 
controllable opportunity to include application-dependent special methods 
to the X-AiD Knowledge Bases. 

The :DISPLAY rules fit for organizing the graphical and textual layout 
of the instances the user works with. This will be expanded systematically 
by acoustical and linguistical display rules. It is not necessary to specify 
some display rules - without them the Displayer Specialist produces a 
default layout that is sufficient in most cases. 

All four rule sets are included in the inheritance mechanism, i.e. in HAL 
not only the attributes are inherited but also the rule sets, according to their 
classification. So the :SYNTAX rule sets in an inheritance line are joined 
separately to a new more specific :SYNTAX rule set, the :SEMANTICS 
rule sets are joined separately, and so forth. The important advantage of this 
thematic rule modularization is a very significant gain in effiency, since 
only the rules relevant to the current thematic context have to be interpreted 
when performing a X-AiD universal operation on a HAL instance. 
Therefore the rule interpretation remains efficient, even if the total number 
of rules in the Knowledge Bases becomes very large (i.e. millions). 

98 ARCHITECTURES AND LANGUAGES 



5. Adaplivcness 
Man-machine surfaces built with X-AiD may be viewed as intelligent 

personal aSSJStentS which should know many facts and rules about their 
users to be able to help them appropriately. You may consider X-AiD plus 
its Knowledge Bases about an user X to be an expert system for the needs 
and tastes of user X. Wherefrom should the knowledge come? There is no 
human expert to be asked about user X and X neither knows what he really 
wants nor ever has spare time to think about this topic. The only feasible 
way was to make X-AiD learn itself what it needs to know, starting from a 
default user profile. This user profile might be a description (made by 
knowledge engineers) of any existing unintelligent well-known interface, 
e.g. the Apple Macintosh's. X-AiD then first of all simply emulates such an 
interface. 

Now the user may change things using the prototyping features and 
X-AiD will remember those changes. But besides this trivial "rote learning" 
the interface operates in a mode we named "learning by being used". 
Anything happening at the computer surface is protocol led scmamically 
using the plan-of-action scheme. This is very different to keystroke-level 
protocols which only contain purely syntactical information. The protocols 
are a primary source for the learning mechanisms of X-AiD. Evaluation by 
graph pattern matching and statistics is performed during longer periods of 
user inactivity. Based on the HAL knowledge representation language and 
the plan-of-action scheme the following will be learned 15]: 

* new or variatcd HAL object schemes, 
* new or revised attribute defaults, 
* semantics rule hypotheses, 
* abstracted plans-of action. 

6. Learning oj .object schemes 

With the surface of X-AiD based on the language HAL it is possible to 
enable users to create object instances within the given limits of those object 
schemes already contained in the Knowledge Bases. If we now add the 
description of a totally universal object scheme (Fig. 3), users as well as the 
X-AiD system itself may create any possible HAL instance avoiding to 
declare some specific object scheme. Virtually the memory now contains 
instances of arbitrary kind without a joint scheme. Those orphaned 
instances can be handled by X-AiD like any others. 

At any time the orphaned instances can be sampled from the memory and 
compared by pattern matching techniques. If it appears that some instances 
are structurally equivalent, this equivalence class can be described in a new 
machine-generated HAL scheme. The universal-scheme instances of that 
cluster are then to be transformed to instances of that newly learned and 
maximal specific HAL object scheme. 

(OBJECT-SCHEME universal-scheme :PUBLIC 
(:INHERITANCEX-AiD-basie-objcct) 
(: ATTRIBUTES 

(inheritance .DISPLAY (:SET-OF universal-scheme) .UNDEFINED) 
(attributes :D1SPLAY (:SET-OF universal-altributc)UNDEFINED) 
(syntax .DISPLAY (:SET-OF universal-rule) UNDEFINED) 
(semantics .DISPLAY (:SET-OF universal-rule) UNDEFINED) 
(heuristics :D1SPLAY (:SET-OF universal-rule) UNDEFINED) 
(display :D1SPLAY (:SET-OF universal-rule) UNDEFINED)) 

END universal-scheme) 

(OBJECT-SCHEME universal-attribute INTERNAL 
(:INHERITANCEX-AiD-basic-object) 
(:ATTRIBUTKS 

(name .DISPLAY Identifier UNDEFINED) 
(type :DISPLAY (POSSIBLE-VALUES 

UISPLAY :READ :H1DDEN) UISPLAY) 
(scheme :DISPLAY universal-scheme .UNDEFINED) 
(default UISPLAY universal-scheme UEFAULT)) 

END universal-attribute) 
(OBJECT-SCHEME universal-rule :INTERNAL 

(INHERITANCE X-AiD-basic-object) 
(•.ATTRIBUTES (name :D1SPLAY Identifier UNDEFINED) 

(left-side ) 

etc. 
END universal-rule) 
Figure 3: HAL-declarcd inventory to handle "orphaned instances" 

7. Learning of semantics rules 
Semantics rules typically define consistency between attribute values of 

an object instance. Those values may be parts, i.e. simple or complex 
instances inside, or pointers to other independent instances with non-hidden 
attributes. All these accessible pathnames may be used in the condition 
predicate of a semantics rule. If an inconsistency occurs, X-AiD knows 
three types of handling this. 

One is the "lazy mode", where X-AiD just waits until its user finishes an 
expected series of value changing actions. The second mode is to 
automatically recover consistency by executing the rule's action part. This 
is the "expert mode", useful for diagnosis and simulation subtasks. 

The third and most interesting type of inconsistency handling is using the 
whole rule as an explanation source in the "helper mode". X-AiD then asks 
its user if he wants to correct some of his last inconsistency-causing value 
changes, or if he insists in his changes. If the user declares in such a situation 
the new object instance state to be consistent, X-AiD has to modify or delete 
its now "user inconsistent" semantics rule. 

This prerequisite behaviour enables a learning mode where X-AiD 
hypothesizes semantics rules about specific object schemes. It only requires 
a statistical significant number of instances. Then cluster analysis and 
classifier dimensioning methods from the Pattern Recognition field [6J are 
easily applicable because the therefore often questionable necessary set of 
"simple constituents" here always is algebraically at hand: It is the focusscd 
object scheme's complete HAS-A relation. 

If a semantics rule, hypothesized statistically, stays "user consistent" for 
a while (i.e. it is used succssfully several times in "helper mode") then it 
may be used by X-AiD in "expert mode", too. 

8. Conclusion 
Based on the operational level of X-AiD in its current state, research and 

development now will concern mainly these goals: 

* including acoustical and speech media in the user's communication 
surface, 

* installing a language switch feature, where a user may switch 
X-AiD's language, fonts, and cultural habits just "pushing a button", 

* integrating the now separate types of learning and some more types 
to a synergic adaptive system. 

We like to thank all other colleagues and students of the AiD Team for 
their contributons to the project, in particular Elke Finkc, Uwe Horn, and 
Jucrgen Krcuziger. 

REFERENCES 
111 Hein, Hans-Werner, Smith, Scott R., Thomas, Christoph G.: 

AiD improves Dialogs - A Better Approach to the Design of 
Man-Machine Dialogs through Knowledge-Based Techniques. 
European Symbolics Users Newsletter. Vol.1, No.2, Nov. 1984. 

[2J Thomas, Christoph G., Kellermann, Gcrt M., Hein, Hans-Werner: 
X-AiD: An Adaptive and Knowledge-Based Human-Computer 
Interface. 
Submitted to INTERACT-87 to be held in Stuttgart, West Germany. 

13) Thomas, C G., Hein, Hans-Werner: 
The HAL Manual. 
GMD Technical Report, Sankt Augustin, to appear 1987 

[4] Bobrow, Daniel G., Stefik, Mark: 
The LOOPS Manual. 
Palo Alto, California, XEROX PARC, 1983. 

[5] Michalski, R.S., Carbonell, J. G., Mitchell, T. M. (Eds.): 
Machine Learning: An Artificial Intelligence Approach I, II 
Morgan Kaufmann, Los Altos, California, 1983 &1986. 

[6] Fu, K. S.: 
Sequential methods in Pattern Recognition and Machine Learning. 
Academic Press, New York, 1968. 

Hein, Kellerman, and Thomas 99 


