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Abstract. We describe a new approach to real time learning of unknown functions
based on an interpolating wavelet estimation. We choose a subfamily of a wavelet
basis relying onnested hierarchical allocationand update in real time our esti-
mate of the unknown function. Such an interpolation process can be used for real
time applications like neural network adaptive control, where learning an unknown
function very fast is critical.

1. Introduction

Our purpose is to approximate an unknown functionf : R
n → R from scattered

samples(xτ , yτ = f(xτ ))τ=1...t, where

• we have little a priori knowledge on the unknown functionf : it lives in some
infinite dimensional smooth function space.

• the function approximation process is performed iteratively: each new measure
on the function(xt, f(xt)) is used to compute a new estimateft as an update of
a previous estimateft−1.

• the above update computations and the data storage should be efficient, to fit in a
real time learning framework.

A classical way to deal with such an ill–posed problem is regularization [4]. Reg-
ularization consists in minimizing some functionalM [f ] + λS[f ] where the matching
functionalM [f ] and the smoothness functionalS[f ] are defined as

M [f ] =
t∑

τ=1

‖f(xτ )− yτ‖2 S[f ] = ‖f‖2R (1)

R is some regularization Hilbert space such that the Dirac functional is continuous with
regard to the underlying norm‖.‖R. Suitable regularization spacesR are for example
Sobolev spacesHs for anys larger thann/2.

Regularization also guarantees existence and uniqueness of the solution, and the
optimum depends continuously on the input measures.
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Road map

In section 2, we recall why wavelets are efficient for storing, retrieving and updating
the estimate of an unknown function. Then, we show how a regularization approach
behaves in a wavelet basis, and how this behavior can be mimicked with a wavelet
coefficient update to reduce the computational cost of the function estimation.

In section 3, we describe the two main parts of our algorithm: allocation and coef-
ficient update. Section 4 is devoted to simulations.

2. Wavelets and regularization

2.1. Wavelet networks

Wavelet networks have been already used as single layer perceptron by Zhang & Ben-
veniste [11], Pati & Krishnaprasad [7], Slotine& al. [8]. The nodes of this neural
network are the wavelet coefficients of the function expansion that have a significant
value.

The reason why wavelets are used instead of other transfer functions is triple:
— Wavelets have high compression abilities. Because wavelets are localized in

time, wavelet coefficients will have significant values only around singularities. Keep-
ing only such coefficients (by thresholding) consists in choosing an adaptive grid to
store the function.

— Computing the value at a single point involves a small subset of coefficients
— Updating the function estimate from a new local measure also does.

2.2. Wavelet coefficient analysis

Let (ψjk)j∈N,k∈Zn be an orthogonal wavelet basis, defined asψjk(x) = 2j/2ψ(2jx−k)
if k > 0, andψ0k =

√
2φ(2x − k) whereφ andψ are a scaling function and a base

wavelet (see e.g. [6] for more details). We write any expansion of a functionf in
L2(Rn) asf =

∑
jk cjk(f)ψjk.

Provided that the waveletψ has enough vanishing moments, the following Hilbert
norm defined for a given reals ∈ R

+
∗

‖f‖2s =
∑
jk

22sj |cjk|2

is equivalent to the usual Sobolev norm‖f‖Hs , and thus the set of functionsf with
finite norm‖f‖s is the Sobolev spaceHs. One can prove thatHs is a reproducing
kernel Hilbert space(see e.g. [4]), and that thef minimizingM [f ] + ‖f‖2s is some
linear combination

f(x) =
t∑

τ=1

cτK(x, xτ ) whereK(x, y) =
∑
jk

ψjk(x)ψjk(y)
22sj

(2)

From (2), we see that the coefficientscjk introduced by some measure pointxτ are
proportional to bothψjk(xτ ) and2−2sj . The high resolution coefficients are penalized
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by the 2−2sj factor. Also, coefficients whose center is close toxτ are preferred to
others.

For each additional measurext, we thus want to choose in our wavelet pool a
wavelet whose center nodek/2j is close toxt, and whose resolution indexj is as
small as possible.

3. Algorithm

Our algorithm is divided into two main parts. The first part of the algorithm is de-
signed to choose a subfamily of our wavelet basis of same cardinality as the number
of measures. This is done with hierarchical allocation of the measures to wavelet basis
nodes.

The second part consists in maintaining a linear systemAC = Y whereA is an
invertible square sparse matrix,C the vector of wavelet coefficients off andY the
vector of measuresy1, . . . , yt. We show thatA andA−1 can be updated with simple
calculations as we get additional measures.

An additional truncation step is then used to limit the size of this growing system.

3.1. Tryadic wavelets

For geometric reasons, an allocation process compliant to the rules we explicited in
section 2.2. cannot be seen as a tree descent, unless our wavelet family is anM–band
multiresolution, whereM is odd. Therefore, we designed a3–band (tryadic) version of
the Deslauriers–Dubuc interpolation process, and the following wavelet system

(ψjk)(j,k)∈I where ψjk(x) = ψ(3jx− k) (3)

is a basis of the locally convex function spaceC(Rn,R) if the index setI is the set of
pairs(j, k) ∈ N × Z

n where eitherj = 0 andk is any element ofZn, or j > 0 and
k/3 /∈ Z

n. The set of wavelets is displayed in Fig. 1–a forn = 1. Each dot corresponds
to a wavelet, and is placed at location(k/3j ,−j), with k/3j being the center of the
corresponding functionψjk

(0,0) (0,1)

(1,1) (1,2)

(2,1)(2,2) (2,4)(2,5) (2,7)(2,8)

0 1x = k/3j 0 1x = k/3j

[a] Tryadic wavelet nodes [b] Tree structure

Figure 1: Tryadic interpolating wavelet tree structure
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We designed a tree structure based on nodes of two kinds:normalandvirtual nodes.
Normal nodes can host a wavelet coefficient, while virtual nodes cannot. Virtual nodes
are only here to have sons, so that the tree in Fig. 1–b keeps a simple structure of
constant arity3n.

3.2. Allocation

If we are given a sequence of measures(xτ , yτ ), we allocate each of them to one normal
node of the tree in Fig. 1–b, somewhat like balls falling down apachinko(Japanese
pinball) board.

A new measure(xt, yt) is allocated at scalej = 0. At scalej, a measure is allocated
to the closest node(j, k) of the tree (minimum|xt − k/3j |). If the node is virtual, the
measure goes down to be allocated at scalej + 1. If the node is normal and vacant,
allocation of this measure is complete. Else, there is acompetitionbetween the new
measure and the measure already allocated at(j, k). The closest measure (in terms of
distance betweenxτ andk) stays at(j, k), and the other is pushed down to be allocated
at scalej + 1.

This allocation step is done recursively forj = 1, . . . until complete. An example
allocation sequence is detailed in Fig. 2, with four measure pointsx1, . . . , x4.
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[a] x1 = 0.3 [b] x2 = 0.1 [c] x3 = 0.2 [d] x4 = 0.01

Figure 2: Example of thepachinko–like allocation

Note that high resolution (largej) wavelets will only be used in areas where the
measure points are numerous. Moreover, as the number of coefficients increases, the
measures allocated to the wavelets are getting closer and closer to the wavelet centers,
which enhances the system conditioning. Also note that thanks to the tryadic structure,
the allocation process is a simple tree descent.

3.3. Coefficient update

When we have an additional measure, a new wavelet is chosen from the wavelet basis
by the allocation process. UpdatingA consist in adding one row and one column that
are both sparse.A−1 is then updated with a Sherman–Morrison–like formula. Updating
Y is straightforward, andC can also be updated. As an example, when we add a new
columnV and a new row[L θ] toA, we must replaceA−1 with[

A V
L θ

]−1

=

[
A−1 + A−1V LA−1

θ−α −A
−1V
θ−α

−LA
−1

θ−α
1

θ−α

]
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whereα = LA−1V . Updating matrixA takesO(log2N) operations and updatingC
onlyO(logN) operations, if the number of coefficients stored isN .

3.4. Truncation

When a computed wavelet coefficient is lower than some threshold at a tip of the tree,
the coefficient and the corresponding measure are removed from the system. This con-
sists in crossing out one row and one column from the current estimate ofA and of
A−1.

This way, the algorithm does not stockpile endlessly measures(xτ , yτ ) (and the
corresponding lines and rows inA andA−1) but only keeps the measures that bring
significant additional information on the unknown function, the same way as an adap-
tive grid algorithm.

4. Simulations

One dimensional and two dimensional experimentations were done with a C++ pro-
gram on piecewise smooth functions. One dimensional experimentations are done with
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[a] 1D experiment [b] 2D experiment

Figure 3: Numerical experimentation

unknown an functionf1 defined asf1(x) = x2 if x ≤ 1/2 andf1(x) = (1 − x)/2
elsewhere. The measured points are 200 random points.f1 and the measure points
that were not discarded are displayed in Fig. 3–a. The algorithm clearly preferred to
keep more points around the singularity, as one would expect from an adaptive grid
algorithm. Approximation error is less than3.10−3 around the singularity and less than
3.10−5 elsewhere.

Two dimensional experimentations are done withf2(x, y) = sin|x− 1.2× y|, on a
trajectory

xτ = |cos(τ/100)|
yτ = |1− cos(τ/125)|

}
for τ = 1 . . . 197
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A chart of the absolute erreur is displayed in Fig. 3–b. It shows that around the
trajectory we followed, the approximation error is low (lower than10−2).

For the one–dimensional case, the system kept 24 measures from a 200 point input.
For the 2–dimensional case, the system kept 27 measures from a 197 point input.

Conclusion

We have described here an automated process to adaptively select a wavelet subfamily
to approximate an unknown function from random samples, based on the new concept
of allocation. High resolution and numerous wavelet coefficients will appear only at
locations where a high number of samples are available, and where the function has a
singularity. This process is thus able to discard measures that can be considered as non
informative, because they could have been predicted correctly by the algorithm. As a
consequence, we gain several advantages: high precision, low computation and storage
requirements.
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