USING RELATIONAL OPERATORS TO STRUCTURE LONG-TERM MEMORY

Alan L.

SUMMARY

This paper describes a system for "remember-

ing" a story or passage in English and for the
subsequent retrieval of responses to questions.
Although it functions as an information retrie-

val system, it is also intended as a model for
long-term human memory. Information is stored

in the form of predicates and property lists. In
translating from natural language, the system
carries out a transformational analysis of each
sentence and identifies its deep structure inter-
pretation. This grammatical analysis is essential
to the identification of the predicates as well
as relationships among them.

The first two subsystems carry out the gramma-
tical analysis. A third identifies the predi-
cates and property lists, determines a time and
priority structure, forms a logical map of rela-

tionships among predicates, and eliminates some
predicates based on an assignment of priority.

The fourth subsystem is used to answer inquiries
about the stored information.

The method is illustrated with references to
one story that has been processed and with ex-
amples of questions that might be asked.

Keywords and phrases: Memory, information
retrieval, relation, relational operations, pre-
dicate, information retrieval, question-answering
system.

This paper describes an information retrieval
system although it may also be interpreted as a
simulation of long-term memory. More specifical-
ly, the system simulates the ability to read a
story or some form of connected material written
in English, to store a representation of that
story, and later to be able to answer questions
about it based on the ability to recall.

In designing this system, we have been influ-
enced by some related studies which have used an
intermediate formalism for the storage.of infor-

mation. Such systems include BASEBALL , SAD
SAM , SIR DEACON ALTAIR SAFARI ,8and the
systerasgdeveloped by Woods , Rosenbaum , and
Hillman . The relative success of these efforts
indicates that an intermediate formalism is an
important part of the simulation. In addition,
each of these systems accepts natural language

(English) inputs. The system described in this
paper also allows natural language inputs and
usee relational operators as an intermediate for-
malism.

connects two entities
Two classes of rela-

A relational operator
in a qualitative manner.
tional operators are used in constructing the
model. The first class is denoted e and con-
sists of verbs, which usually join entities

Tharp and Gilbert K. Krulee
The Technological

Northwestern
Evanston,

Institute

University
Illinois
(nouns) in natural language passages. The other
class, denoted Q> , consists of words that are
logical connectives: most of them are conjunc-
tions which, in traditional grammar, connect sen-
tences. The relational operators, g', bind
sentences into larger semantic units.

The first level formalism of a predicate
logic is used to represent each sentence of an in-

put passage. The relational
elements in the predicates,
basic memory structure" for

operators are the key
which provide the
the model. A sentence

may be transformed into a two-place predicate
which is written e (a B), where a is the rela-
tional operator,** is the deep structure subject

of the sentence,
ject of the sentence.

and 6* is the deep structure ob-
If <t> is null, the sentence

is imperative. If 6 is null, the sentence is in-
transitive. If and B are both null, the predi-
cate represents a participle used as an argument
of another predicate.

Sentences joined by the relational operators,

g , are treated as n-place predicates, where n
is the number of sentences connected by a speci-
fic operator. For example, the linked. sentences
"S,, and S, and S " may be represented:

"1 S 2 2 3 3 3

Some operators which connect sentences have pre-
cedence over others. For example, the relational

operator "implication," represented by the logi-
cal connectives "if. .then," is more binding
than the relational operator "and."

In translating from natural language into a

series of predicates, the system carries out for
each sentence a transformational analysis and
assigns to each a structural description repre-
senting its deep structure interpretation. (See
Jacobs and Rosenbaum for a detailed description
of transformational theory which includes the
concepts of deep and surface structure.) The just
tification for this grammatical analysis is essen-
tially as follows. Given a kernel sentence, one
can easily translate from English into a predi-
cate. Kernel sentences are closely related to
active declarative sentences such that the verb
names the predicate and the subject and possibly
the object of the verb become the arguments of
the predicate. When transformations are applied
to kernel sentences, they complicate the rela-
tionship between sentence and predicate. For
example, the passive transformation reverses the
order of the arguments; by using more complex
transformations, one creates sentences which may
contain two or more kernel sentences. Given a
deep structure interpretation of a sentence, one
can readily identify the kernel sentences as well
as the relationships among them and the process
of translating into a series of predicates s
facilitated.

-579-

The system has been used to process chil-
dren's non-fiction stories about famous inventions
taken fromChildcraft11and makes use of four sub-
systems. The EDIT component accepts passages
which have been manually translated into a re-
stricted subset of English, and these restrictions
are necessary because of the limiations inherent
in the second subsystem for carrying out the gram-
matical analysis. (The appendix contains the
translated form of the passage "What a Bother.")
EDIT replaces pronouns with their corresponding
nouns according to the heuristic "replace a pro-
noun with the most recent noun of the same gen-
der." The pronouns may have referents across sen-
tence boundaries. EDIT then isolates the senten-
ces and forms a map to record the logical rela-
tionships among them.

In the second subsystem, Petrick's recogni-
tion procedure programmed in LISP for transforma-
tional grammars ' is used to assign struc-
tural descriptions to the input sentences isola-
ted by EDIT. Before the sentences can be ana-
lysed, however, it is necessary to apply manually
an inverse number agreement transformation snd an
inverse verb-affix transformation. In addition,
words such as participles, plurals, and verbs in
the past tense have to be separated into their
constituent morphemes before the analysis can be
performed. Although the grammar chosen for the
system was the most extensive one available at the
time, it contains many features which limit the
class of sentences that it can process. The gram-
mar cannot handle such items as sentence fragments,
possessive or reflexive pronouns, most preposi-
tional .phrases and its ability to handle adjec-
tives and adverbial phrases is limited. Clearly,
the capabilities of the system could be expanded
by the elimination of these snd then restrictions
from the grammar.

Within its limits, the recognition procedure
assigns to the sentences structural descriptions
representing their deep structures.. For example,
the sentence, "The store-owner shoved the papers,"
would be assigned the structural description:

S19(NP(DET(DEF THE))(N STORE-OWNER))
(AUX(AUXA(TNS PAST)))
(VP(V SHOVE) (NP(DET(INDEF S))(N PAPER))).

This LISP S-expresslon corresponds to the tree
diagram in figure 1.

f/ii‘; .
T A‘;IXA \II'P
L& EL

The symbols used as nodes in the tree structure
are defined in Table 1. The symbol "S19" speci-
fies that the structure describes the nineteenth

-580-

sentence in a passage.

8 - sentance NFROP - proper noun

NP - noun phrase NOM - nominativae
ADX - guxiliary DET - determiner
VP =~ verb phrase DEF - definita
TNS - tense INDEF - indefinite
¥ -~ verb {non~copula) R - noun
EE = verb (copula) 1T = dummy introduc-
ing sn embedded

NDUM - dummy noun sentence

Table 1

DIGEST, the system's third component, has two
sections. The first segment of the routine forms
property lists and predicates snd assigns priori-
ties to the predicates. DIGEST scans the struc-
tural descriptions of a sentence, such as the one
above, and searches for the verb. |If the verb is
a copula (BE), the structural description is con-
verted into a property list. If the verb is not
a copula (V), the structural description is con-
verted into a predicate. The second segment
orders the predicates and then condenses and eli-
minates information.

To illustrate how DIGEST operates, the struc-
tural description of the sentence represented in
Figure 1 will be converted into the intermediate
formalism. The structural description is decom-
posed into a noun phrase

(DET(DEF THE))(N STORE-OWNER),
an auxiliary
(AUXA(TNS PAST)),

and a verb phraae
(V SHOVE)(NP(DET(INDEF S))(N PAPER)).

The noun "store-owner" is isolated from the noun
phrase snd becomes the first argument of the pre-
dicate.

The verb phrase is decomposed into the verb
"shove" and the noun phraae (NP(DET(INDEF S))(N
PAPER)), The verb is the relational operator
which will be used in the formation of the predi-
cate. The noun "paper" is Isolated from the
second noun phrase and is labeled as argument two
of the predicate. With the second argument iso-
lated, the predicate representation of the sen-
tence is complete:

predicated - shove(store-owner,paper).

Instead of forming a predicate, DIGEST forms
a property list if the sentence, such as "The era-
ser would be handy always," has a copula verb.

The recognition procedure would assign to the sen-
tence the structural description:

S35(N (DET(DEF THE))(N ERASER))(AUX(AUXA(TNS PRES)
(M WOULD)))(VP BE(PRED(ADJ HANDY))YADVB ALWAYS)).

A tree diagram corresponding to this analysis ap-
pears in Figure 2,

NP ifs \VP
DBT 4 AUX‘I): BE Fn ADVB
4 Lza A

D! ER \ ALWAYS
TE P‘Rés WO’l!I‘LD HAIZY

Figure 2

The structural description is again decomposed in-
to the noun phrase

(DET(DEF THE))(N ERASER)),,
the auxiliary
(AUXA(TNS PRES)(M WOULD),
and the verb phrase
BE(PRED(ADJ HANDY))ADVB ALWAYS).

/37

/“I\" A

D STORE- 5
OWNER PAST
D/ MLx}T\PRgn
T N AUXA COMP
STORE- oP

(WNER

T |
pm LIPMAN /

The noun "eraser" is isolated from the noun phrase,
and the auxiliary is again ignored.

When the verb phrase with the copula is de-
composed, the adjective "handy" is isolated as a
member of the class "PRED," and the adverb "al-
ways" is also isolated. In forming the property
list, both the adjective and the adverb are consi-
dered as values of the attributes which they des-
cribe. How these attributes (properties) are
categorized is explained in the discussion of
DIGEST'S lexicon. The adjective "handy" speci-
fies the property of expedience; while the adverb
"always" specifies the property of frequency.
The noun "eraser," isolated previously, is la-
beled as the name (head) of the list. The pro-
perty list formed is

eraser,(expedience,handy)(frequency,always).

The property list is compared with all pre-
viously formed property lists, and if an identical
list exists, no action is taken. However, if the
list is a new one, it is added to the set of pro-
perty lists for the passage and labeled with the
letter "L" followed by an identifying number. The
system will process more complicated sentences
such as "The store-owner who was Hyman Llpman sim-
plified wirting using a pencil." The structural
description for this sentence is given in Figure 3
and from it a suitable series of predicates and
property lists will be obtained.

N

If}m

_,.—-”"— A i Y

wh b
o

PO8S ING INDEF T
PERCIL

£EL

Pigure 3

-581-

The lexicon (Internalized dictionary) for
DIGEST, which is used in the preparatory segment
of the routine, has two classes of entries: one
for adjectives and adverbs, and one for verbs.
The definitions of adverbs and adjectives are used
in forming property lists; while the definitions
of verbs contain information for assigning priori-
ties to the predicates DIGEST has formed.

The entries for adjectives and adverbs are
constructed on a principle similar to that used in
constructing a thesarus. A thesarus, rather than
defining words, groups them on the basis of simi-
larity into approximately 900 categories. In set-
ting up the lexicon for DIGEST, a more stringent
requirement was established: the categories would
be mutually exclusive. Since an adjective or ad-
verb may then appear in one and only one category,
assigning words to categories tends to be diffi-
cult and somewhat arbitrary. The categories cho-
sen are combinations of the categories in Roget's
Thesarus For example, the two categories, heat
and cold, were combined into one named "heat;"
cold is the lack of heat. Each dictionary entry
consists of the word, its part of speech (either
adjective, ADJ, or adverb, ADV) and its attribute
category.

Verbs provide the second type of entry in the
lexicon for DIGEST. The entry consists of the
verb, a notation which indicates whether it Is
transitive (VT) or intransitive (VI), and a pri-
ority number which indicates the relative impor-
tance of the verbs in a passage. DIGEST uses
this priority number along with several other
factors In order to provide an Index of the rela-
tive Importance of each predicate in forming the
memory structure. To the best of our knowledge,
no empirical data exlats to support our procedure
for the assignment of priorities; it should be
interpreted as an educated "guess" about how one
might evaluate the relative Importance of each
predicate in a given passage. The following fac-
tors are used in the assignment of priorities.

(a) Syntactic class of the verb: transitive
verbs are more Important than intransi-
tive verbs, which, in turn, are more impor-
tant than equational verbs (be, become,
feel, seem. « .).

16

(b) Semantic class of the verb (Kats): acti-
vity verbs (eat, speak, walk) are more
Important than process verbs (grown,
freeze, dress), which in turn are more
important than state of being verbs
(sleep, wait, suffer).

(c) Semantic sub-class of the verb: verbs of
a physical nature (chase, run) are more
important than verbs of a mental nature
(think, remember) within the same seman-
tic class.

(d) Attache ment of a preposition to the verb: a
preposition attached to a verb reduces the
verb's transitivity or forcefulness.

(e) Number of meanings of the verb: the informa-
tion content of a verb is inversely propor-
tional to the number of its menaings.

18

(f) Frequency of use of the verb (Kochen) the
information content of a verb is inversely
proportional to the frequency of its use.

After the individual verb (relational opera-
tor) priority numbers have been assigned and
stored in the lexicon, they are used in DIGEST'S
computation of sentence (predicate) priorities.
Three other factors, in addition to that of rela-
tional operator priority, are also used in deter-
mining predicate priority.

These are the precedence level of the rela-
tional operators (if. .then, and, or, etc.) as
previously defined; the location of a sentence in
a passage with those at the beginning and end re-
ceiving a higher priority and higher priority is
given to active sentences over their passive
equivalents.

The assignment of predicate priorities, mak-
ing use of the formula

predicate priority-relational operator(verb)
priority

+ relational operator (Q)
priority

4- location priority
- correction for passive

completes the first segment of the DIGEST routine.

Condensing the predicates into the most easi-
ly remembered information involves several dif-
ferent processes. The predicates are first or-
dered in a time-priority structure for the ini-
tial elimination and condensation. To determine
the moat important person of the passage, the pre-
dicates are then represented as a connected graph.
A centrallty .index as defined by Harary, Norman,
and Cartwrlght is computed for each argument.
This index is used in order to identify the most
important person. The most important person hss
the highest centrallty index while the main idea
is that predicate with the highest priority.
After this determination, the predicates are ar-
ranged in a matrix for further elimination and
final storage. The time and priority structure
Is a linear time axis on which the predicates and
their assigned priorities are ordered. Along it,
the tenses are ordered as follows: past perfect,
simple past, present perfect, present, future per-
fect, and simple future. The auxiliary part of a
sentence, isolated in the first segment of the
routine and denoted by the symbol AUX, is inter-
rogated to determine the tense of the verb used in
a sentence.*

-582-

Once the tense of a verb is determined, the
predicate which corresponds to the sentence con-
taining the verb is placed upon one of six tense
lists. Each list is push-down: the most recent
item added to the list appears at the top. After
all the sentences of a passage have been conver-
ted into the predicate notation and placed on the
tense lists, the lists are joined together in the
reverse order of the tense listing above. The
resulting ordering along a time axis produces the
time and priority structure.

The completed time and priority structure is
used twice in the condensation. First it is scan-
ned for predicates with priorities less than one-
half the largest priority. Since predicates with
such low priorities are evaluated as not impor-
tant to the main or supporting themes in the pas-
sage, they are eliminated. Next, the time and
priority structure is checked for identical predi-
cates. Since' predicates that occur more often in
a passage are more likely to be remembered, the
priorities of identical paredicates are increased.

The predicates which remain after the initial
condenstaion are converted into a series of con-
nected graphs, and from these graphs, the most
important person, character, or idea in a passage
is determined.

For the efficient retrieval, straight-forward
revision, or simple addition of a predicate, the
graph structure is stored in an n x m matrix,
where n equals the number of distinct first argu-
ments of predicates in a passage, and m equals
the number of distinct second arguments. The
entry for each element of the matrix contains an
ordered set of three fields. The first field de-
notes the name (number) of the predicate; the
second, the name of the relational operator
(verb) joining the two arguments of the predicate;
and the third, the predicate's priority number.

Once the information about the predicate is
stored in the matrix, the final condensation can
be made. To determine the final priority of the
predicates, the most important argument is loca-
ted. For each predicate that contains this argu-
ment, the priority is increased. With the final
priorities assigned, another search of the predi-
cates is made, and all predicates with priorities
less than one-half of the largest priority are
eliminated.

After the final condensation, the following
information is then available from the DIGEST
routine for use as a data base in the retrieval
section of the system:

(1) The matrix containing the information
about the predicates,

(2) The set of property lists,

(3) The set of secondary (embedded) pre-
dicates,

-583-

(4) The time and priority structure,

(5) The logical map formed by EDIT,
with predicate and property list
names (numbers) substituted for the
appropriate sentences.

Using the SNOBOL programming language and
operating with a CDC 6400 computer, DIGEST'S
analysis of the passage "What a Bother" took
138.4 seconds to execute using 140,000 octal loca-
tions of computer central memory. The average
time per statement was 8.8 ms.

In the fourth subsystem of the text-based
information-retrieval system, information ob-
tained from the data base output of DIGEST is
used to answer inquiries about the natural lan-
guage passages that were inputs to the EDIT rou-
tine. This retrieval routine has not been imple-
mented; instead, manual simulations of its func-
tions have been performed.

The routine accepts two kinds of inquiries:
questions and imperatives. The questions are in-
quiries about a single predicate whereas the
imperatives are inquiries about the relations of
one sentence (predicate) to another in the pas-
sage. The questions are parsed according to the
same procedure used for the input passages; hence
the questions must also be stated in the same
restricted subset of English. One advantage of
parsing over the keyword matching used in many
retrieval systems is that parsing allows a ques-
tion to be phrased in several ways and yet be
mapped into the same predicate. Mapping the ques-
tions into the same type of predicate used to
represent the input sentences allows a straight-
forward method of retrieval. Since the impera-
tives, on the other hand, deal with more than
one predicate, the predicate formalism obtained
from the parsing output is not useful in answer-
ing the second type of inquiry. Hence keywords
were used in analyzing imperatives.

Throughout the retrieval segment, inquiries
are answered individually. If an answer cannot
be determined, the following is printed out: "I
do not know the answer to your inquiry (question):
could you please rephrase it." If an answer can
be located, both answer and inquiry are printed
out.

Inquiries seeking information from one pre-
dicate fall into two categories: the yes«no
question and the WH question. As the name im-
plies, yes-no questions can be answered with
either "yes" or "no." WH questions are intro-
duced by an interrogative pronoun (who, what,
when, where, which) and are usually answered with
a noun phrase. Both categories are subdivided
into several question types.

Two types of yes-no questions are differen-
tiated according to whether the verb is a copula
or a non-copula. When the verb is not a copula,
the question is parsed and transformed into a

predicate. The storage matrix Is searched to de-
termine If the predicate exists. The element of
the matrix Indexed by the predicate's two argu-
ments is scanned to discover if it contains the
predicate's relational operator. If it does, the
answer is "yes;" if not, the answer given is
"yes;" if not, the answer given is "no." If an
element with the given indices is not found, the
"l do not know" answer is printed out.

The other type of yes-no question, that with
a copula verb, is also parsed, but it is trans-
formed into a property list Instead of a predi-
cate. The set of property lists is searched to
determine if a list with the appropriate name has
the attribute-value pair specified. If a pro-
perty list with the given name is not found, the
answer is, "l do not know."

The second major category of questions has
six basic types. An interrogative pronoun from
one of three functional classes introduces each
WH question, which may bgve either a copula or
non-copula verb. Sledd , whose classification
has been used in the retrieval routine, calls the
wh words "interrogative words," rather than pro-
nouns, because they also function as adjectives
or adverbs. Examples of these three functions
include:

{1} pronouns
"Who hit the ball?"
"What did you see?"
"Who 1a tall?"

(2) adjectives
"Which mar ia tall?"
"Whet" man hit the ball?”

(3) adverbs
'"When (where) did the man hit thes ball?"

A WH question is converted into either a predicate
or a property list, and an unknown is sought. If
the verb is a non-copula, the question is conver-
ted into a predicate with the unknown as one of
the arguments. The storage matrix is then
searched for possible values of the unknown. If
the verb is a copula, the question is converted
into a property list whose listhame is unknown.

In this case, the set of property lists is scan-
ned for possible answers.

Thera are also inquiries which seek informa-
tion from a passage rather than from an indivi-
dual sentence in the form of imperatives which
saek the semsutic relation between the sentences
(pradicates) of the passage sand imperatives which
ask about the peseage as s vhole. A semantic re-
lation is tha cause, implication, or other link
that builds mesning from two or mors sentences.
laperatives sesking such relations are answered
primarily with information contained in ths logi-
cal wap (formed fn EDIT), A typilcal inquiry
about an sntire passage, on the othear hend, sesks
such information as the msin topic or outline,
This type of inguiry is snswered with informatiom

from the storage matrix, especially from the prio-
rities. An imperative Inquiry is handled by
locating the keywords in a command. The keyword
"give" always introduces an imperative. Repre-
sentative examples of inquiries and responses for
the paasage "What a Bother" are given In the appen-
dix. In addition, deductive capabilities could
be added to the system as in the information re,
trleval system of Green and Raphael Kuhns
also has chosen a predicate logic to rorm the data
base for his deductive proposal and his method of
question answering by computer would use theorem-
proving techniques to deduce non-explicit answers
from the data base. Such techniques of deduction
could also be incorporated into this information-
retrieval system, since it also represents sen-
tences with predicates.

APPENDIX

"What a Bother" translated into the restricted
subset of English.’

The store-owner could not find the eraser.
He rummaged through the papers that were scat-
tered on the desk that he had been writing on.
He frowned angrily as he shoved around the papers.
He became impatient because the eraser was
missing.

The store-owner was tired and he was hungry
because he had worked all day. He worked in a
store that sold stationery. But he could not go
to the home until he finished figuring. He kept
s record which told how many items were sold each
day.

As he finished writing in the book, sl
things went wrong. He made mistakes that needed
erasing. As he reached for the eraser, it dis-
appeared among papers on the desk. It bounced
across the floor.

The store-owner groaned as he picked up the
evasive eraser. He looked at the rubber piece
he was holding.

He wasted some time as he looked for the era-
ser. Other people who use pencils must waste
some time as they chase erasers. Erasers should
be convenient as we are writing.

The store-owner picked up a pencil and he
looked at the top. Pencils having erasers that
fitted into tops could be made. If a small era-
ser was glued at the top that a pencil has, then
it would be handy always when it was needed.

The store-owner who was Hyman Lipman simpli-
fied writing using a pencil.

Original version from the 1968 Edition of Child-
craft—The How and Why Library, used with permis-
sion of Field Enterprises Educational Corporation.

584-

Inquiries(l)
"What

and ResponsesfR) for the passage

a Bother"
Did the store-owner waste time?
Yes.
Who could not find the eraser?
T do not know, . .#
Where was the small eraser glued?

At the top that a pencil has.

Give the main topic of the story.

The store-owner rummaged through the papers
that were scattered on the desk that the

store-owner has been writing on.

A small eraser was glued at the top that a
pencil has implies the eraser would be handy
always when the eraser was needed.

Was
Yes.

the store-owner hungry?

What was evasive?

The eraser was evasive.
Who kept a record which items
were sold each day?

The store-owner.

told how many

Give what implied the eraser would be handy
always when the eraser was needed.

A small eraser was glued at the top that a
pencil has.

Which store did the store-owner work in?
The store that sold stationery.

Where did the store-owner
| do not know

finish writing?

Which people waste time?
People who use pencils.

Did the store-owner shove around the papers?
| do not know . . . #
Who wasted time?

The store-owner.

Where were the papers scattered?
On the desk that the store-owner had been
writing on.

Which eraser
The always eraser

is handy?
is handy.

Was
No.

the eraser handy never?

Who was Hyman Lipman?
The store-owner was Hyman Lipman.

Give the related topics of the story.
The store-owner who was Hyman Lipman simpli-
fied writing using a pencil.

Note:
predicate with

attached
this

to an output indicates that a
information many have been

eliminated by DIGEST.

12.

-585-

REFERENCES
Green, P. F., A. K.Wolf, C. Chomsky, and K.
Laugherty. "BASEBALL: An Automatic Ques-

Proceedings of the AFIPS
1961. pp. 133-144.

tion Answerer."
Conference. Fall

Lindsay, Robert K. "Inferential Memory as
the Basis of Machines which Understand

Natural Language;" in E. A. Feigenbaum and
J. Feldman (eds.) Computers and Thought.
New York: McGraw-Hill.

Raphael, Bertram. "A Computer Program which

Proceedings of the AFIPS
1964. pp. 577-589.

'Understands'.”
Fall

Conference.

Craig, J. A.,
and C. R. Longyear.
glish Access and Control."
of the AFIPS Conference.
365-380.

S. C. Berezner, H. C. Carney,
"DEACON: Direct En-

Proceedings
Fall 1966. pp.

Vallee, J.F., Krulee, G.K.,
"Retrieval Formulae for
Information Storage and Retrieval.
uary, 1968, pp. 13-26.

and Grau, A.A.
Inquiry S/sterns."”
Febr-

An On-Line Text-
the
1967. 4.

"SAFARI:
Proceedings of
Institute,

Walker, D. E.,
Processing System,"
American Documentation
pp. 144-147.

Woods, W.A. "Semantic Interpretation of Eng-
lish Questions on a Structured Data Base."
Mathematical Linguistics and Automatic
Translation. Harvard Computation Labora-
tory. NSF Report 17. August, 1966.

"A Grammar Base Question-
Communications of
630-635.

Rosenbaum, P. S.
answering Procedure."
the ACM. October, 1967. pp.

Hillraan, D. J., "Negotiation of Inquiries in
an On-line Retrieval System." Information

Storage and Retrieval. June, 1968,

Jacobs, R.A., and P.S. Rosenbaum.
Transformational

Blaisdell.

English
Grammar. Waltham, Massa-
1968.

chusetts:

Childcraft—The How and Why Library. Chicago:
Corporation.

Field Enterprises Educational

1968.

Petrick, S. R. A Recognition Procedure for
Transformational Grammars. Unpublished
Ph.D. Dissertation. M.I.T. June, 1965.

Petrick, S.R. A Program for Transformational

15.

16.

17.

18.

19.

20.

Syntactic Analysis. Air Forca Cambridge
Research Laboratories Report AFCRL-66-698,

Dutch, R.A. (ed.) Roget's Thesarus of English
Words and Phrases. London: Longmans, Green,
and Co. Ltd. 1962.

Kats, J.J., "Recent Issues in Semantic Theory."
Foundations of Language. May, 1967, p. 169.

Kochen, M., D.M. MacKay, M.E. Maron, M. Scri-
ven, and L. Uhr. "Computers and Comprehen-
sion' in Manfred Kochen (ed.); The Growth of
Knowledge. New York: Wiley. 1967. pp.
230-243.

Harary, F., Norman, R.Z., and Cartwrtght, D.
Structural Models: An Introduction to the
Theory of Directed Graphs. New York: Wiley,
1965.

Sledd, J. A Short Introduction to English
Grammar. Chicago: Scott, Foresman and Com-
pany. 1959.

Green, C.C. and Raphael, B. "The Use of
Theorem-Proving Techniques in Question-
Answering Systems." Proceedings of 23rd
ACM National Conference. 1968. pp. 169-
182.

Kuhns, J.L. "Answering Questions by Computer:
A Logical Study." RAND Memorandum RM-5428-
PR. December, 1967.

-586

