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Pevzner and Sze [14] have introduced the Planted (l,d)-Motif Problem to find similar patterns (motifs) 
in sequences which represent the promoter region of co-regulated genes. l is the length of the motif 
and d is the maximum Hamming distance around the similar patterns. Many algorithms have been 
developed to solve this motif problem. However, these algorithms either have long running times or 
do not guarantee the motif can be found. In this paper, we introduce new algorithms to solve the 
motif problem. Our algorithms can find motifs in reasonable time for not only the challenging (9,2), 
(11,3), (15,5)-motif problems but for even longer motifs, say (20,7), (30,11) and (40,15), which have 
never been seriously attempted by other researchers because of heavy time and space requirements.  

1 Introduction 

Understanding the gene regulatory network, i.e. how genes cooperate to perform 
functions, is an important problem in Bioinformatics. An important subproblem is to 
finding motifs for co-regulatory genes. 

 In order to start the gene expression process, a molecule called the transcription 
factor will bind to a short substring in the promoter region of the gene. We call this 
substring a binding site of the transcription factor. A transcription factor can bind to 
several binding sites in the promoter regions of different genes to make these genes co-
regulating, and such binding sites should have common patterns. The motif discovering 
problem is to find the common patterns, or motifs. 

Many algorithms [1-3,5-18] have been introduced to solve this problem based on 
different assumptions. Pevzner and Sze [14] define a very precise version of this motif 
discovery problem which has also been considered in [3,12,15]. 

 
Planted (l,d)-Motif Problem: Suppose there is a fixed but unknown 

nucleotide sequence M (the motif) of length l. Given t length-n nucleotide 
sequences, and each sequence contains a planted variant of M, we want to 
determine M without knowing the positions of the planted variants. A variant is a 
substring derivable from M with at most d point substitutions. 

 
The algorithms that have been introduced to solve this problem can be classified 

into three categories: brute-force, clique search and heuristic search. 
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Brute-force algorithms [2,7,13,16-18] try to test all 4l possible motifs. Although 
these algorithms guarantee that the motif can be found, their running times increase 
exponentially with l. Therefore, they are not suitable for finding long motifs. 

Algorithms using clique search approach [12,14] construct a t-partite graph G. Each 
partite contains n – l + 1 nodes which represent all length-l substrings in an input 
sequence. Two nodes in different partites will be joined by an edge if the Hamming 
distance between the two corresponding length-l substrings is at most 2d. The Planted 
(l,d)-Motif Problem is reduced to finding a clique of size t in graph G. These algorithms 
can handle longer motif than the brute-force algorithms can. However, since the number 
of edges increases with the value of d, these algorithms fail when the number of edges in 
the graph is large, as in the case of the (9,2), (11,3), (15,5)-motif problems. 

Algorithms based on heuristic search [1,3,5-6,8-10] first find out a set of length-l 
sequences with high probability of being the motif, then refine these sequences by some 
local searching techniques, e.g., EM-algorithm, Gibbs Sampling, etc. Although these 
algorithms may solve the challenging (9,2), (11,3), (15,5)-motif problems in practice, 
there is no guarantee that the motif can be found even when the motif is short. 

As far as we know, until now, no known software can find motifs for large l and d. 
Our contribution includes: 

1) a Voting Algorithm that guarantees finding the motif and runs faster than the 
brute-force algorithms. As a result, it can handle longer motifs than brute-force 
algorithms, e.g., the challenging (9,2), (11,3), (15,5)-motif problems. However, when l > 
15, e.g. (20,7), (30,11) and (40,15)-motif problem, even the Voting Algorithm will fail 
because of heavy time and space requirements.  

2) a Voting Algorithm with projection. Instead of considering all positions, our 
improved Voting Algorithm considers only l’ of the l positions of the motif. Based on the 
voting results on these l’ positions, we can with high probability find the motif of length l. 
In fact, the l’ positions can be chosen randomly and the probability of success can be 
increased tremendously if different sets of positions are tried.  

3) Besides choosing the sets of positions at random, we can have a better result if 
these positions are the complement set of the previous l’ positions.  

Depending on the sizes of l and d, the appropriate algorithm of the above three 
should be applied to find the motif. Experiments on simulated data show that the 
improved Voting Algorithm with projection can find long motifs, e.g., the (40,15)-motif 
problem with over 95% successful rate. Note that Buhler et al [3] have shown that no 
algorithms can find the motif when the value of l is small while the value of d is large 
because there are many random length-l sequences which can be taken as motifs. 
Examples of unsolvable cases include (9,3), (11,4), (15,6), (20,8), (30,14) and (40,19)-
motif problems. Thus, our algorithms can solve the Planted (l,d)-Motif Problem with 
almost the maximum solvable d especially for small l. 

This paper is organized as follows. We describe the Voting Algorithm in Section 2 
and the heuristic improvements in Section 3. Experimental results on both real data and 
simulated data are shown in Section 4, followed by a discussion in Section 5. 



3 

Algorithm 1: Basic Voting Algorithm 
1:  Create two hash tables V and R and set the value of each entry be 0 

{Table V keeps the number of votes received by each length-l sequence s. Table R 
ensures each length-l sequence s receives at most one vote from each input sequence} 

2:  C ← φ                               {set of motifs} 
3:  for i ← 1 to t 
4:        do  for j ← 1 to n – l + 1 
5:               do  for each length-l sequence s in N(Si[j … j + l - 1],d) 
6:                           do  if R[H(s)] <> i 
7:              then  V[H(s)] ← V[H(s)] + 1 
8:                                                   R[H(s)] ← i 
9:  for j ← 1 to n – l + 1 
10:   do  for each length-l sequence s in N(St[j … j + l - 1],d) 
11:               do  if V[H(s)] = t 
12:                         then  insert s into C 

2 Voting Algorithms 

In this section, we will describe the basic Voting Algorithm which runs faster than the 
brute-force algorithms without compromising its effectiveness.  

First, we define a length-l sequence (substring) s’ to be a d-variant (or simply 
variant) of another length-l sequence (substring) s if the Hamming distance between s’ 
and s is at most d.  Let N(s,d) be the set that contains all d-variants of a length-l sequence 
s. Note that all planted variants mi of the motif M in the input sequences are in the set 
N(M,d). At the same time, M is also in N(mi,d) for all planted variants mi of M.  

The idea of the basic Voting Algorithm is that each length-l substring σ in the input 
sequences gives one vote to all length-l sequences s in N(σ,d). If each length-l sequence s 
can get at most one vote from each input sequence, the motif M will get exactly t votes 
because of the assumption that each input sequence has exactly one planted variant of M.  

Algorithm 1 outlines the procedure for the basic Voting Algorithm, where Si[j] is 
the j-th character in the i-th input sequence Si and H(s) is the hash value of a length-l 
sequence s. According to the definition of the Planted (l,d)-Motif Problem, each input 
sequence contains a variant of motif M. If a length-l sequence does not have any variant 
on one of the input sequence, it will not be the motif and will not be stored in the hash 
tables. Therefore the storage space can be reduced. The correctness of the Basic Voting 
Algorithm is straightforward and thus omitted. Theorem 1 proves that the time and space 
complexities of the algorithm are O(nt(3l)d) and O(n(3l)d + nt) respectively. On the other 
hand, the brute-force algorithm takes O(nt4l) time and O(nt) space. Although the basic 
Voting Algorithm runs faster than the brute-force algorithm does, the space needed 
grows exponentially with d. Thus, it cannot handle long motifs with large Hamming 
distance d because the space requirement increases exponentially with d. 
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A method to reduce the space complexity is to divide the 4l length-l sequences into 
groups and to process them one by one. We group the 4l length-l sequences s according 
to their suffixes of length l’. Two length-l sequences are in the same group if and only if 
their suffixes are the same. For each of the 4l’ groups, each substring σ in the input 
sequences will be processed and one vote will be given to its variants with a particular 
suffix. Theorem 2 proves that the time and space complexities of this modified algorithm 
are O(nt(3l)d + nt4l’) and O(n(3(l-l’))d + nt) respectively. Note that when l’ is smaller than 
log4(3l)d, O(nt(3l)d + nt4l’) = O(nt(3l)d). 

 
Theorem 1: The time and space complexities of the basic Voting Algorithm are 

O(nt(3l)d) and O(n(3l)d + nt) respectively. 
Proof: Let K(l,d) be the size of N(σ,d) for any length-l substring σ. 

))3((3C),K( 0
dil

i lOdl d
i =∑= =  

where  is the number of ways of choosing i objects from l. Lines 1 and 2 take 
constant time. Since the size of the set N(S

l
iC

i[j … j + l - 1],d) is K(l,d) and we can access 
each entry in the hash tables V and R in constant time, lines 5 to 8 take O(K(l,d)) time. 
Therefore, the two for-loops of i and j (lines 3-8) take O(ntK(l,d)) time in total. For lines 
9 to 12, we have to check K(l,d) entries for each of the n – l + 1 substring s, which takes 
O(nK(l,d)) time in total. The running time of the basic Voting Algorithm is O(1) + 
O(ntK(l,d)) + O(nK(l,d)) = O(ntK(l,d)) = O(nt(3l)d). 

Each length-l substring in the first input sequence has K(l,d) variants. Therefore, at 
most (n-l+1)K(l,d) sequences will get one vote after the first iteration of i. Only 
sequences that get a vote in the first iteration can possibly be the motif, and in subsequent 
iterations, we need only be concerned with keeping track of votes for these sequences 
only. So, the size of the two tables are at most (n-l+1)K(l,d). Since the space needed to 
store the input sequences is O(nt), the space complexity of the algorithm is O(n(3l)d + nt).                   
  

 
Theorem 2: The time and space complexity of the modified Voting Algorithm are 

 and O(n(3(l – l’)))4)3(( 'ld ntlntO + d + nt) respectively. 
Proof: Although we have divided the length-l sequences into 4l’ groups, the total 

number of votes received by the tables remains O(ntK(l,d)). At a result, we will access 
tables V and R O(ntK(l,d)) times. However, since we have to scan the input sequence 4l’ 
times, the modified Voting Algorithm will take O(ntK(l,d) + nt4l’) = O(nt(3l)d + nt4l’).  

At each iteration, we need to store the votes for a group of length-l sequences with a 
particular length-l’ suffix only, the space needed for tables V and R decrease from 
O(nK(l,d)) to O(nK(l-l’,d)). The space complexity of the modified Voting Algorithm is 
O(nK(l,d) + nt) = O(n(3(l-l’))d + nt).                                                                                 
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3 Heuristic Improvements 

Although the Voting Algorithm can solve the Planted (l,d)-Motif Problem for many l 
and d including the challenging (9,2), (11,3), (15,5)-motif problems, its running time 
increases exponentially with d and the length of suffix. Therefore, it cannot handle 
problem with large l and d. In order to handle longer motifs, we introduce two heuristic 
improvements for the Voting Algorithm. 

3.1 Random Projection 

When l is large, say l > 15, the time required for finding the motif becomes 
prohibitively long when d > 5. We try to reduce the size of l by projecting all length-l 
substrings onto a subset of these l positions. This subset of positions can be randomly 
chosen and the size of the subset, say l’, should be small enough to be solvable by the 
previous Voting Algorithm. A similar projection idea was used by Buhler et al [3] in 
which only the count of length-l substrings projected to each length-l’ sequence is used 
for selection of seed sequences. However, in our algorithm, the Voting Algorithm is 
applied to the projected length-l’ sequences for saving time and space. 

Denote HD(s,s’) be the Hamming distance between sequences s and s’. Let B be a 
subset of l’ positions from {1, …, l}. A projection proj(s,B) of a length-l sequence s is 
the length-l’ sequence constructed by projecting the l’ characters from s at the positions 
specified by B. Our approach is to perform voting on these length-l’ projected sequences. 
For each length-l substring σ in the input sequences, one vote will be given to a length-l’ 
sequence s if ( )  /ldlsB '),,proj( ≤σHD . In general, for a length-l variant mi of M, i.e. 
HD(mi,M) ≤ d, it is expected that the length-l’ sequence proj(m ,B) is also a   -
variant of proj(M,B), i.e. 

i

)
/ldl '

(  /ldlBM '),proj(),Bmi ,proj(HD ≤ , and proj(M,B) will be 
voted. However, even if M has t variants {mi}, proj(M,B) may not get exactly t votes in 
the following cases: 

1. proj(M,B) is not voted by some planted variant mi because 
( )  /ldlBMBmi '),proj(),,proj(HD > . 

2. proj(M,B) is voted by a substring σ even though HD(σ, M) > d because 
( )  /ldlBMB '),proj(),,proj(HD ≤σ . 

We shall show later that when l’ is comparatively large with respect to l, say l’ ≈ 2l/3, 
it is highly probable that proj(M,B) will receive votes from the plant variants mi of motif 
M. 

 
Theorem 3: Given a random set B of size l’ and t length-l planted variants of a motif 

M with at most d substitutions, the probability Pr(l,l’,d,t,t’) that “at least t’ out of the t 
variants give vote to proj(M,B) after performed projection according to B” is at least 
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Proof: Let p(l,l’,d) be the probability that ( )  /ldlBMBmi '),proj(),,proj( HD ≤  for a 
variant mi of M with exactly d substitutions. Since there are out of C  possible 
B such that 

dl
il

d
i

−
−• 'CC l

l '
( ) iBMBmi =),proj(),,proj(HD

m value w
, .  ∑= =

−
−•ldl

i
l
l

dl
il

d
idllp /'

0 '/CCC),',(
en HD(m ,MhPr(l,l’,d,t,t’) has the minimu ) = d for all variants mi, which 

is equal to ∑ using binomial distribution, Therefore 
P
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−t
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i dllpdllp' ),',(1),',(C

r(l,l’,d,t,t’) is at least ( ) −itid ),'∑ −=
t
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)
                                     

Table 1: Pr(l,l’,d,t,t’) for different l, d and t’ when t = 
20 and l’ = 2l/3 

Table 2: Ph(l,d,t,t’) for different l, d and t’ when t 
= 20 

l D t’ Pr(l,l’,d,t,t’) l d t’ Pr(l,l’,d,t,t’) l d t’ Ph(l,d,t,t’) l d t’ Ph(l,d,t,t’) 
15 3 13 0.869217 24 9 13 0.664495 20 6 13 0.9772 26 8 13 0.9522 

  14 0.740677   14 0.482605   14 0.8773   14 0.8008 
  15 0.561257   15 0.300016   15 0.6563   15 0.5432 

18 6 13 0.754415 27 9 13 0.641744 22 6 13 0.9743 28 10 13 0.9337 
  14 0.585880   14 0.458359   14 0.8672   14 0.7551 
  15 0.394541   15 0.279448   15 0.6397   15 0.4871 

21 6 13 0.729136 30 1
2 13 0.600934 24 8 13 0.9565 30 10 13 0.9285 

  14 0.555538   14 0.416533   14 0.8123   14 0.7433 
  15 0.365551 

 

  15 0.245322 

 

  15 0.5585 

 

  15 0.4737 

 
Let {vi} be the set of length-l substrings which vote proj(M,B). Although {mi} and 

{vi} may be different because of the above cases, large proportion of substrings {mi}, say 
t’ length-l variants of M, are in {vi} and t’ should be slightly less than t. Thus, proj(M,B) 
will receive high votes and will be used to identify {vi} in the input sequences. The last 
procedure is to finding the motif from this set of length-l substrings. We choose to find 
the motif using clique search method. In practice, the running time for finding the 
maximum clique is acceptable [23] as the size of the graph is usually very small. 

Table 1 shows the value of Pr(l,l’,d,t,t’) for different values of l, d and t’ when t = 
20 and l’ ≈ 2l/3, e.g., the probability that there are at least 14 variants of M in the variants 
set of proj(M,B) is larger than 0.4165 (when l = 30, d = 12) which is much larger than the 
probability for a set of randomly-generated sequences. Although this probability 
Pr(l,l’,d,t,t’) might not be large enough to guarantee the finding of M, we can repeat the 
process with different sets of positions B to increase the probability of finding M. With 
respect to the above example, if we repeat this process 10 times for , the 
probability that 14 or more variants of motif M are in {v

20=t
i} will increase to 

. 9954.0)4165.01(1 10 =−−

3.2 Improved Random Projection 

Although we have high probability to find the motif using Random Projection, we can 
further increase this probability by considering the complement of the set B of positions. 

Consider a set B of  positions, define B 2/l

( )) dB ≤





c be the complement of B, i.e. {1, … ,l} 
– B. If m  is a length-l planted variant of the motif M, then either 

 or 
i

 2/,proj(),,proj(HD MBmi ( )  2/),proj(),,proj(HD dBMBm cc
i ≤  . Let {vi} 
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and  be the set of length-l variants obtained from proj(M,B) and proj(M,B}{ c
iv c) 

respectively. At least half of the variants of motif M should be in {vi} or { . 
Calculation of the probability P

}c
iv

h(l,d,t,t’) that at least t’ of the t variants of a length-l motif 
M are in {vi} or in { in shown in Theorem 4. }c

iv
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Theorem 4: Given a random set B of size l/2 and t length-l planted variants of a 

motif M with at most d substitutions, the probability Ph(l,d,t,t’) that either proj(M,B) or 
proj(M,Bc) gets at least t’ votes from the t variants when performing random projection is 
at least 
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Proof: Assume both l and d are even. Let pe be the probability that a variant mi of M with 
exactly d substitutions gives vote to both proj(M,B) and proj(M,Bc). It would happen only 
when  = ( )),proj(proj( BMmi ( )),proj(),,proj(HD cc

i BMBm

ep =

 = d/2. It means that 
the set B contains exactly (l - d)/2 positions that mi equals M. Since there are 

out of  possible B satisfy this requirement, . d
d− 2/) 2/

),t't

d
d /C dl

dl
d
d

)(
2/)(2/ CC −

−•

( ) ( )
( )(
( )),proj(),,proj(HD s.t.   variants-rest  in the   variants' -  or           

 ),proj(),,proj(HD s.t.   variants-rest  in the   variantsor   -            

/),proj(),,proj(HD),proj(),,proj(HD variants     

 variants   ) ,
given that /2  )),proj(),,HD(proj(satisfy   variantsor  ' are 

)),proj(),,HD(proj(satisfy   variants moreor  ' are reprobabilit

BMBmjtmtt
BMBmjtmjt'

dBMBmBMBmj

mdM
dBMBmmt

BMBmmdt

ii

ii

cc
ii

i

cc
ii

ii

∃
∃

===

−=
≤−

−≥

)

 

( ) ∑
= −−−=

−−
−−


































•=

j jtjtttk

kjtk
jt

k
jj

e
t
j p

0 },...,',',...,0{ 2
1

2
1C1(

( )

 

∑
= −−−=

−
−−


























•=

j jtjtttk

jt
jt

k
jj

e
t
j p

0 },...,',',...,0{ 2
1C1(                                       

 
 

 
The values of Ph(l,d,t,t’) for different l, d and t’ when t = 20 are shown in Table 2. 

Although the probability Ph (l,d,t,t’) decreases with l, the probability “at least 14 of the 
20 variants of motif M are in {vi} derived from proj(M,B) or in set{  derived from 
proj(M,B

}c
iv

c)” is larger than 0.7433 (an increase from 0.4165 of the random projection 
method). Note that Ph (l,d,t,t’) = 1 for all t’ ≤ t/2, therefore at least t/2 variants {mi} are in 
{vi} or { . Similar to the Random Projection, we can take different random sets B so 
as to increase this probability. For example, if we repeat the process 5 times, the 

}c
i
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probability of at least 14 out of 20 variants in {vi} or {  will be 1 - (1 - 0.7433)}c
iv 5 = 

0.9989. 
When using this improved Random Projection approach, we should be careful that 

the motif must be long. If the length of the motif is short, say 16bp, the length of the 
short motif (8bp) is too short that there will be many random sequences having a lot of 
variants. The running time of the Voting Algorithm will increase, as we have to find the 
length-l variants for a huge number of short motifs in order to find the corresponding 
candidate motif. 

On the other hand, if the length of the motif is sufficient long, say 40, the improved 
Random Projection Algorithm should be applied to reduce to a motif problem of length 
20, which can further be solved by the Random Projection Algorithm. 

 
Table 3: Suggested heuristic improvement used in different situations “S” means using the Voting Algorithm 
without heuristic improvement. “RP” means using the random projection with l’ = 2l/3. “RPH” means using the 
random projection with the complement set (l’ = l/2) 

 l < 15 15 ≤ l ≤ 20 20 < l 
d ≤ 3 S S S 

3 < d ≤ 5 S S RPH 
d > 5 S RP RPH 

 
Table 4: Experimental results on simulated data of the brute-force algorithm, Voting Algorithm and Voting 
Algorithm with heuristic improvement We run 50 test cases for each set of parameters and record the average 
running time and the hamming distance between the planted motif and the solution output by the three 
programs. “-“ means that the running time of the program is too long (at least more than one day).  

Brute-force Voting Voting with Heurisitc 
Improvement 

 
l 

 
d 

Max d for E(l,d) 
< 10 

Buhler et al [3] HD time HD time HD time 

7 1 1 0 61.6 s 0 <1 s 
9 2 2 0 17.9 m 0 0.4 s 
11 3 3 0 4.8 h 0 8.6 s 
13 4 4 - - 0 108.s 

The  results are the same as the 
Voting algorithm as no 

heuristic improvement is 
performed when l < 15 

15 5 5 - - 0.2 22 m 0.2 113.6 s 
20 7 7 - - - - 0 111.4 s 
30 11 13 - - - - 0.11 124.1 s 
40 15 18 - - - - 0.1 125.2 s 

4 Experimental results 

In this section, we describe the test results of the Voting Algorithm for both 
simulated and real biological data. The experiments were taken on a 2.4GHz CPU with 
512Mb memory. 

4.1 Simulated Data 

We tested the performances of brute-force algorithm, Voting Algorithm and Voting 
Algorithm with heuristic improvement on different Planted (l,d)-Motif Problem. Table 3 
shows the suggested heuristic improvement with respect to different l and d. 
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All input instances contain t = 20 sequences, each of length 600. Each nucleotide 
(‘A’, ‘C’, ‘G’ and ‘T’) of the input sequences was generated independently with the same 
occurrence probability. A motif M of length-l was randomly picked and a variant was 
planted to each input sequence. Each algorithm could output at most 20 solutions (the 
length-l sequences with at least one variant in each input sequence). The minimum 
Hamming distance between the planted motif and the 20 solutions are records. For each 
set of parameter l and d, we ran 50 test cases, recorded the average Hamming distance 
and the average running time of each algorithm. 

Table 4 shows the results of the experiments. The third column is the maximum 
value of d for the corresponding l such that the Planted (l,d)-Motif Problem can still be 
solved theoretically. Buhler et al [3] introduced the expected number E(l,d) of length-l 
random sequences that have one variant in each input sequence. When E(l,d) is large, no 
algorithm can determine the motif from the set of random sequences with a variant in 
each input sequence. In other words, max{d | E(l,d) < some threshold } gives the 
maximum d that the (l,d)-motif problem can be solved. 

Since the brute-force algorithm takes O(nt4l) time, the running time for finding a 
length-11 motif is over 4.8h and it cannot handle longer motif in reasonable time. For the 
Voting Algorithm, although it can solve the Planted (l,d)-Motif Problem for longer motif 
than the brute-force algorithm can, it cannot handle those problem when d is larger than 
5 as its running time increases exponentially with d. With heuristic improvement, the 
Voting Algorithm can handle longer motif with large d even for the (40,15)-motif 
problem in one minute. 

4.2 Real Biological Data 

SCPD [19] contains different transcription factors for yeast. For each set of genes 
regulated by the same transcription factor, we chose the 600 bp in the upstream of the 
genes as the input sequences T. The lengths of the motifs were same as those of the 
published motifs and d was 1. Experimental results are showed in Table 5. The Voting 
Algorithm could find the motifs for these data sets. Besides, the running time of the 
Voting Algorithm was within one second for each data set. 

 
Table 5: Experiment result on real biological data The data are collected from the SCPD. For each 
set of data, we look for the motifs with length equals to the published motif and d equals to 1. 

Transcription Factor Published Motif pattern Motif Pattern Found 
GCR1 CWTCC CTTCC 
GATA CTTATC CTTAT 

CCBF,SCB,SWI6 CNCGAAA CGCGAAA 
CuRE,MAC1 TTTGCTC TTTGCTC 

GCFAR CCCGGG CCCGGG 
GCN1 TAATCTAATC TAATCTAATC 
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5 Discussion 

In this paper, we have introduced the Voting Algorithm for solving the Planted (l,d)-
Motif Problem. It guarantees that the motif can be found when d is small and with high 
probability for large l and d. Experimental results have indicated that our algorithm 
works quite well for both simulated data and real data.  

An open problem of interest is to extend the Voting Algorithm to handle those 
variants within d from motif M in edit distance instead of Hamming distance. When d is 
small, this problem can be solved by redefining the variant set N(σ,d) of a length-l 
substring σ. However, the heuristic improvement may not work when both l and d are 
large and new methods should be needed to handle these cases. 
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