ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Visual object classification by sparse
convolutional neural networks

Alexander Gepperth?

1- Ruhr-Universitdt Bochum - Institute for Neural Dynamics
Universitatsstrafie 150, 44801 Bochum - Germany

Abstract. A convolutional network architecture termed sparse convolu-
tional neural network (SCNN) is proposed and tested on a real-world clas-
sification task (car classification). In addition to the error function based
on the mean squared error (MSE), approximate decorrelation between hid-
den layer neurons is enforced by a weight orthogonalization mechanism.
The aim is to obtain a sparse coding of the objects’ visual appearance, thus
removing the need for a dedicated feature selection stage. Working on un-
processed image data only, it is demonstrated that classification accuracies
can be improved by the proposed method compared to purely MSE-trained
SCNNs and fully-connected multilayer perceptron architectures.

1 Introduction

In many real-world classification tasks there is a need for classifiers that can
learn from examples, such as neural networks (NNs) or support vector machines.
Typically, the performance of such classifiers depends strongly on a suitable pre-
processing of the input, but it is far from clear what characterizes an optimal
preprocessing or if there even exists an optimal solution. Sometimes it is re-
quired that preprocessing should reduce the dimensionality of the input as far
as possible, whereas another objective is to make preprocessing invariant to cer-
tain transformations of the input (typically translation, rotation and scaling are
investigated in this context). The process of choosing an appropriate prepro-
cessing transform is referred to as feature selection. In addition to constraints
on error rates, the available processing time is usually bounded from above, too,
especially in computer vision. Therefore, not only the accuracy of classifiers is
important but also their execution speed.

Convolutional neural networks (CNNs) [1] were proposed to address all of
these issues. They are specialized instances of multilayer perceptrons (MLPs)
and thus essentially feed-forward neural networks (NN). Due to their connec-
tivity, CNNs can be implemented using standard techniques from digital image
processing called convolutions, permitting very high execution speed (see [2, 3]
for recent applications of CNNs). In addition, CNNs operating on unprocessed
image data can be seen as learning a preprocessing transform, thus eliminating
the need for feature selection.

In this contribution, the original CNN design is modified with the aim of
obtaining non-redundant features for visual object classification in a systematic
and well-defined way. This is achieved by an unsupervised (i.e. not using the
class information) orthogonalization step in the learning mechanism. Thus the

179

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

proposed model, termed sparse convolutional neural network (SCNN), uses a
systematic approach to ensure non-redundancy of the preprocessing transform.
At the same time, it is easier to implement than the original CNN proposal,
where the non-redundancy of features was achieved by the connection structure
of the network. Nevertheless all the desirable properties of CNNs are retained.

The car classification task used to test the SCNN model is derived from an
application in Advanced Driver Assistance Systems. The car detection problem
and its background are described in [4]. The problem is treated offline, i.e.,
training and performance measurements are performed on datasets of examples.

2 Training data

Training datasets consisting of individual examples are taken from gray-valued
video sequences. Since SCNNs are required to learn an appropriate preprocessing
transform, no preprocessing is performed except the scaling of the gray-valued
pixel data to a fixed size (matched by the input layer of the NNs) and the
subtraction of the mean gray value.

A total of four datasets is created, denoted Diyain, Dval, Dtest and Dexg.
Each dataset contains 1000 positive and 1000 negative examples. Although car
classification is considered a simple problem, the classification task as defined
by the datasets used here is quite difficult since the training examples exhibit
strong variance in scale and position. For positive examples, scalings up to a
factor of v/2 and simultaneous translations up to 10% of an example’s width and
height are possible and must be tolerated by the classification.

3 Sparse convolutional neural networks

Like the original proposal [1] they are derived from, SCNNs are feed-forward
neural networks, (i.e., MLPs) with ”patchy connectivity” (see fig. 1). However,
the connection of layers in SCNNs is simpler as compared to [1]: The SCNN
model has an input layer of fixed dimension, one or more hidden layers, and an
output layer containing a single element. Each layer is connected only to one
other layer (the preceding one) as described in the next section (see also fig. 1).

3.1 NN structure

A layer [having dimensions L¥ x L is subdivided into identical cells of neurons
of dimension C* x C{. Thus, a neuron can be assigned coordinates 7 = (I, ¢, Z),
where ¢ denotes the two-dimensional index of the cell within layer 1, and i the
neuron’s coordinate within its cell. Within one cell, each neuron is connected to
the same rectangular patch of neurons in layer [— 1 which is termed a neuron’s
receptive field (RF). Receptive fields can overlap in x- and y-direction. Con-
nection strengths are denoted by w7, where 7 specifies the coordinates of the
destination neuron and 7/ those of the source neuron. Please refer to fig. 1 for
a visualization. The set of all weights connecting a neuron to its RF is denoted

180

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Fig. 1: Left: sketch of the SCNN connectivity. Receptive fields are drawn in by
solid ellipses, cells by dashed ellipses. Input filters connecting a neuron to its
receptive field are shown as dashed or dotted lines. Note that receptive fields can
overlap. Dashed and dotted lines represent sets of equivalent input filters, see
text for details. Right: Speed advantage in whole-image classification. SCNNs,
represented as boxes, are repeatedly applied and then shifted to different lo-
cations, covering the whole image. Only non-overlapping regions need to be
calculated again at such a step, since the input filters do not depend on the spa-
tial position within the SCNN. It is therefore sufficient to perform a convolution
centered around each image pixel only once.

input filter. A weight-sharing constraint enters via the requirement that neurons
within a layer I, having the same within-cell coordinates i but being connected to
different RFs, must have identical input filters. It is this constraint which allows
to implement a network run by a series of convolutions. In contrast, each neuron
in one cell is allowed to be connected to the common RF by different filters than
the other neurons in that cell. Effectively, the size of one cell, Cf* x C}, speci-
fies the number of convolution filters necessary for the simulation of each layer,
whereas the size of receptive fields determines the dimensions of the convolution
filters. For each layer [, sets of weights that are required to have the same value
by the weight-sharing property are called equivalent. Obviously it is desirable
to obtain a trained SCNN which requires as few convolution filters as possible
while maintaining high classification accuracy.

The activity Az of a neuron is calculated from the activities of its RF and the
weight values in its input filter as Az = (35, crp Aw/Wai) using the sigmoidal
activation function o(x) = SEurl

Each neuron (except for the input layer) is connected to a bias neuron whose
activation is constant (here: 1.0).

3.2 Learning in SCNNs

The SCNN model differs from conventional fully-connected MLPs in three re-
spects: firstly, neurons receive input only from a rectangular patch of the preced-
ing layer, and secondly, certain input filters are required to be equal. Thirdly, the
input filters of adjacent neurons (more precisely: neurons in the same cell, see
previous section) are required to be orthogonal, leading to approximate decor-
relation of neuron outputs. A dedicated learning algorithm must therefore be
used to ensure the second and third property. The procedure is straightforward:

181

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

During each learning step or epoch, all weights of the SCNN are treated as if
they were independent. An improved variant of the well-known Rprop learning
algorithm (IRprop+, see [5]) is applied to the NN for n epochs. After each
epoch, the weight-sharing condition is enforced by computing, for each layer [,
the average of each set of equivalent weights, and then setting the weights in
each set to that value.

Finally, input filters in each cell of the network are orthogonalized by per-
forming an iterative procedure (see [6] for details and proof) 10 times and then
normalized to 1.0. Treating the input filters of each neuron within one cell as
column vectors of a matrix W, the orthogonalization is defined by

Wo = W/[|[W]|
Wip1 = L5W; — 0.5W, W W,

3.3 Error measures

During training, the error is calculated as F(D) = Eysg(D) = ﬁ ZLZO(AZO,W —
cp)2 using a dataset D. FEygsg denotes the mean squared error (MSE), which
uses the class label ¢, of pattern p and the activation Ag“t of the CNN’s output
neuron in response to pattern p. The minimization of E is performed by gradient
descent, see also [5]. When evaluating the performance of a trained network, the
classification error CE(D) on a dataset D is used. It is defined as CE(D) =
1- ﬁ Z‘p@o O(A9"" — 7), where 6 denotes the step function and 7 a threshold

assigned to each NN (here always taken to be 0).

4 Experimental setup

Weights are initialized randomly to a range of [—0.01; 0.01] before learning, which
is always performed for 60 epochs using the dataset Diyain. The NN with the
best error Eysg(Dyar) is taken to be the outcome of learning. Learning is re-
peated 10 times for each NN, each time with a different random seed. To test
the performance of a trained network, the mean value of CE(Diest U Deyxt) is
determined. A Wilcoxon rank-sum test is used to ascertain that experimental
results are indeed meaningful.

4.1 Network architectures

In order to reduce the effects which NN topology can have on learning capability,
five SCNN topologies (the reference architectures) are defined which will be used
for all further investigations. SCNN Cj is included to demonstrate that the
model can easily include several layers if necessary. Input filter sizes are chosen
to be compatible with computer vision real-time requirements. Overlaps between
input filters are varied from 1 to 7 neurons in order to demonstrate the possible
effect of this difference on SCNN learning. Table 1 gives an overview over the
reference architectures.

182

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

overlaps=1 receptive fields=4
SCNN | hidden layers | RF | overlaps \\
C 9 9 1
Co 10 9 5 [€00 0©0 6©)0 0 O} irputtver
Cs 15 9 7
Cy 18 9 7
C5 15-9 97 53 mﬁ J first hidden layer

Table 1: Left: SCNN reference set used in the experiments. The column "RF”
describes the sizes of rectangular receptive fields, or equivalently the dimensions
of the input filters projecting to the next layer. Column ”overlaps” gives the
number of neurons by which receptive fields overlap (in both directions). Right:
visualization of the quantities given in the table, using an example SCNN struc-
ture. For a detailed explanation, see fig. 1.

4.2 Experiments

In the first experiment (referred to in the following as Xyp), a fully connected
MLP with one hidden layer (containing 20 neurons) is trained using standard
MLP learning with FEysg as error measure (see section 3.2). In experiment Xyg,
all SCNN architectures defined in the previous section are trained as described
in section 3.2 but without using the decorrelation-enforcing mechanism. This is
turned on in experiment Xws prc and learning is again performed on all SCNN
architectures.

5 Results

The results of the experiments are summarized in table 2. The mean error
taken over all 50 performance measurements (10 for each SCNN architecture)
is significantly! lower in experiment Xws,pec than in experiment Xwg. Care
must be taken in interpreting the best results of the two experiments, since the
best Xwsg result is comparable to that of Xwgs prc. It must be borne in mind,
however, that the two distributions have been shown to have different true means
with very high probability. Therefore, it is very likely that increasing the sample
size in both experiments will yield better results for experiment Xws prc.

Of special interest is the fact that the results of experiment Xy p are strongly
inferior to those of experiments Xws, Xwsprc. This is unexpected since the
number of free parameters is much lower in the latter experiments (especially the
last), and shows that the preprocessing step performed by an SCNN facilitates
classification significantly.

6 Discussion

As the results plainly show, the use of SCNNs using a decorrelation-enforcing
mechanism is a suitable way of reducing the classification error in a difficult real-

IWilcoxon rank-sum test, p > 0.99

183

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

Xmrp | Xws | Xws,pEC
mean 45.1 18.06 15.64
best 36.54 10.66 11.67

Table 2: Classification errors of MLP and SCNN models (with and without
orthogonalization). The line two lines refer to the best/mean classification error
CE(Dyest U Dext) of all 50 runs of one experiment.

world classification problem. Notable is the fact that even without this additional
mechanism, the SCNN model performs much better than a fully connected MLP.

In order to extend the SCNN model, other feature-generating mechanisms
can be used: especially, the possibility of performing (nonlinear) principal or
independent component analysis using the input filters as the mixing matrix
(see [6] and references therein) seems very promising.

On a broader perspective, the possibility of eliminating the feature selection
process from object recognition is a strong motivation to continue research on
SCNN models. Thus, one could work with "raw” image data only and learn
relevant object features from training examples alone. A possible application
could be feature base learning, i.e., learning a common preprocessing transform
for several object classes. This could be a way to increase the speed advantage
in using SCNNss still further.

7 Acknowledgements

I wish to thank J. Edelbrunner for helpful discussions and inspiration on the
subject of convolutional neural networks.

References

[1] Y LeCun, L Bottou, Y Bengio, and P Haffner. Gradient-based learning applied to document
recognition. Proc. IEEE, 86(11):2278-2324, 1998.

[2] C Garcia and M Delakis. Convolutional face finder: A neural architecture for fast and
robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(11):1408-1423, November 2004.

[3] M Szarvas, A Yoshizawa, M Yamamoto, and J Ogata. Pedestrian detection using convo-
lutional neural networks. In Proceedings of the IEEE Symposium on Intelligent Vehicles,
pages 224-229, 2005.

[4] A Gepperth, J Edelbrunner, and T Biicher. Real-time detection and classification of cars
in video sequences. In Proceedings of the IEEE Symposium on Intelligent Vehicles, pages
625-631, 2005.

[5] C Igel and M Hiisken. Empirical evaluation of the improved Rprop learning algorithm.
Neurocomputing, 50(C):105-123, 2003.

[6] A Hyvérinen. Fast and robust fixed-point algorithms for independent component analysis.
IEEE Transactions on Neural Networks, 10:626—634, 1999.

184

