Wireframe Model for Simulating Quantum
Information Processing Systems

Mizal Alobaidi!, Andriy Batyiv?, and Grygoriy Zholtkevych?

b Tikrit University,
Faculty of Computer Science and Mathematics, P.O. Box—42, Tikrit, Iraq
mizalobaidi@yahoo.com
2 V.N. Karazin Kharkiv National University,
School of Mathematics and Mechanics, 4, Svobody Sqr., 61022, Kharkiv, Ukraine
{generatorglukoff,g.zholtkevych}@gmail.com

Abstract. This paper continues the papers series concerned with au-
thors’ research of quantum information processing systems based on the
formal model of abstract quantum automata. The previous papers of the
series were focused on mathematical modelling of quantum information
processing systems. This paper describes the core components of infor-
mation technology for studying the systems by computer simulation. A
domain model and a behavioural model of the wireframe for simulat-
ing quantum information processing system are presented in the paper.
The language ” AQuanAut” for description abstract quantum automata
is specified. The problems encountered during the realizing of the wire-
frame model are discussed.

Keywords. Simulation, simulation wireframe, domain model, behavio-
ural model, quantum computation, finite-level quantum system, quan-
tum information processing system, abstract quantum automaton

Key terms. MathematicalModel, ComputerSimulation, Specification-
Process

1 Introduction

Necessity to increase processing power for computational devices, traffic capac-
ity and security level for communication channels leads to new challenges in the
fields of Information and Communication Technology (ICT). Nowadays quantum
informatics is considered as an approach to meet the challenges. The research
in the area of quantum informatics uses knowledge in the fields of mathematics,
physics, and computer science. So, the corresponding research technique covers
the wide variety of methods including both theoretical developments and ex-
perimental investigations. We should note that quantum experiments are quite
difficult and expensive for accomplishing. Therefore, the problem to simulate
such experiments arises naturally.

Wireframe Model for Simulating Quantum Information Processing Systems 19

This paper describes an attempt to construct the wireframe model for sim-
ulating quantum information processing systems basing on the notion of an ab-
stract quantum automaton [1,2]. Taking in account that majority of specialists
in computer science are not familiar with the notation and concepts of quan-
tum informatics in detail authors have tried to provide maximal presentation
completeness for the notation and basic concepts. As needed, one can use [5] for
more deep acquaintance with problems and methods of quantum informatics.

2 Brief Survey of Physical Grounds and Mathematical
Models

In the section the description of mathematical model for quantum information
processing systems in the terms of abstract quantum automata and physical
grounds for the model are given.

At the highest abstraction level an abstract quantum automaton can be
considered as a two-component hybrid quantum-classical system 2A(Q, 7). The
quantum component Q of the system functions as a memory and the classical
component 7 of the system implements an information process control. Interac-
tions between the classical control component and the quantum memory sustain
the integrity of the system.

Now let’s suppose satisfiability a number of properties for systems Q and 7.

Assumption 1 The quantum memory Q is an m-level quantum system.

It means that an m-dimensional Hilbert space H,, is associated with the quan-
tum memory. This space is known as the state space. The memory is completely
described by its pure state, which is a one-dimensional subspace of the state
space. This subspace is uniquely represented by the ortho-projector |¢)(1| on
the unit vector |¢)) which generates the subspace.

In contrast to pure states mixed states are used to describe memory whose
state is not completely known. Rather more detailed suppose we know that a
memory is in one of a number of states {|vg)(Yx| : k=1,...,s} with respective
probabilities {px: k = 1,...,s}. We shall call {p, |vg)(¥x] : k=1,...,s} an
ensemble of pure states. The density operator for the system is defined by the
equation p = 374y Pk [vi) (k.

Mixed states are identified with density operators. The statement that pure
states are described by one-dimensional ortho-projectors allows to consider pure
states as indecomposable states.

Assumption 2 The control system T is a deterministic labelled transition sys-
tem.

It means that 7 is a tuple (C, ny, T, A, §, Trans, dom, codom, \) where

— (' is a finite set of computational nodes;
— ny is some element of C, which is called the initial node;
— T is a finite set of terminal nodes such that C NT = §;

20 M. Alobaidi, A. Batyiv and G. Zholtkevych

— A is a finite alphabet of possible outcomes;

— f# is some picked outcome in A;

— Trans is a finite set of transitions;

— dom : Trans — C maps each transition into the node, which is source of
this transition;

— codom : Trans — N maps each transition into the node, which is sink of
this transition, where N = C' U T

— A is a map from Trans onto A.

The following conditions should be satisfied for this tuple

determinacy: for any 7,77 € Trans equalities dom(7’) = dom(7”) and
A7) = A7) imply 7 = 7";

default label: for any 7 € Trans the equality A\(7) = f# is equivalent to
dom ™ (dom(7)) = {7};

reachability: for any n € N there exists a finite sequence 7,...,7x € Trans
such that dom(7;) = n., codom(r;) = n, and for all j = 1,...,k — 1 the
following equality codom(r;) = dom(7;41) is true.

Assumption 3 A snapshot of an abstract quantum automaton is completely
described by the pair |1),n, where |¢) € Hn, is a unit vector represented the
current memory state and n € N is some node of the control system.

Assumption 4 FEach interaction between the memory and the control system is
a pair consisting of a memory state transformation and a jump from one node
to another: |¢),n = |¢'),n'. This jump should be determined by a transition: if
[),n b '), n' then there exists the unique transition T € Trans realizing the
Jump, i.e. dom(7) = n and codom(7) = n'. Such interactions are called quantum
actions.

Assump. 4 does not determine any algorithm for performing quantum actions.
The next assumption describes explicitly such an algorithm for removing this
defect. This description uses the notion of a generating isometric operator for
quantum actions. The notion has introduced and studied in detail in [1].

Assumption 5 The quantum action associated with a computational node n
is described by its generating isometric operator Wy, : H,, @ [>(Out,), where
Out, = A(dom™"(n)). This operator determines the interaction |),n - |¢'),n’
by using the following procedure:

1. select randomly the label a € Out, in accordance with the probability distri-
bution

Pr(a | ¢) = (YW, (1 & |a)(a])Wa|t), (1)

where W,I is the adjoint operator to the operator W, |a)(-) = 6(a,-), and
5(-,-) is Kronecker delta;
2. determine the transition T € Trans such that A(7) = a and dom(7) = n;

Wireframe Model for Simulating Quantum Information Processing Systems 21

3. compute the pair |¢'),n’ by the following formulae

no_ J(G)TWn|w> 9
vy = L) ®
n’ = codom(7) (3)

where the isometric operator J(a) acts from Hy, into Hy, @ 12(A) in compli-
ance with the next formula J(a)|¢) = |¢) ® |a).

Thus, a trajectory of an abstract quantum automaton can be define as a sequence

of interactions |¢g), ns F |¢1),n1 F -+ F |¢y), ny, where n; is a terminal node.
The corresponding sequence of labels A(71)A(72) ... A(7¢—1) such that dom(r) =
n, and dom(r;) = n;, codom(r;) = nj41, where j = 1,...,t — 1, will be called

an automaton trace. Stress that only an automaton trace is an observed part of
the automaton trajectory.

3 Description of Simulation Wireframe Model

In the paper the Unified Modelling Language (UML) [6, 7] is used for specifying
different details of quantum information processing systems. Object Constraint
Language (OCL) expressions [3] are added to UML diagrams to describe a model
precisely.

Describing the simulation wireframe model of abstract quantum automata
we start with a specification of their composite structure (see Fig. 1). The com-
ponent memory describes the quantum memory (the finite-level quantum system
Q) and the component control is a model for the classical control system T.

The structural units of the component control describe three kinds of its
constituents: nodes (N), transitions (Trans), and labels (A).

More ample description of an abstract quantum automaton structure is de-
scribed by domain model (see Fig. 2). As it is shown in Fig. 2 the set of nodes
is divided into two subsets of nodes: the subset of computational nodes and the
subset of terminal nodes.

Computational nodes have two differences from the terminal nodes. Firstly,
some quantum action is associated with each computational node in contrast to
a terminal node. Secondly, a computational node has as minima one outgoing
transition, whereas each terminal node has not any outgoing transition.

Properties of the control system for an abstract quantum automaton is set
by Assump. 2. The static instance default of the class Label encapsulated into
this class represents the specific label (so called the default label) for transitions
that are determined uniquely by their sources and sinks. Existence of the default
label is grounded by the ”default label” condition. The determinacy condition
of the control system can be described by the next constraint

context Transition inv: determinacy
Transition::allInstances()->forAl1(tl, t2: Transition |
tl.dom = t2.dom and tl.tag = t2.tag implies
tl.codom = t2.codom)

22 M. Alobaidi, A. Batyiv and G. Zholtkevych

AQAutomaton

control : TSystem

nodes : Node[2..*]

: Transition[1.

#]

: Label[1..¥]

memory : QSystem

Fig. 1. Composite structure of an abstract quantum automaton

class Domain model)
owner AQAutomaton owner
—@® title:String{id} @ ————
1 {memoryDim:Integer{readOnly, dim>1} |1
1 control | 1
7@ TSystem owner
—————— @
owner 1
1{/labels 1
current
«data structure» 1
_ Label | _«use» .
I' “lid:Integer{id} codom Node 2..
: caption:String{unique} id:Integer{id}| nodes
: /:\ tag 1. *|transitions ! ?
I .
<<Lse>> «instapceOf» ' Tran5|tlor1 |
I 1 defau: id:Integer{id} TerminalNode
! - *loutlet
| :Label
: id:Integer="0"
| |caption:String="default"
I 1]|dom
: ComputationalNode ~
: 1y action
—— - QSystem 1 QAction
1 | state:Dirac::KetVector /interact V:Dirac::Isometry
memory

Fig. 2. Abstract quantum automaton domain model

Wireframe Model for Simulating Quantum Information Processing Systems 23

Sustaining an interaction between the memory and the control system requires
visibility of the component memory from the current computational node of the
control system and vice versa. The derived association interact is intended to
solve this task.

—-— The definition of the association ’interact’
context ComputationalNode -- view from the control system
def: interact: QSystem =
self.current.owner.memory
context QSystem -- view from the memory
def: interact: ComputationalNode =
self.owner.control.current

The generalized model of an abstract quantum automaton behaviour is pre-
sented in Fig. 3.

This model specifies the behaviour of an abstract quantum automaton in
compliance with [2, Def. 11]. The corresponding mathematical representation of
all dynamical aspects for the interaction of automaton components are collected
in Assump. 5.

The solution to use two concurrent threads for realizing the evolution of an
automaton makes possibility to interrupt a simulation process. Necessity of the
possibility has been established in the course of testing a trial implementation
of the wireframe.

Initialization of an automaton is realized by the methods TSystem: :reset ()
and QSystem: :set(state:Dirac: :KetVector).

The method QSystem::step(action: QAction) implements a quantum
character of the behaviour for the automaton. Detailed specification of the
method is shown in Fig. 4. Each performance of this methods leads to changing
the current computational node. Directly, changing of the current computational
node is effected by the method TSystem: : setCurrent (outcome:Label) speci-
fied by the next constraint

-— The rule for changing the current node
context TSystem::setCurrent(outcome:Label)
post: control =
control@pre.transitions->any(tag = outcome).codom

This rule corresponds to Assump. 4 and formula (3) of Assump. 5.

The interaction shown in Fig. 4 implements one automaton jump (see As-
sump. 4).

Two methods of the class QSystem (selectOutcomes(action:QAction) and
getDistr(outs:Label[1..*],action:QAction))are used for building the prob-
ability distribution associated with the current memory state and the current
action. Formula (1) of Assump. 5 is used to calculate this distribution.

Selection of one of the possible outcomes is effected by using the standard
generator of random real numbers uniformly distributed in the segment [0, 1].

Finally, formula (2) of Assump. 5 is applied to calculate new memory state
under condition that outcome of the action is known.

24 M. Alobaidi, A. Batyiv and G. Zholtkevych

sd Simulation J
|mode|: AQAutomatonl |model.contro|: TSysteml |model.memory: QSysteml
par I | |
run(state) I I I
1 t ! |
> reset() current:= Label.default :
|
haltFlag:= false |
|
- |
N ' set(state) !
I ﬁ
<____t__t(_)____: ____________
star]
| !
Ioop) [not haltFlag] I
step(current.action)' !
<__wmwm____lJ
setCurrent(outcome) |
|
|
haltFlag:= haltFlag or !
current.ocIIsType(Termi+a|Node)
|
|
<-—-—-—- - T get() !
I
|
state - — - State_ F—————————— j:::l
o el e I e
abort() : : |
|
abort() haltFlag:= true I
|
P |
T]]
| | |

Fig. 3. Abstract quantum automaton behavioural model: interaction of components

Wireframe Model for Simulating Quantum Information Processing Systems 25

sd Step J

|mem0ry: QSysteml | roulette: RandGenerator

R |
step(action)
—————— P outsi= selectOutcomes(action)

.

distr:=getDistr(outs,action)

setRand(distr)

<

getOutcome()
e outcome_ _ _I:]
transform(outcome,action)

]

Fig. 4. Abstract quantum automaton behavioural model: step interaction

The label outcome returned by the method step(QAction:action) is used
for changing the current node as it was discussed above.

4 Language ” AQuanAut” for Specifying Abstract
Quantum Automata

Language " AQuanAut” is a specification language for describing abstract quan-
tum automata. Each AQuanAut-specification presents the description for the
corresponding abstract quantum automaton. This description should be provide
sufficient data to build the programmed simulator for investigating the described
automaton. For example, authors used these description as input data for Java-
application, which is a builder of abstract quantum automaton Java-simulators.

Syntax of language ”AQuanAut” is below presented by use of Extended
Backus - Naur Form [4].

The start symbol of " AQuanAut” grammar is denoted by specification in
the paper. It is defined by the next rule, which fixes two-component structure
of an abstract quantum automaton:

specification =
’automaton’, WS, identifier, EOL,
’control:’, EOL, control specification,
’actions (memory levels number = ’, levels number,
’):’, EOL, action specification,
end’ ;

26 M. Alobaidi, A. Batyiv and G. Zholtkevych

levels number = ? number of quantum memory levels 7;

The meta-identifier identifier denotes unique names of specifying objects and
it is used for naming automata in the previous rule. It is defined by the following
way:

letter = 7 all upper-case and lower-case Latin letters 7;
digit = 7 all decimal digits 7;
identifier = letter, {letter | digit};

The meta-identifiers WS and EOL are described two kinds of delimiters. They are
determined by the following rules:

WS = 7 all white space characters 7;
EOL = ? control sequence "new line" 7;

The next rules are used to define the meta-identifier control specification.

control specification =
entry node specification,
node specification, {node specification};
entry node specification = ’entry’, WS, node specification;

The meta-identifier node specification is the main linguistic unit to specify
the control system of an automaton. Each node is described by its identifier and
by its outgoing transition list.

node specification =

identifier, ’(’, transition list, ’)’, EOL;
transition list =

transition specification,

{’,’, WS, transition specification};

Each transition 7 is described by its label A(7) and its sink node codom(7).
transition specification = label, ’:’, WS, identifier;

Any identifier or the special symbol ”#” can be used as a label. Note that the
special symbol is used as the label ”default” for nodes, which have only one
outgoing transition.

label = ’#’ | identifier;

Now let’s consider the last part of an automaton description, which is deter-
mined by the meta-identifier action specification.

Note that to determine an operator on a Hilbert space H,, it is sufficient to
specify its action on vectors from an ortho-normal basis, for example, |0),...,
|m — 1). So, we should specify vectors [£29),..., |2y _1) from H,, @ I?(A). The
number of memory levels m determined by the meta-identifier levels number
(see the rule for definition the meta-identifier specification above).

Thus, the meta-identifier action specificationis defined by the next way:

Wireframe Model for Simulating Quantum Information Processing Systems 27

action specification =
identifier, ’:’, action, EOL,
{identifier, ’:’, action, EOL};

In this rule the meta-identifier identifier refers on a node identifier.

action =
’[>, {index, ’:’, WS, ’S(’, product-vector, ’)’, ’,’},
index, ’:’, WS, ’S(’, product-vector, ’)’, ’]1’;

index = ? index of basis vector 7;

The meta-identifier product-vector is used for denoting the sum of elementary
tensors, which corresponds to the image of the basis vector with index index.

product-vector =

{index, ’:’, ’|’, functiom, ’>’, ’,’},

index, ’:’, ’|’, function, ’>’;
function = {label, ’:’, complex, ’,’}, label, ’:’ complex;
complex = real | ’I’, ’%’, real | real ’+’, ’I’, ’%’, real;
real = 7 real number 7;

Example 1. As example let’s describe an automaton, which set a qubit in the
state |0). Mathematical model for this automaton was described in [1,2].

automaton QubitCleaner
control:
entry measure(VO: exit, V1i: flip)
flip(#: exit)
actions (memory levels number = 2):
measure: [0: S(0: |VO: 1>), 1: S(1: |V1i: 1>)]
flip: [0: S(1: |#: 1>), 1: S(0: |#: 1>)]
end

5 Trial Implementation of the Wireframe Model

Trial implementation of the model described above was performed by the authors
and a group of Master students at the Department of Theoretical and Applied
Computer Science at the V.N. Karazin Kharkiv National University.

As an implementation language was chosen language Java. This choice was
due to the presence of a convenient free tool for rapidly develop compilers for
Domain Specific Languages (ANTLR, see [8]) and a wide variety of free libraries
for matrix calculations.

Table 1 shows libraries for matrix calculations, which were analysed in the
process of working on the trial implementation.

Michael Thomas Flanagan Java Scientific Library was chosen for the trial
implementation. This decision is grounded by the following constraints:

28 M. Alobaidi, A. Batyiv and G. Zholtkevych

Table 1. Libraries for matrix calculations

Library Name

Library Location

COLT

http://acs.Ibl.gov /software/colt/

Efficient Java Matrix
Library (EJML)

http://code.google.com/efficient-java-matrix-library/

Java Matrix Library

http://jmatrices.sourceforge.net/index.html

Java Matrix Package
(JAMA)

http://math.nist.gov/javanumerics/jama/

Michael Thomas Flanagan’s
Java Scientific Library

http://www.ee.ucl.ac.uk/ mflanaga/java/index.html

Universal Java Matrix
Package

http://www.ujmp.org/

— the library should cover all matrix operations used under modelling abstract

quantum automata;

— the library should provide interoperability with the library MPJ Express,
which is an implementation of an MPI-like API used to write parallel Java
applications for executing on a variety of parallel platforms ranging from
multi-core processors to computing clusters/clouds [9].

The trial implementation of the wireframe model has revealed several prob-

lems, that need to be addressed:

1. processing time required to execute every step of quantum automaton has

the exponential growth. Using parallel processing and grid computing can
be considered as possible future solutions;

. limited precision of computer processor may produce errors in the model of
intermediate quantum memory states. Accumulation of these errors can be
destroy correctness of physical postulates mapping. Application of symbolic
computations can be considered as a possible future solution.

6 Conclusion

Summarising the above we can conclude:

— simulation wireframe model for studying quantum information processing
systems is presented in the paper. This model is based on the notion of an
abstract quantum automaton;

— the trial implementation of the wireframe model has performed. The real-
ization detects a series of problems, which are described above;

Wireframe Model for Simulating Quantum Information Processing Systems 29

— description language for quantum automaton ” AQuanAut” has been deve-
loped.

Our nearest objective is re-engineering of the model to implement it basing on
computing environment for high-performance computing and grid systems.

References

1. Alobaidi, M., Batyiv, A., Zholtkevych, G.: Abstract Quantum Automata as Formal
Models of Quantum Information Processing Systems. In: V. Ermolayev et al.(eds.)
ICT in Education, Research, and Industrial Applications. CCIS, vol. 347, pp. 19 —
38. Springer-Verlag, Berlin Heidelberg (2013)

2. Alobaidi, M., Batyiv, A., Zholtkevych, G.: Towards the Notion of an Abstract
Quantum Automaton. arXiv:1204.3986v1 [cs.CC], http://arxiv.org/abs/1204.3986

3. Information technology — Object Management Group — Object Constraint Lan-
guage (OCL). ISO/IEC 19507:2012(E)

4. Information technology — Syntactic metalanguage — Extended BNF. ISO/IEC
14977:1996(E)

5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

6. OMG Unified Modeling Language™ (OMG UML), Infrastructure. OMG (2011),
http://www.omg.org/spec/UML/2.4.1 /Infrastructure

7. OMG Unified Modeling Language™ (OMG UML), Superstructure. OMG (2011),
http://www.omg.org/spec/UML/2.4.1/Superstructure

8. Parr, T.: The Definitive ANTLR Reference. Building Domain-Specific Languages.
Pragmatic Bookshelf, Raleigh, NC Dallas, TX (2007)

9. Shafi, A., Carpenter, B., Baker, M.: Nested parallelism for multi-core HPC systems
using Java. J. Par. Distr. Comp., vol. 69, 6, 532-545 (2009)

