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Abstract 

State abstraction is of central importance in rem-
forcement learning and Markov Decision Processes. 
This paper studies the case of variable resolution 
state abstraction for continuous-state, determinis­
tic dynamic control problems in which near-optimal 
policies are required. We describe variable res­
olution policy and value function representations 
based on Kuhn triangulations embedded in a kd-
tree. We then consider top-down approaches to 
choosing which cells to split in order to generate 
improved policies. We begin with local approaches 
based on value function properties and policy prop­
erties that use only features of individual cells in 
making splitting choices. Later, by introducing two 
new non-local measures, influence and variance, we 
derive a splitting criterion that allows one cell to 
efficiently take into account its impact on other 
cells when deciding whether to split. We evaluate 
the performance of a variety of splitting criteria 
on many benchmark problems (published on the 
web), paying careful attention to their number-of-
cells versus closeness-to-optimality tradeoff curves. 

1 In t roduc t ion 
This paper is about non-uniform discretization of state 
spaces when finding controllers for continuous opt imal 
control problems. Uni form discretizations suffer from 
impractical computational requirements when the size 
of the discretization step is small. In this paper we try 
to keep the convergence properties of the discretization 
methods while introducing a variable resolution approx­
imat ion. Here, we only consider the "general towards 
specific" approach : an in i t ia l coarse grid is successively 
refined at some areas of the state space by using a split­
t ing process, unt i l some desired measure of accuracy is 
reached. 

We consider discounted deterministic control prob­
lems, which include the well-known reinforcement learn­
ing (RL) benchmarks of "car on the h i l l " [Moore, 1991], 
Cart-Pole [Barto et al., 1983] and Acrobot [Sutton, 
1996a]. be the state of the system 

whose evolution is described by the controlled differen­
tial equation : 

(1) 

The objective of the control problem is to find, for any 
init ial state the control that optimizes the gain : 

(2) 

where is the current reinforcement, the 
boundary reinforcement (obtained at the boundary of 
the state-space), the discount factor and 

the exit time from X. The value function (VF), max­
imal value of the gain, is : 

It is known (see [Fleming and Soner, 1993]) that V sat­
isfies a first-order non-linear differential equation, called 
the Hamilton-Jacobi-Bellman (HJB) equation : 

(3) 

with DV being the gradient of V. 
Section 2 introduces the discretization process ; sec-

tion 3 describes several local splitting criteria, based on 
the value function and on the policy ; and section 4 
proposes a heuristic for a global splitting criterion. 

2 T h e d isc re t i za t ion process 
The state-space is discretized into a variable resolution 
grid using a structure of a kd-tree. The root of the tree 
covers the whole state space, supposed to be a (hyper) 
rectangle. Each node (except for the leaf nodes) splits in 
some direction the rectangle it covers at its middle into 
two nodes of half area. For each leaf, we use a Kuhn 
triangulation to linearly interpolate inside the rectan­
gle (see the triangulation of figure 1). See [Munos and 
Moore, 1999] for more details. This defines a class of 
functions known as barycentric interpolators [Munos and 
Moore, 1998] which are piecewise linear, continuous in­
side each rectangle, but may be discontinuous at the 
boundary between two rectangles. 
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The discretization process is baaed on the finite-
element methods of [Kushner and Dupuis, 1992] (ex­
tended to RL in [Munos, 1999]) which approximate, for 
any given discretization of the state space, the continu­
ous deterministic control process by a Markov Decision 
Process (MDP). Note that the stochastic aspect of the 
MDP does not come from the continuous problem itself 
(which is deterministic here), but from the discretization 
process used. 

Figure 1: An exam­
ple of discretization of 
the state-space. Values 
are stored at the corners 

and the value for a 
non-corner point is lin­
early interpolated from 
the simplex of which it 
is a member. This is a 
fast process above 2 di­
mensions. 

2 ,1 B u i l d i n g t h e d i s c r e t i z e d M D P 
For a given discretization, we build the corresponding 
MDP in the following way. The state-space is the set 

of corners of the tree. For every corner and control 
we approximate a part of the corresponding trajec­

tory by integrating the state dynamics (1) from 
init ial state for a constant control during some 
time unti l it enters inside a new simplex at some 
point (see Figure 1). At the same time, we 
also compute the integral of the current reinforcement : 

Then we compute the vertices of the simplex 
containing and the corresponding barycentric co-
ordinates (which, by defini­
t ion, satisfy :  
The interpolated value at is thus just a linear 
combination of the values at the vertices of the 
simplex it belongs to, with positive coefficients that sum 
to one. Doing this interpolation is mathematically equiv­
alent to probabilistically jumping to a vertex. Thus, 
we define the probabilities of transition of the 
MDP from state and control u to states as these 
barycentric coordinates : and 
the dynamic programming (DP) equation corresponding 
to this MDP is : 

(4) 

2.2 T h e " C a r o n t h e H i l l ' e x a m p l e 
This problem, which wil l be made available on the web, is 
of 2 dimensions : position and velocity of the car. Here, 
the current reinforcement is zero everywhere. The 
terminal reinforcement if the car exits from 

the left side of the state-space, and varies linearly be-
tween +1 and -1 depending on the velocity of the car 
when it exits from the right side of the state-space. The 
best reinforcement 4-1 occurs when the car reaches the 
right boundary with a null velocity (see Figures 2 and 
4). The control u has only 2 possible values : maximal 
positive or negative thrust. Because of the discount fac­
tor, we are encouraged to get to the goal as quickly as 
possible. 

Figure 2: The 
"Car on the Hill" 
control problem. 

Figure 3: The value function of the Car-on-Hill. Frontier 1 
shows the discontinuity of the VF. Frontiers 2 and 3 (the dash 
lines) stand where there is a change in the optimal control. 

Figure 3 shows the value function of this problem. The 
discontinuity along Frontier 1 happens because a point 
beginning just above the frontier can eventually get a 
positive reward whereas any point below is doomed to 
exit on the left. Note that there is no change in the 
optimal control around this frontier. There is a discon­
tinuity in the gradient of the VF along the upper part of 
Frontier 2 and along Frontier 3 because of a change in 
the optimal control. 

Figure 4: The op­
timal policy is rep­
resented by several 
gray levels (light 
gray for the posi­
tive control, dark 
gray for the neg­
ative one). Sev­
eral optimal tra­
jectories are drawn 
for different initial 
starting points. 

2.3 T h e v a r i a b l e r e s o l u t i o n a p p r o a c h 
The basic idea is to start with an initial coarse discretiza­
tion, build the corresponding MDP, solve it in order to 
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have a (coarse) approximation of the value function ; 
then refine locally the discretization by splitting rect­
angles according to some "splitt ing criterion", build the 
new MDP, and so on (see the splitting process in Fig­
ure 5), unt i l we estimate that the approximation of the 
value function or the optimal control is precise enough. 
The central purpose of this paper is the study of several 
possible splitting criteria. 

Figure 5: Several dis­
cretizations resulting of 
successive splitting op­
erations. 

Figure 7: The dis-
cretization of the state-
space for the Car-on-
Hill problem using the 
value non-linearity cri­
terion with a splitting 
rate of 50% after 15 it­
erations. 

3 Local sp l i t t ing cr i ter ia 
3.1 F i r s t c r i t e r i o n : average corner -va lue 

d i f ference 
For every hyper-rectangle in the tree we can ask the ques­
tion "do the values on the left-side of the rectangle tend 
to have a significantly different value on average than 
those on the right-side?". The notion of left and right 
depend on which axis we are considering splitting on, 
and in fact we iterate over all axes, finding the one with 
the most significant difference, which we wil l call the 
"corner-value difference". 

Having computed this for all cells in the current tree, 
we must choose which cells to actually split. We select 
some fraction (e.g. 50%) of the cells with the highest 
criterion values and break them in half along their most 
significant splitting directions. Figure 6 represents the 
discretization obtained using this criterion. 

Figure 6: The dis­
cretization of the state-
space for the Car-on-
Hill problem obtained 
after 15 splitting itera­
tions, starting with a 9 
by 9 initial grid and us-
ing the corner-value dif­
ference criterion with a 
splitting rate of 50% of 
the rectangles at each 
iteration. 

3.2 Second c r i t e r i o n : va lue non - l i nea r i t y 
For every rectangle, we compute the variance of the ab­
solute increase of the values at the corners of the edges 
for all directions This criterion is similar to 
the previous criterion except that it measures the extent 
to which the value throughout the cell is non-linear in­
stead of non-constant. Figure 7 shows the corresponding 
discretization. 

The value non-linearity criterion splits more parsimo­
niously than corner-value difference because it intends to 

refine whenever the approximated function is non-linear 
instead of non-constant (see the difference of splitting in 
the area above the frontier 3, where the value function 
is almost linear). 

We observe that in both cases, the refinement process 
does not split around the bottom part of frontier 2, be­
cause the VF is almost constant in this area although 
there is a change in the optimal control. 

We observe that in both of these splitting processes 
based on the approximation of the VF, there is a huge 
amount of memory spent for the approximation of the 
discontinuity despite the optimal control being constant 
in this area. This is undesirable and so in the next sec­
tion we wil l pay attention to the policy when splitting. 

3.3 T h e po l i cy d isagreement c r i t e r i o n 
Figure 4 shows the optimal policy and several optimal 
trajectories for different starting points. We would like 
to define a process that could refine around the areas of 
change in the optimal control, that is around frontiers 2 
and 3, but not around frontier 1. 

When we solve the MDP and compute the value func­
tion of the DP equation, we can compare the policy given 
by the arg maxu of equation (4) with the optimal control 
law derived from the local gradient of V (given by the 
arg maxu in equation 3). We define the states of policy 
disagreement being those where these two measures of 
the optimal control diverge. 

Figure 8 shows the discretization obtained by splitting 
the rectangles containing states of policy disagreement. 

Figure 8: The discreti-
zation of the state-space 
for the Car-on-Hill us­
ing the policy disagree­
ment criterion (Here we 
used an initial grid of 
33 33 and a splitting 
rate of 20% to obtain 
this discretization). 
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This criterion is interesting since it splits at the places 
where there is a change In the optimal control, thus re­
fining the resolution at the most important parts of the 
state-space for the approximation of the optimal control. 
However, as we can expect, if we only use this criterion, 
the value function wi l l not be well approximated, thus 
this process may converge to a sub-optimal performance 
(see section 3.5). Indeed, we can observe that on Fig­
ure 8, the bottom part of frontier 2 is situated higher 
than its optimal position, illustrated on Figure 4. This 
results in an underestimation of the value function at 
this area because of the lack of precision around the dis­
continuity (frontier 1). 

3.4 C o m b i n a t i o n o f s e v e r a l c r i t e r i a 
We can combine policy disagreement with the corner-
value difference or value non-linearity criterion in order 
to take the advantages of both methods : a good approx­
imation of the value function on the whole state-space 
and an increase of the resolution around the areas of 
change in the optimal control. We can combine the pre-
vious criteria in several ways, for example by a weighted 
sum of the respective criteria, or by a logical operation 
(split if an and/or combination of these criteria is sat-
isfied). Figure 9 shows the discretization obtained by 
alternatively, between iterations, using the value non-
linearity criterion and the policy disagreement criterion. 
We notice that the lower part of frontier 2 is well refined. 

Figure 9: The dis­
cretization of the state-
space for the "Car on 
the Hill" problem using 
the combination of the 
value non-linearity and 
the policy disagreement 
criterion. 

3.5 C o m p a r i s o n o f t h e p e r f o r m a n c e s 
To compare the discretizations, we ran a set (here 256) 
of trajectories starting from init ial states regularly situ­
ated in the state-space, using the policies resulting from 
the discretizations. The performance of a discretization 
is defined as the sum of the gain (defined by equation 
(2)) of these trajectories. Figure 10 shows the respective 
performances of several splitting criteria as a function of 
the number of states. 

We notice the following points : 
• Both the corner-value difference and value non-

linearity splitting processes perform better than the 
uniform grids. For example, in order to obtain an 
almost optimal performance of 80, the variable res­
olution grids resulting of these criteria need around 
four times fewer states than the uniform one. 

Figure 10: The 
performance for 
the uniform ver­
sus variable resolu­
tion grids for sev­
eral splitting crite­
rion 

• The value non-linearity splitting performs slightly 
better than the corner-value difference one. 

• The policy disagreement splitting is very good for a 
small number of states but does not improve after, 
and leads to a sub-optimal performance. 

• The policy disagreement combined with the value 
non-linearity gives the best performance. 

Can we do b e t t e r ? So far, we have only consid­
ered local splitting criteria, in the sense that we decide 
whether or not to split a rectangle according to informa­
tion (value function and policy) relative to the rectangle 
itself. However, the effect of the splitting is not local : 
it has an influence on the whole state-space. 

4 A global sp l i t t ing cr i ter ion 
In the following sections we introduce two new measures 
of an Markov chain : influence and variance that have 
been designed to be efficient to provide useful indexes of 
which parts of state-space are most important to devote 
data gathering or computational resources to. We derive 
a global splitting heuristic. 

4 . 1 I n f l u e n c e o f a M a r k o v c h a i n 
Let us consider a Markov chain whose set of states is 

and probabilities of transition from state 
to state We assume that the discount 

factor is a function of the state, and is written with 
for some holding time When the system gets 

in state it receives a reinforcement  
We wish to define the influence of a state on 

another state as a measure of how much the state 
"contributes" to the value function of state  

For that purpose, let us define the discounted cumu­
lative -chained probabilities which represent 
the sum of the discounted transition probabilities of all 
sequences of k states from to : 

(5) 
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D e f i n i t i o n 1 ( In f luence) Let We define the 
influence of a state on the state as the quantity : 

Let he a subset of We define the influence of a state 
on the subset as  

We notice that if the holding times are then 
the influence is well defined (and is bounded by  
with The intuitive idea that  
represents the "contribution" of state on the VF of 
state is formalized by the result that is the 
partial derivative of by  

Moreover, we prove that the influence satisfies the fol­
lowing property : 

(6) 

C o m p u t a t i o n of t he in f luence. Equation (6) is not 
a Bellman's equation since the probabilities  
do not sum to 1, so we cannot deduce that the successive 
iterations : 

converge to the influence by using the classical contrac­
tion property in max-norm (see [Puterman, 1994]). 

However, we have the following property : 

Thus, by denoting the vector whose compo­
nents are the and by introducing the 1-norm 

we deduce that : 

and we have the contraction property for the 1-norm 
which insures convergence of the iterated to the 
unique solution (the fixed point) of (6). 

I l l u s t r a t i o n on t h e " C a r on the H i l l " . For a 
given discretization of the state space, we approximate 
the optimal control problem by building the correspond­
ing MDP through the process described in section 2.1. 
Once the MDP is solved, we consider the Markov chain 
resulting from the choice of the control for the optimal 
policy Let us denote  

and  
Figure 11 shows (in gray levels) the influence 

of the states on __ = {3 points}. 
Now define the subset of states of policy disagree-

ment (in the sense of section 3.3). Figure 12(a) shows 
for a regular grid (of 129 x 129). Then, the influence 

of the states on is plotted in Figure 12(b). 

Figure 11; Influence 
on 3 points (the 

crosses). The influence 
on a state "follows" the 
direction of the optimal 
trajectory starting front 
that state through some 
kind of "diffusion pro­
cess" . 

(a) States of policy d i s a g r e e m e n t ( b ) Influence on these states 

Figure 12: (a) The set of policy disagreement and (b) the 
influence  

The darkest zones are the places that "contribute" the 
most to the value function of states in thus the areas 
that are expected to affect the VF at the places of change 
in the optimal control. 

In the following section, we introduce the variance of 
the Markov chain in order to get an estimation of how 
accurate the approximation of the VF is, for a given 
discretization. 

4 .2 V a r i a n c e o f a M a r k o v c h a i n 
By using the notation of the previous section, we have : 
for any satisfies the Bellman's equation : 

(8) 

which states that is the discounted average 
of the next values weighted by the probabilities of 
transition We are interested in computing the 
variance of these values in order to have an estimation 
of the range of the values averaged by We define ; 

(9) 

However, the values also average some succes­
sive values so we would like that the variance also 
takes into account this averaging, as well as all the follow­
ing ones. In what follows, we define the value function as 
an averager of the reinforcements and give the definition 
of the variance of a Markov chain. 

13S2 UNCERTAINTY AND PROBABILISTIC REASONING 

(7) 



T h e value f u n c t i o n as an averager o f the r e i n ­
forcements . Let us denote a sequence of 
states whose first one is Let 

be the set of all possible sequences Let us 
denote the product of the 
probabilities of transition of the successive states in a 
sequence, and for the cu­
mulative time of the ith first states of the sequence (with 
by definition  

We have the property that :  
1. We can prove that the value function satisfies the 
following equation : 

(10) 

Thus, the value function is expressed as an average of 
the discounted reinforcements. Now, we can define the 
variance of these values. 

D e f i n i t i o n 2 (Var iance) We define the variance 
of any state  

We can prove that the l imit exists, thus the variance 
is well defined. Moreover, the variance satisfies : 

with e(£) defined by (9). Thus the variance is 
the sum of an immediate contribution that takes 
into account the variation in the values of the immediate 
successors plus the discounted average of the variance 

of these successors. 
This is a Bellman equation and it can be solved by 

DP methods (thanks to a contraction property in max-
norm). 

Notice that the variance defined here has no relation­
ship to the variance of the gain obtained by following 
any specific policy for the real problem, which is always 
0 since the continuous problem is deterministic. Here, 
the variance indicates the extent of uncertainty on the 
value function because of the discretization process, and 
thus gives an estimation of the quality of approximation 
of the value function for a given discretization. 

By using some geometrical considerations (see [Munos 
and Moore, 1999]), we can prove that is close to 0 in 
two specific cases : either if the gradient at the iterated 
point is low (i.e. the values of the successive 
states are almost constant) or if is close 
to one corner (then the barycentric coordinate is 
close to 1 and the are close to 0). In both 
of these cases, is low and implies that the iteration 
of does not lead to a degradation of the quality of 
approximation of the value function (the variance does 
not increase). 

Figure 14a shows the standard-deviation for the 
Car-on-the-Hill problem for a uniform grid (of 257 by 
257). We notice the following points : 

. The standard deviation is very high around the dis-
continuity of the value function. 

• There is a noticeable positive standard deviation 
around the 2 frontiers of discontinuity of the gra­
dient of the value function, which correspond to 
a change in the optimal control. Indeed, in these 
areas, the VF is the average of the discounted re-
inforcement for different exit times (depending on 
whether the car can reach the goal directly or has 
to do one more loop). 

• Apart from these areas, the standard deviation is 
very low, which means that the discounted rein­
forcements averaged by the value function are al­
most constant. A refinement of the resolution in 
these areas has no chance of producing an impor-
tant change in the value function. 

Figure 13: The 
standard deviation 
function for the 
"Car on the Hill. 

Thus it appears that the areas where a splitting might 
affect the most the approximation of the value function 
are the cells whose corners have the highest standard 
deviations. 

4 .3 A g l o b a l s p l i t t i n g h e u r i s t i c 
Now we combine the notions of influence and variance 
described in the previous sections, in order to define a 
non-local splitting criterion. We have seen that : 

• The states of highest standard deviation 
are the states of highest uncertainty on the qual­
ity of approximation of the VF, thus the states that 
could improve the most their approximation accu­
racy when split (see figure 14(a) for an illustration 
on the Car-on-the-Hill). 

• The states of highest influence (see figure 12(b)) 
on the set of states of policy disagreement (figure 
12(a)) are the states whose value function affects the 
area where there is a change in the optimal control. 

Thus, in order to improve the precision of approximation 
at the most relevant areas of the state-space (i.e. where 
there is a change in the optimal control), an heuristic 
should be to split the states of highest Stdev_Inf criterion 
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(see figure 14) where : 

Figure 15 shows the discretization obtained by split­
ting the states of highest StdevJnf. 

(a) Standard deviation (b) Influence x Standard deviation 
Figure 14: (a) The standard-deviation for the "Car on 

the Hill" and (b) The StdevJnf criterion  

Figure 15: The dis­
cretization 
resulting of the splitting 
of the states of high­
est standard deviation 
that have an influence 
on the states of policy 
disagreement (StdevJnf 
criterion.) 

We observe that the StdevJnf criterion does not split 
the areas where the VF is discontinuous unless some re­
finement is necessary to get a better approximation of 
the optimal control. This turns out to be critical in 
higher dimensions, where the cost to get an accurate ap-
proximation of the VF is too high. 

5 I l l u s t r a t i o n on o ther con t ro l p rob lems 
5.1 The Cart-Pole problem 
The dynamics of this 4-dimensional physical system (il­
lustrated in figure are described in [Barto et al., 
1983]. The goal is defined by the area :  

(and no limits on ' This is a much 
narrower goal than in previous cart-pole RL work. No­
tice that "minimum time maneuver to a small goal re­
gion" from an arbitrary start state is much harder than 
merely balancing the pole without falling. The current 
reinforcement is zero everywhere and the terminal rein­
forcement is if the system exits from the state-space, 
and if it reaches the goal. 

Figure 17 shows the performance obtained for several 
splitting criteria previously defined. Note that the lo­
cal criteria do not perform better than the uniform grids 
because the VF is discontinuous at several parts of the 

(b) The projection of the state space 

Figure 16: (a) Description of the cart-pole 4d problem, 
(b) The projection of the discretization (onto the plane 

obtained by the Stdev_lnf criterion and some tra­
jectories for several init ial points. 

state-space (because of boundary problems similar to the 
frontier 1 of the "Car on the Hi l l " problem) and the 
value-based criteria spend too many resources on ap­
proximating these useless areas. But note too that the 
StdevJnf criterion performs very well because it avoids 
this problem. 

Figure 17: Com­
parison of the per­
form ances on the 
Cart-Pole problem 
for several split­
ting criteria. 

5 . 2 T h e A c r o b o t 
The Acrobot, which has a state-space, is a two-link 
arm with a single actuator at the elbow (see figure 18). 
Here, the goal of the controller is to balance the Ac-
robot at its unstable, inverted vertical position, in the 
minimum time. 

This actuator exerts a torque between the links. 
In [Sutton, 1996b] the goal was to l ift the hand to a given 
height, but here we perform the harder task of balancing 
the Acrobot at its unstable, inverted vertical position, in 
the minimum time. The goal is defined by a very narrow 
range of on both angles around the vertical position 

(figure 18(b)), for which the system re-
ceives a reinforcement of Anywhere else, the 
reinforcement is zero. The two first dimensions 
of the state space have a structure of a torus (because of 
the modulo on the angles), which is implemented in 
our structure by having the vertices of the 2 first dimen­
sions being angle 0 and pointing to the same entry for 
the value function. Figure 19 shows the performance. 

I n t e r p r e t a t i o n of t he resul ts : As we noticed for 
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Figure 18: (a) Description of the Acrobot. (b) Projec­
tion of the discretization (onto the plane ob­
tained by the StdevJnf criterion, and one trajectory. 

Figure 19: Com­
parison of the per­
formances on the 
acrobot 
problem for several 
splitting criteria. 

the two previous 4d problems, the local splitting crite­
ria fail to improve the performance of the uniform grids 
because they spend too many resources on local consid­
erations (either approximating the value function or the 
optimal policy). For example, on the Cart-Pole prob­
lem, the value non-linearity criterion wil l concentrate 
on approximating the VF mostly at parts of the state 
space where there is already no chance to rebalance the 
pole. And the areas around the vertical position (low 0), 
which are the most important areas, wil l not be refined 
in time (however, if we continue the simulations after 
about 90000 states, the local criteria start to perform 
better than the uniform grids, because these areas get 
eventually refined). 

The StdevJnf criterion, which takes into account 
global consideration for the splitt ing, performs very well 
for all the problems described above. 

6 Conclusion 
In this paper we proposed a variable resolution dis­
cretization approach to solve continuous time and space 
control problems. We described several local splitting 
criteria, based on the VF or the policy approximation. 
Local value-based splitting is an efficient, model-based, 
relative of the Q-learning-based tree splitting criteria 
used, for example, by [Chapman and Kaelbling, 1991; 
Simons et al., 1982; McCallum, 1995]. But it is only 
when combined with new measures based on policy and 

on global considerations (influence and variance) that we 
are able to get truly effective, near-optimal performance 
on our control problems. The tree-based state-space 
partitions in [Moore, 1991; Moore and Atkeson, 1995] 
were produced by different criteria (of empirical perfor­
mance), and produced far more parsimonious trees, but 
no attempt was made to minimize cost: merely to find a 
valid path. Our planned future work includes pruning, 
in order to include "specific towards general" grouping of 
areas that have been over-refined, and studying behav­
ior on continuous stochastic systems such as production 
scheduling. 
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