
1

VOTING ALGORITHMS FOR DISCOVERING LONG MOTIFS∗

FRANCIS Y.L. CHIN AND HENRY C.M. LEUNG†
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

Pevzner and Sze [14] have introduced the Planted (l,d)-Motif Problem to find similar patterns (motifs)
in sequences which represent the promoter region of co-regulated genes. l is the length of the motif
and d is the maximum Hamming distance around the similar patterns. Many algorithms have been
developed to solve this motif problem. However, these algorithms either have long running times or
do not guarantee the motif can be found. In this paper, we introduce new algorithms to solve the
motif problem. Our algorithms can find motifs in reasonable time for not only the challenging (9,2),
(11,3), (15,5)-motif problems but for even longer motifs, say (20,7), (30,11) and (40,15), which have
never been seriously attempted by other researchers because of heavy time and space requirements.

1 Introduction

Understanding the gene regulatory network, i.e. how genes cooperate to perform
functions, is an important problem in Bioinformatics. An important subproblem is to
finding motifs for co-regulatory genes.

 In order to start the gene expression process, a molecule called the transcription
factor will bind to a short substring in the promoter region of the gene. We call this
substring a binding site of the transcription factor. A transcription factor can bind to
several binding sites in the promoter regions of different genes to make these genes co-
regulating, and such binding sites should have common patterns. The motif discovering
problem is to find the common patterns, or motifs.

Many algorithms [1-3,5-18] have been introduced to solve this problem based on
different assumptions. Pevzner and Sze [14] define a very precise version of this motif
discovery problem which has also been considered in [3,12,15].

Planted (l,d)-Motif Problem: Suppose there is a fixed but unknown

nucleotide sequence M (the motif) of length l. Given t length-n nucleotide
sequences, and each sequence contains a planted variant of M, we want to
determine M without knowing the positions of the planted variants. A variant is a
substring derivable from M with at most d point substitutions.

The algorithms that have been introduced to solve this problem can be classified

into three categories: brute-force, clique search and heuristic search.

∗ The research was supported in parts by the RGC grant HKU 7135/04E
† email address : {chin,cmleung2}@cs.hku.hk

2

Brute-force algorithms [2,7,13,16-18] try to test all 4l possible motifs. Although
these algorithms guarantee that the motif can be found, their running times increase
exponentially with l. Therefore, they are not suitable for finding long motifs.

Algorithms using clique search approach [12,14] construct a t-partite graph G. Each
partite contains n – l + 1 nodes which represent all length-l substrings in an input
sequence. Two nodes in different partites will be joined by an edge if the Hamming
distance between the two corresponding length-l substrings is at most 2d. The Planted
(l,d)-Motif Problem is reduced to finding a clique of size t in graph G. These algorithms
can handle longer motif than the brute-force algorithms can. However, since the number
of edges increases with the value of d, these algorithms fail when the number of edges in
the graph is large, as in the case of the (9,2), (11,3), (15,5)-motif problems.

Algorithms based on heuristic search [1,3,5-6,8-10] first find out a set of length-l
sequences with high probability of being the motif, then refine these sequences by some
local searching techniques, e.g., EM-algorithm, Gibbs Sampling, etc. Although these
algorithms may solve the challenging (9,2), (11,3), (15,5)-motif problems in practice,
there is no guarantee that the motif can be found even when the motif is short.

As far as we know, until now, no known software can find motifs for large l and d.
Our contribution includes:

1) a Voting Algorithm that guarantees finding the motif and runs faster than the
brute-force algorithms. As a result, it can handle longer motifs than brute-force
algorithms, e.g., the challenging (9,2), (11,3), (15,5)-motif problems. However, when l >
15, e.g. (20,7), (30,11) and (40,15)-motif problem, even the Voting Algorithm will fail
because of heavy time and space requirements.

2) a Voting Algorithm with projection. Instead of considering all positions, our
improved Voting Algorithm considers only l’ of the l positions of the motif. Based on the
voting results on these l’ positions, we can with high probability find the motif of length l.
In fact, the l’ positions can be chosen randomly and the probability of success can be
increased tremendously if different sets of positions are tried.

3) Besides choosing the sets of positions at random, we can have a better result if
these positions are the complement set of the previous l’ positions.

Depending on the sizes of l and d, the appropriate algorithm of the above three
should be applied to find the motif. Experiments on simulated data show that the
improved Voting Algorithm with projection can find long motifs, e.g., the (40,15)-motif
problem with over 95% successful rate. Note that Buhler et al [3] have shown that no
algorithms can find the motif when the value of l is small while the value of d is large
because there are many random length-l sequences which can be taken as motifs.
Examples of unsolvable cases include (9,3), (11,4), (15,6), (20,8), (30,14) and (40,19)-
motif problems. Thus, our algorithms can solve the Planted (l,d)-Motif Problem with
almost the maximum solvable d especially for small l.

This paper is organized as follows. We describe the Voting Algorithm in Section 2
and the heuristic improvements in Section 3. Experimental results on both real data and
simulated data are shown in Section 4, followed by a discussion in Section 5.

3

Algorithm 1: Basic Voting Algorithm
1: Create two hash tables V and R and set the value of each entry be 0

{Table V keeps the number of votes received by each length-l sequence s. Table R
ensures each length-l sequence s receives at most one vote from each input sequence}

2: C ← φ {set of motifs}
3: for i ← 1 to t
4: do for j ← 1 to n – l + 1
5: do for each length-l sequence s in N(Si[j … j + l - 1],d)
6: do if R[H(s)] <> i
7: then V[H(s)] ← V[H(s)] + 1
8: R[H(s)] ← i
9: for j ← 1 to n – l + 1
10: do for each length-l sequence s in N(St[j … j + l - 1],d)
11: do if V[H(s)] = t
12: then insert s into C

2 Voting Algorithms

In this section, we will describe the basic Voting Algorithm which runs faster than the
brute-force algorithms without compromising its effectiveness.

First, we define a length-l sequence (substring) s’ to be a d-variant (or simply
variant) of another length-l sequence (substring) s if the Hamming distance between s’
and s is at most d. Let N(s,d) be the set that contains all d-variants of a length-l sequence
s. Note that all planted variants mi of the motif M in the input sequences are in the set
N(M,d). At the same time, M is also in N(mi,d) for all planted variants mi of M.

The idea of the basic Voting Algorithm is that each length-l substring σ in the input
sequences gives one vote to all length-l sequences s in N(σ,d). If each length-l sequence s
can get at most one vote from each input sequence, the motif M will get exactly t votes
because of the assumption that each input sequence has exactly one planted variant of M.

Algorithm 1 outlines the procedure for the basic Voting Algorithm, where Si[j] is
the j-th character in the i-th input sequence Si and H(s) is the hash value of a length-l
sequence s. According to the definition of the Planted (l,d)-Motif Problem, each input
sequence contains a variant of motif M. If a length-l sequence does not have any variant
on one of the input sequence, it will not be the motif and will not be stored in the hash
tables. Therefore the storage space can be reduced. The correctness of the Basic Voting
Algorithm is straightforward and thus omitted. Theorem 1 proves that the time and space
complexities of the algorithm are O(nt(3l)d) and O(n(3l)d + nt) respectively. On the other
hand, the brute-force algorithm takes O(nt4l) time and O(nt) space. Although the basic
Voting Algorithm runs faster than the brute-force algorithm does, the space needed
grows exponentially with d. Thus, it cannot handle long motifs with large Hamming
distance d because the space requirement increases exponentially with d.

4

A method to reduce the space complexity is to divide the 4l length-l sequences into
groups and to process them one by one. We group the 4l length-l sequences s according
to their suffixes of length l’. Two length-l sequences are in the same group if and only if
their suffixes are the same. For each of the 4l’ groups, each substring σ in the input
sequences will be processed and one vote will be given to its variants with a particular
suffix. Theorem 2 proves that the time and space complexities of this modified algorithm
are O(nt(3l)d + nt4l’) and O(n(3(l-l’))d + nt) respectively. Note that when l’ is smaller than
log4(3l)d, O(nt(3l)d + nt4l’) = O(nt(3l)d).

Theorem 1: The time and space complexities of the basic Voting Algorithm are

O(nt(3l)d) and O(n(3l)d + nt) respectively.
Proof: Let K(l,d) be the size of N(σ,d) for any length-l substring σ.

))3((3C),K(0
dil

i lOdl d
i =∑= =

where is the number of ways of choosing i objects from l. Lines 1 and 2 take
constant time. Since the size of the set N(S

l
iC

i[j … j + l - 1],d) is K(l,d) and we can access
each entry in the hash tables V and R in constant time, lines 5 to 8 take O(K(l,d)) time.
Therefore, the two for-loops of i and j (lines 3-8) take O(ntK(l,d)) time in total. For lines
9 to 12, we have to check K(l,d) entries for each of the n – l + 1 substring s, which takes
O(nK(l,d)) time in total. The running time of the basic Voting Algorithm is O(1) +
O(ntK(l,d)) + O(nK(l,d)) = O(ntK(l,d)) = O(nt(3l)d).

Each length-l substring in the first input sequence has K(l,d) variants. Therefore, at
most (n-l+1)K(l,d) sequences will get one vote after the first iteration of i. Only
sequences that get a vote in the first iteration can possibly be the motif, and in subsequent
iterations, we need only be concerned with keeping track of votes for these sequences
only. So, the size of the two tables are at most (n-l+1)K(l,d). Since the space needed to
store the input sequences is O(nt), the space complexity of the algorithm is O(n(3l)d + nt).

Theorem 2: The time and space complexity of the modified Voting Algorithm are

 and O(n(3(l – l’)))4)3(('ld ntlntO + d + nt) respectively.
Proof: Although we have divided the length-l sequences into 4l’ groups, the total

number of votes received by the tables remains O(ntK(l,d)). At a result, we will access
tables V and R O(ntK(l,d)) times. However, since we have to scan the input sequence 4l’
times, the modified Voting Algorithm will take O(ntK(l,d) + nt4l’) = O(nt(3l)d + nt4l’).

At each iteration, we need to store the votes for a group of length-l sequences with a
particular length-l’ suffix only, the space needed for tables V and R decrease from
O(nK(l,d)) to O(nK(l-l’,d)). The space complexity of the modified Voting Algorithm is
O(nK(l,d) + nt) = O(n(3(l-l’))d + nt).

5

3 Heuristic Improvements

Although the Voting Algorithm can solve the Planted (l,d)-Motif Problem for many l
and d including the challenging (9,2), (11,3), (15,5)-motif problems, its running time
increases exponentially with d and the length of suffix. Therefore, it cannot handle
problem with large l and d. In order to handle longer motifs, we introduce two heuristic
improvements for the Voting Algorithm.

3.1 Random Projection

When l is large, say l > 15, the time required for finding the motif becomes
prohibitively long when d > 5. We try to reduce the size of l by projecting all length-l
substrings onto a subset of these l positions. This subset of positions can be randomly
chosen and the size of the subset, say l’, should be small enough to be solvable by the
previous Voting Algorithm. A similar projection idea was used by Buhler et al [3] in
which only the count of length-l substrings projected to each length-l’ sequence is used
for selection of seed sequences. However, in our algorithm, the Voting Algorithm is
applied to the projected length-l’ sequences for saving time and space.

Denote HD(s,s’) be the Hamming distance between sequences s and s’. Let B be a
subset of l’ positions from {1, …, l}. A projection proj(s,B) of a length-l sequence s is
the length-l’ sequence constructed by projecting the l’ characters from s at the positions
specified by B. Our approach is to perform voting on these length-l’ projected sequences.
For each length-l substring σ in the input sequences, one vote will be given to a length-l’
sequence s if ()  /ldlsB '),,proj(≤σHD . In general, for a length-l variant mi of M, i.e.
HD(mi,M) ≤ d, it is expected that the length-l’ sequence proj(m ,B) is also a   -
variant of proj(M,B), i.e.

i

)
/ldl '

( /ldlBM '),proj(),Bmi ,proj(HD ≤ , and proj(M,B) will be
voted. However, even if M has t variants {mi}, proj(M,B) may not get exactly t votes in
the following cases:

1. proj(M,B) is not voted by some planted variant mi because
()  /ldlBMBmi '),proj(),,proj(HD > .

2. proj(M,B) is voted by a substring σ even though HD(σ, M) > d because
()  /ldlBMB '),proj(),,proj(HD ≤σ .

We shall show later that when l’ is comparatively large with respect to l, say l’ ≈ 2l/3,
it is highly probable that proj(M,B) will receive votes from the plant variants mi of motif
M.

Theorem 3: Given a random set B of size l’ and t length-l planted variants of a motif

M with at most d substitutions, the probability Pr(l,l’,d,t,t’) that “at least t’ out of the t
variants give vote to proj(M,B) after performed projection according to B” is at least

()∑
=

−
−

t

ti

itiit
i dllpdllp

'
),',(1),',(C where

 
∑
=

−
−•

=
ldl

i
l
l

dl
il

d
idllp

/'

0 '

'

C
CC

),',(

6

Proof: Let p(l,l’,d) be the probability that ()  /ldlBMBmi '),proj(),,proj(HD ≤ for a
variant mi of M with exactly d substitutions. Since there are out of C possible
B such that

dl
il

d
i

−
−• 'CC l

l '
() iBMBmi =),proj(),,proj(HD

m value w
, .  ∑= =

−
−•ldl

i
l
l

dl
il

d
idllp /'

0 '/CCC),',(
en HD(m ,MhPr(l,l’,d,t,t’) has the minimu) = d for all variants mi, which

is equal to ∑ using binomial distribution, Therefore
P

(−=

−t
ti

itiit
i dllpdllp'),',(1),',(C

r(l,l’,d,t,t’) is at least () −itid),'∑ −=
t

ti
it

i llpdllp' ,(1),',(C .

i

)

Table 1: Pr(l,l’,d,t,t’) for different l, d and t’ when t =
20 and l’ = 2l/3

Table 2: Ph(l,d,t,t’) for different l, d and t’ when t
= 20

l D t’ Pr(l,l’,d,t,t’) l d t’ Pr(l,l’,d,t,t’) l d t’ Ph(l,d,t,t’) l d t’ Ph(l,d,t,t’)
15 3 13 0.869217 24 9 13 0.664495 20 6 13 0.9772 26 8 13 0.9522

 14 0.740677 14 0.482605 14 0.8773 14 0.8008
 15 0.561257 15 0.300016 15 0.6563 15 0.5432

18 6 13 0.754415 27 9 13 0.641744 22 6 13 0.9743 28 10 13 0.9337
 14 0.585880 14 0.458359 14 0.8672 14 0.7551
 15 0.394541 15 0.279448 15 0.6397 15 0.4871

21 6 13 0.729136 30 1
2 13 0.600934 24 8 13 0.9565 30 10 13 0.9285

 14 0.555538 14 0.416533 14 0.8123 14 0.7433
 15 0.365551

 15 0.245322

 15 0.5585

 15 0.4737

Let {vi} be the set of length-l substrings which vote proj(M,B). Although {mi} and

{vi} may be different because of the above cases, large proportion of substrings {mi}, say
t’ length-l variants of M, are in {vi} and t’ should be slightly less than t. Thus, proj(M,B)
will receive high votes and will be used to identify {vi} in the input sequences. The last
procedure is to finding the motif from this set of length-l substrings. We choose to find
the motif using clique search method. In practice, the running time for finding the
maximum clique is acceptable [23] as the size of the graph is usually very small.

Table 1 shows the value of Pr(l,l’,d,t,t’) for different values of l, d and t’ when t =
20 and l’ ≈ 2l/3, e.g., the probability that there are at least 14 variants of M in the variants
set of proj(M,B) is larger than 0.4165 (when l = 30, d = 12) which is much larger than the
probability for a set of randomly-generated sequences. Although this probability
Pr(l,l’,d,t,t’) might not be large enough to guarantee the finding of M, we can repeat the
process with different sets of positions B to increase the probability of finding M. With
respect to the above example, if we repeat this process 10 times for , the
probability that 14 or more variants of motif M are in {v

20=t
i} will increase to

. 9954.0)4165.01(1 10 =−−

3.2 Improved Random Projection

Although we have high probability to find the motif using Random Projection, we can
further increase this probability by considering the complement of the set B of positions.

Consider a set B of positions, define B 2/l

()) dB ≤





c be the complement of B, i.e. {1, … ,l}
– B. If m is a length-l planted variant of the motif M, then either

 or
i

 2/,proj(),,proj(HD MBmi ()  2/),proj(),,proj(HD dBMBm cc
i ≤  . Let {vi}

7

and be the set of length-l variants obtained from proj(M,B) and proj(M,B}{ c
iv c)

respectively. At least half of the variants of motif M should be in {vi} or { .
Calculation of the probability P

}c
iv

h(l,d,t,t’) that at least t’ of the t variants of a length-l motif
M are in {vi} or in { in shown in Theorem 4. }c

iv






t
j pC

),, BHD

l
l
−• (2 C

(

P

P

HD(
or there

 The
,,(P

0

h

m

dl

t

j

i

•

∃∑
=

l
lC

lessor
more

 s.t.

 allfor
 more

y that the

m

d
d

i

l
l 2//C

)

/2
 /2

2

 /2

d
d

d

≤
≤

≤

∑ − t
ep)





t
C

∑ − t
ep)





t
C

v

Theorem 4: Given a random set B of size l/2 and t length-l planted variants of a

motif M with at most d substitutions, the probability Ph(l,d,t,t’) that either proj(M,B) or
proj(M,Bc) gets at least t’ votes from the t variants when performing random projection is
at least

()∑ ∑
= −−−=

−
−−


























•−

t

j jtjtttk

jt
jt

k
jt

e
j

e p
0 },...,',',...,0{ 2

1C)1(where

l
l

dl
dl

d
d

ep
2/

)(
2/)(2/

C

CC −
−•

=

Proof: Assume both l and d are even. Let pe be the probability that a variant mi of M with
exactly d substitutions gives vote to both proj(M,B) and proj(M,Bc). It would happen only
when = ()),proj(proj(BMmi ()),proj(),,proj(HD cc

i BMBm

ep =

 = d/2. It means that
the set B contains exactly (l - d)/2 positions that mi equals M. Since there are

out of possible B satisfy this requirement, . d
d− 2/) 2/

),t't

d
d /C dl

dl
d
d

)(
2/)(2/ CC −

−•

() ()
()(
()),proj(),,proj(HD s.t. variants-rest in the variants' - or

),proj(),,proj(HD s.t. variants-rest in the variantsor -

/),proj(),,proj(HD),proj(),,proj(HD variants

 variants) ,
given that /2)),proj(),,HD(proj(satisfy variantsor ' are

)),proj(),,HD(proj(satisfy variants moreor ' are reprobabilit

BMBmjtmtt
BMBmjtmjt'

dBMBmBMBmj

mdM
dBMBmmt

BMBmmdt

ii

ii

cc
ii

i

cc
ii

ii

∃
∃

===

−=
≤−

−≥

)

() ∑
= −−−=

−−
−−


































•=

j jtjtttk

kjtk
jt

k
jj

e
t
j p

0 },...,',',...,0{ 2
1

2
1C1(

()

∑
= −−−=

−
−−


























•=

j jtjtttk

jt
jt

k
jj

e
t
j p

0 },...,',',...,0{ 2
1C1(

The values of Ph(l,d,t,t’) for different l, d and t’ when t = 20 are shown in Table 2.

Although the probability Ph (l,d,t,t’) decreases with l, the probability “at least 14 of the
20 variants of motif M are in {vi} derived from proj(M,B) or in set{ derived from
proj(M,B

}c
iv

c)” is larger than 0.7433 (an increase from 0.4165 of the random projection
method). Note that Ph (l,d,t,t’) = 1 for all t’ ≤ t/2, therefore at least t/2 variants {mi} are in
{vi} or { . Similar to the Random Projection, we can take different random sets B so
as to increase this probability. For example, if we repeat the process 5 times, the

}c
i

8

probability of at least 14 out of 20 variants in {vi} or { will be 1 - (1 - 0.7433)}c
iv 5 =

0.9989.
When using this improved Random Projection approach, we should be careful that

the motif must be long. If the length of the motif is short, say 16bp, the length of the
short motif (8bp) is too short that there will be many random sequences having a lot of
variants. The running time of the Voting Algorithm will increase, as we have to find the
length-l variants for a huge number of short motifs in order to find the corresponding
candidate motif.

On the other hand, if the length of the motif is sufficient long, say 40, the improved
Random Projection Algorithm should be applied to reduce to a motif problem of length
20, which can further be solved by the Random Projection Algorithm.

Table 3: Suggested heuristic improvement used in different situations “S” means using the Voting Algorithm
without heuristic improvement. “RP” means using the random projection with l’ = 2l/3. “RPH” means using the
random projection with the complement set (l’ = l/2)

 l < 15 15 ≤ l ≤ 20 20 < l
d ≤ 3 S S S

3 < d ≤ 5 S S RPH
d > 5 S RP RPH

Table 4: Experimental results on simulated data of the brute-force algorithm, Voting Algorithm and Voting
Algorithm with heuristic improvement We run 50 test cases for each set of parameters and record the average
running time and the hamming distance between the planted motif and the solution output by the three
programs. “-“ means that the running time of the program is too long (at least more than one day).

Brute-force Voting Voting with Heurisitc
Improvement

l

d

Max d for E(l,d)
< 10

Buhler et al [3] HD time HD time HD time

7 1 1 0 61.6 s 0 <1 s
9 2 2 0 17.9 m 0 0.4 s
11 3 3 0 4.8 h 0 8.6 s
13 4 4 - - 0 108.s

The results are the same as the
Voting algorithm as no

heuristic improvement is
performed when l < 15

15 5 5 - - 0.2 22 m 0.2 113.6 s
20 7 7 - - - - 0 111.4 s
30 11 13 - - - - 0.11 124.1 s
40 15 18 - - - - 0.1 125.2 s

4 Experimental results

In this section, we describe the test results of the Voting Algorithm for both
simulated and real biological data. The experiments were taken on a 2.4GHz CPU with
512Mb memory.

4.1 Simulated Data

We tested the performances of brute-force algorithm, Voting Algorithm and Voting
Algorithm with heuristic improvement on different Planted (l,d)-Motif Problem. Table 3
shows the suggested heuristic improvement with respect to different l and d.

9

All input instances contain t = 20 sequences, each of length 600. Each nucleotide
(‘A’, ‘C’, ‘G’ and ‘T’) of the input sequences was generated independently with the same
occurrence probability. A motif M of length-l was randomly picked and a variant was
planted to each input sequence. Each algorithm could output at most 20 solutions (the
length-l sequences with at least one variant in each input sequence). The minimum
Hamming distance between the planted motif and the 20 solutions are records. For each
set of parameter l and d, we ran 50 test cases, recorded the average Hamming distance
and the average running time of each algorithm.

Table 4 shows the results of the experiments. The third column is the maximum
value of d for the corresponding l such that the Planted (l,d)-Motif Problem can still be
solved theoretically. Buhler et al [3] introduced the expected number E(l,d) of length-l
random sequences that have one variant in each input sequence. When E(l,d) is large, no
algorithm can determine the motif from the set of random sequences with a variant in
each input sequence. In other words, max{d | E(l,d) < some threshold } gives the
maximum d that the (l,d)-motif problem can be solved.

Since the brute-force algorithm takes O(nt4l) time, the running time for finding a
length-11 motif is over 4.8h and it cannot handle longer motif in reasonable time. For the
Voting Algorithm, although it can solve the Planted (l,d)-Motif Problem for longer motif
than the brute-force algorithm can, it cannot handle those problem when d is larger than
5 as its running time increases exponentially with d. With heuristic improvement, the
Voting Algorithm can handle longer motif with large d even for the (40,15)-motif
problem in one minute.

4.2 Real Biological Data

SCPD [19] contains different transcription factors for yeast. For each set of genes
regulated by the same transcription factor, we chose the 600 bp in the upstream of the
genes as the input sequences T. The lengths of the motifs were same as those of the
published motifs and d was 1. Experimental results are showed in Table 5. The Voting
Algorithm could find the motifs for these data sets. Besides, the running time of the
Voting Algorithm was within one second for each data set.

Table 5: Experiment result on real biological data The data are collected from the SCPD. For each
set of data, we look for the motifs with length equals to the published motif and d equals to 1.

Transcription Factor Published Motif pattern Motif Pattern Found
GCR1 CWTCC CTTCC
GATA CTTATC CTTAT

CCBF,SCB,SWI6 CNCGAAA CGCGAAA
CuRE,MAC1 TTTGCTC TTTGCTC

GCFAR CCCGGG CCCGGG
GCN1 TAATCTAATC TAATCTAATC

10

5 Discussion

In this paper, we have introduced the Voting Algorithm for solving the Planted (l,d)-
Motif Problem. It guarantees that the motif can be found when d is small and with high
probability for large l and d. Experimental results have indicated that our algorithm
works quite well for both simulated data and real data.

An open problem of interest is to extend the Voting Algorithm to handle those
variants within d from motif M in edit distance instead of Hamming distance. When d is
small, this problem can be solved by redefining the variant set N(σ,d) of a length-l
substring σ. However, the heuristic improvement may not work when both l and d are
large and new methods should be needed to handle these cases.

References

1. Timothy Bailey and Charles Elkan. Unsupervised learning of multiple motifs in
biopolymers using expectation maximization. Machine Learning, 21:51-80, 1995

2. Alvis Brazma, Inge Jonassen, Ingvar Eidhammer, and David Gilbert. Approaches to
the automatic discovery of patterns in biosequences. JCB, 5:279-305, 1998.

3. Jeremy Buhler and Martin Tompa. Finding motifs using random projections.
RECOMB01, p69-76, 2001.

4. Norishige Chiba and Takao Nishizeki. Arboricity and Subgraph Listing Algorithm.
SIAM Journal on Computing, 14:210-223, 1985

5. Y. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit. Identification of common
motifs in unaligned dna sequences: application to Escherichia coli Lrp regulon.
Bioinformatics, 11:379-387, 1995.

6. M. Gelfand, E. Koonin, and A. Mironov. Prediction of transcription regulatory sites
in archaea by a comparative genomic approach. Nucl. Acids Res., 28:695-705, 2000.

7. J. van Helden, B. Andre, and J. Collado-Vides. Extracting regulatory sites from the
upstream region of yeast genes by computational analysis of oligonucleotide
frequencies. Journal of Molecular Biology, 281(5):827-842, 1998.

8. G. Z. Hertz and G. D. Stormo. Identification of consensus patterns in unaligned dna
and protein sequences: a large-deviation statistical basis for penalizing gaps. The 3rd
International Conference on Bioinformatics and Genome Research, p201-216, 1995

9. Charles Lawrence, Stephen Altschul, Mark Boguski, Jun Liu, Andrew Neuwald and
John Wootton. Detecting subtule sequence signals: a Gibbs sampling strategy for
multiple alignment. Science, 262:208-214, 1993

10. C. Lawrence and A. Reilly. An expectation maximization (em) algorithm for the
identification and characterization of common sites in unaligned biopolymer
sequences. Proteins: Structure, Function and Genetics, 7:41-51, 1990

11. Ming Li, Bin Ma, and Lusheng Wang. Finding similar regions in many strings.
Journal of Computer and System Sciences, 65:73-96,2002

12. Shoudan Liang. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs.
Computer Society Bioinformatics Conference, p260-265, 2003

11

13. G. Pesole, N. Prunella, S. Liuni, M. Attimonelli, and C. Saccone. Wordup: an
efficient algorithm for discovering statistically significant patterns in dna sequences.
Nucl. Acids Res., 20(11):2871-2875,1992.

14. Pavel Pevzner and Sing-Hoi Sze. Combinatorial approaches to finding subtle signals
in dna sequences. In Proc. of the Eighth International Conference on Intelligent
Systems for Molecular Biology, p269-278, 2000.

15. Marie-France Sagot. Spelling approximate repeated or common motifs using a suffix
tree. In C.L. Lucchesi and A.V. Moura editors, Latin’98: Theoretical informatics,
volume 1380 of Lecture Notes in Computer Science, p111-127, 1998.

16. Roger Staden. Methods for discovering novel motifs in nucleic acid sequences.
Computer Applications in Biosciences, 5(4):293-298, 1989

17. Martin Tompa. An exact method for finding short motifs in sequences with
application to the ribosome binding site problem. In Proc. of the 7th International
Conference on Intelligent Systems for Molecular Biology, p262-271, 1999.

18. F. Wolfertsteeter, Kornelie Frech, Grit Herrmann, and Thomas. Wernet .
Identification of functional elements in unaligned nucleic acid sequences by a novel
tuple search algorithm. Computer Applications in Bio-sciences, 12(1):71-80, 1996.

19. Jian Zhu and Michael Zhang. SCPD: a promoter database of the yeast Saccha-
romyces cerevisiae. Bioinformatics 15:563-577, 1999. http://cgsigma.cshl.org/jian/

	Introduction
	Voting Algorithms
	Heuristic Improvements
	Random Projection
	Improved Random Projection

	Experimental results
	Simulated Data
	Real Biological Data

	Discussion

