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Abstract 

We present an approach to learning causal knowledge which lies in 
between two extremely different approaches to learning: 
• empirical methods (e.g., [12,17]) which detect similarities and 

differences between between examples to reveal regularities. 
• explanation-based methods (e.g., [13,4]) which derive a causal 

explanation for a single event from existing causal knowledge. The 
event and the causal explanation are generalized to create a new 
"chunk" of causal knowledge by retaining only those features of the 
event which were needed to produce the explanation. 
In the approach to learning presented in this paper and implemented in a 

program called OCCAM, prior knowledge indicating what sort of distinctions 
have proven useful in the past influences the search for causal hypotheses. 
Our approach to learning snares a goal with explanation-based learning: to 
allow existing knowledge to facilitate future learning so that fewer 
examples are required. However, it does not share one shortcoming of 
explanation-based learning since it can create causal theories which are not 
implications of existing causal theories. 

Introduction 

We address the problem of learning causal knowledge by observing 
examples of actions and state changes. We wish to consider the acquisition 
of simple causal theories such as those which describe the outcome of 
common events in the life of a small child (e.g., when a cup made of glass is 
dropped, it usually breaks and when a cup made of plastic is dropped, it 
doesn't break). 

We take an empirical approach to learning causal theories. A current best 
hypothesis [12] is formed by noticing similarities and differences among the 
attributes of an observed event and recalled previous events. We choose to 
select a current best hypothesis rather than maintain a set of consistent 
hypotheses (e.g., [12]) for a number of reasons: 
• The set of consistent hypotheses can be very large. For example, 

consider the following situation: Karen (a young girl with blond hair 
and blue eyes wearing a green sweater) pulls on the refrigerator door 
but it doesn't open. Mike (an adult male with brown hair and brown 
eyes wearing a blue sweat shirt) pulls on the refrigerator door and it 
opens. There are six attributes with different values for Karen and 
Mike which can generate consistent hypotheses. (e.g., when a person 
with brown eyes pulls on the refrigerator door, it opens.) In addition, 
these attributes may be combined conjunctively or disjunctively to 
form a large set of consistent hypotheses. Psychological evidence 
(e.g., [1,11]) indicates that only one or a small number of hypotheses 
are considered at one time. Thus generating a causal hypothesis is 
treated as searching the space of possible hypotheses. 

• Before a sufficient number of examples have been encountered to rule 
out alternative consistent hypotheses, it may be necessary to predict the 
outcome of a new event. The current best hypothesis can serve as the 
source of this prediction. 
When a new example falsifies the current best hypothesis, a new 

hypothesis is selected from the set of consistent hypotheses. In Winston s 
ARCH program [17] and in RULBMOD [2] domain-specific heuristics select 
the new hypothesis. However, since we are assuming no initial domain 
knowledge, our approach differs from the ARCH program and RULBMOD in 
the following ways: 
• Initially, the current best hypothesis is selected randomly from the set 

of consistent hypotheses subject to the constraint that simpler 
hypotheses are selected first: one attribute discriminations are selected 
before conjunctive combinations and disjunctive combinations. 

• Distinctions which have proven useful in the past influence the order in 
which causal hypotheses are generated. For example, after a number 
of examples, assume that the current hypothesis indicates that when 
adults pull on the refrigerator door, it opens. Later, when presented 
with examples of an adult with brown hair successfully inflating 
balloons, and a small child with blond hair unsuccessful at the same 
task, the age attribute would be preferred to the hair-color attribute. 
The hypothesis that when an adult blows into a balloon, it will inflate 
is considered before the hypothesis that when persons with brown hair 
blow into a balloon, it will inflate. As OCCAM learns about causality, 
domain-specific heuristics (e.g., adults are strong) are also learned 
which guide the search for the current best hypothesis on new 
problems. 

In RULBMOD, all previous examples are remembered so that the set of 
consistent hypotheses is always consistent with previous examples. In the 
ARCH program, no previous examples are saved so that the set of hypotheses 
may contain hypotheses which are not consistent with previous examples. 
We take a compromise between these two extreme positions. In OCCAM, the 
exact number of previous events recalled from memory is dependent on the 
retrievability of each event as determined by the unique features of the 
events (see [8,9,14].) Typically, at feast one positive example and at feast 
one negative example are recalled when selecting a new hypothesis. In 
addition, the current example and the current incorrect hypothesis constrain 
the set of consistent hypotheses [1,10]. 

Background: OCCAM 

OCCAM [14, IS] is a program which maintains a memory of events in 
several domains. As new events are added to memory, generalizations are 
created which describe and explain similarities and differences between 
events. OCCAM integrates explanation-based and similarity-based learning 
techniques. For example, from a number of examples OCCAM induces a rule 
which indicates that parents have a goal of preserving the health of their 
children. This rule explains why a parent pays a ransom in a single example 
of kidnapping. This explanation is generalized by explanation-based 
learning techniques to create a kidnapping schema. 

In this paper, we focus on using prior learning to facilitate the learning of 
new causal theories. Two aspects of OCCAM relevant to learning causal 
knowledge are explained in this section: generalization rules and confirming 
causal hypotheses. 

Generalization Rules 
In OCCAM, generalization rides postulate causal relationships. A 

generalization rule suggests a causal explanation for a temporal 
relationship. For example, the simplest generalization rule is "If an action 
on an object always precedes a state change for the object, postulate the 
action results in the state change". Generalization rules serve a number of 
purposes: 
• Explanation-based learning in OCCAM is initiated when a generalization 

rule suggests an explanation which can be confirmed and elaborated by 
existing causal theories. In this case, generalization rules focus the 
search for an explanation. 

* In the absence of existing causal theories, generalization rules suggest 
a causal explanation which can be confirmed or denied by additional 
examples. In this case, generalization rules serve to generate a set of 
plausible hypotheses which obey certain constraints on causality 
[3] (i.e., covariation, effects are always present when causes are 

present, temporal order, causes precede effects, and mechanism, a 
physical mediator which "connects" a cause to its effect. 
Generalization rules may be viewed as weak heuristics which filter the 
set of possible hypotheses to create a set of plausible hypotheses. 
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A generalization rule is illustrated in Figure 1. Each generalization rule 
contains a pattern for an effect (In Figure 1 the effect is a state of an object), 
a pattern for the cause (an action performed on a part of the object), a 
temporal relation (after), a set of causal relationships (the action results in 
the state), an exceptions note (which indicates that the difference in actor 
may be responsible for the difference in results). This generalization rule 
would be responsible for generating the set of plausible hypotheses to 
account for the earlier example of the refrigerator opening after Mike pulls 
on the door, but not opening after Karen pulls on the door. 

Generalization rules are divided into classes. Generalization rules which 
belong to the same class as the one in Figure 1 all attribute a difference in 
the result of an action to a difference in the actor of the action. They differ 
according to role the object of the state plays in the action. In the rule in 
Figure 1, the action is performed on a part of the object. In other rules in 
this class, the action is performed on the object, or the object is the 
destination of some action. The class of a generalization rule plays a part in 
facilitating the learning of new causal theories. 

Confirming Causal Theories 
In [15], we discuss our approach to confirming hypotheses. We quickly 

review two strategies for confirming hypotheses which will be used in a 
later example. First, confidence in a hypothesis is increased when it makes 
a correct prediction |9). Second, confidence in a hypothesis is increased 
when each alternative hypothesis is ruled out Later, we also indicate how 
prior learning can help confirm causal theories. 

Facilitating the Learning of New Causal Theories 

How can prior learning facilitate the selection of the current best 
hypothesis of a set of consistent hypotheses? One simple approach might 
be to keep track of the attributes which have entered into previous 
successful hypotheses. For example, consider a child eating pieces of a 
pineapple. The pieces can be different shapes (square or triangular) or 
different colors (yellow or white). Eventually, the hypothesis that the 
yellow pieces of pineapple taste better may be considered and supported by 
a number of examples. Should color be preferred in future hypotheses? 
Unfortunately, preferring color indiscriminately would hinder rather than 
facilitate learning in many situations. Consider the earlier example of the 
refrigerator opening after Mike pulls on the door, but not opening after 
Karen pulls on the door. If color were preferred, the best hypothesis might 
be that when a person with a blue shirt pulls on the door, the refrigerator 
will open. The problem with this simple approach is that the context in 
which a preference is made is ignored. 

The approach that we take in OCCAM differs from the above simple 
approach in two ways: 
1. Attributes which have entered into previous successful hypotheses are 

preferred in more restricted situations. These situations are determined 
by the type of the cause in a the generalization rule and the class of the 
generalization rule. For example, after inducing that the refrigerator 
door will open after an adult pulls on it, the preference for age applies 
only to the actor of this type of the action (propel, an application of a 
force) and to the same class of generalization rules (i.e„ those which 
attribute a difference in a result to a difference in the actor). 

2. The attributes which have entered into previous successful 
hypotheses are used to create dispositional attributes. These 
dispositional attributes represent capacities or potentials. For 
example, after OCCAM induces that the refrigerator door wil l open 
when an adult pulls on it, a dispositional attribute which might be 

• Distributional attributes can viewed as parent predicates [7]. It is in 
this manner, that distributional attributes facilitate learning new causal 
theories. When learning that a refrigerator will open after an adult 
pulls on the door, two hypotheses are created: 

1. Adults are strong enough to open a refrigerator door. 
2. Adults are strong. 

It is this second more general hypothesis which facilitates learning in 
new domains. For example, this hypothesis can be specialized to 
indicate that adults are strong enough to inflate balloons. Note that 
OCCAM does not start with dispositional attributes such as "strength". 
Instead, dispositional attributes are created to account for differences in 
capabilities (for actors) or tendencies (for objects). These dispositional 
attributes serve as domain-specific knowledge which guide the search 
for causal hypotheses. 

• More support is given to hypotheses which are formed by making use 
of existing dispositional attributes. It is in this manner that prior 
learning also facilitates confirming hypotheses. 
There are a number of issues which arise when using dispositional 

attributes to facilitate the search for causal hypotheses: 
• When are dispositional attributes created? Dispositional attributes are 

created to account for a difference in the result of two (or more) 
actions. 

• How do we avoid creating a new dispositional attribute for each new 
example? The reuse of existing dispositional attributes is preferred to 
the creation of new ones. 

An Example 

In this section, we demonstrate how learning dispositional attributes 
facilitates learning new causal theories. The example we consider is the 
refrigerator opening after Mike pulls on the door, but not opening after 
Karen pulls on the door. In this case there are two events in memory. 
Events arc input to OCCAM in conceptual dependency f 16]. A simplified 
representation of Mike opening the refrigerator is illustrated in Figure 3. 

The generalization rule in Figure 1 suggest that a difference in the actor 
accounts for the different results when Mike or Karen pulls on the door. 
Since there arc not yet any applicable dispositional attributes, OCCAM 
randomly selects one attribute of the actor which is different in Karen and 
Mike: eye-color, OCCAM creates a new dispositional attribute1 (disp-1) 

1 THIS tendency doesn't have a name in English, to we ' l l have to refer to it by OCCAM'S 
name: disp-1. 
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(act type propel 
actor (human name (mika) 

gender (mala) 
hair-color (brown) 
aya-color (brown) 
aga (adult)) 

objact (part typa (door) 
of ( f r ige color (tan))) 

af tar (state typa (opan) 
▼alue (yes) 
objact ( fr iga color (tan)))) 

Figure 3: Simplified Conceptual Dependency representation of 
Mike opening the refrigerator 

which represents the tendency for an application of a force by a person with 
brown eyes to result in a state change. The current best hypothesis is that 
persons with brown eyes are disp-1 enough to open a refrigerator. 

Soon, OCCAM is presented with a counterexample of a small child with 
brown eyes and blond hair who cannot open the refrigerator. This 
contradicts a prediction made by the current hypothesis. Since very little 
confidence had been built up for the current hypothesis and disp-1, they are 
abandoned, and a new current best hypothesis must be generated. There are 
at least two possible hypotheses: persons with brown hair can open 
refrigerators, or adults can open refrigerators, OCCAM randomly selects 
adults to form a new dispositional attribute2 (strength) which represents the 
tendency for an application of a force by an adult to result in a state change. 
The current best hypothesis is that adults are strong enough to open a 
refrigerator. Further examples give a great deal of support to this 
hypothesis and to the dispositional attribute called strength.3 

Once OCCAM has learned a dispositional attribute, future learning is 
facilitated. OCCAM is next presented with an example of Mike successfully 
inflating a round yellow balloon, while Karen cannot inflate a long blue 
balloon. This time, two generalization rules apply, one which would 
attribute the difference in the result to a difference in the object (round 
yellow balloon vs. long blue balloon) and one which would attribute the 
difference to the actor (Mike vs. Karen). Since there are no dispositional 
attributes for the object difference, one attribute (color) is randomly 
selected. For the actor difference, the strength dispositional attribute 
applies (since the generalization rule class, and the act type are the same as 
the refrigerator example), and the age attribute is selected over other 
attributes such as hair color. These two competing hypothesis are compared, 
and since the strength (and, therefore, the age) of the actor has more support 
than the color of the object,4 it is favored. The current best hypothesis is 
that adults are strong enough to inflate balloons. Further examples add 
support to this hypothesis. 

Conclusions 

We have presented one point on what appears to be a continuum between 
explanation-based learning and empirical learning methods. The technique 
presented in this paper appears limited to domains that have a reason for 
their regularity (i.e., dispositional attributes). For example, it would not 
apply to concept learning of physical objects (i.e., there is no reason that 
color is significant in distinguishing a horse from a zebra, but not significant 
in distinguishing an arch from a house). 

There are a number of possible extensions to this work. First, OCCAM 
contains generalization rules which attribute the difference of a result to a 
difference in the actor or the object These rules could also be learned as 
dispositional attributes representing internal and external causes for success 
or failure. This distinction is quite important in determining the affective 
response to an outcome [5]. Second, the dispositional attributes in OCCAM 
are learned at a fixed level of generality (i.e., the type of conceptual 
dependency action.) This works well for the examples we have 
encountered, but a more general approach would be to learn the level of 
generality of a dispositional attribute by keeping track of the instances in 

2OOCAM,| E for this attribute U diip-2. 
sNote that an event such at an adult not being able to lift • cat would not dccreue support 

for the existence of the strength dispositional attribute. Only a counterexample such as a child 
lifting a car which an adult could not would remove support from this hypothesis since this 
counterexample would use the same generalization rule. 

'Recall that the re-use of a dispositional attributes increases the support for a hypothesis 

which it has applied successfully and unsuccessfully. This would be more 
in the spirit of Goodman's parent predicates and over-hypotheses. Finally, 
the cases of a dispositional attribute being abandoned can be recorded so 
that learning is also facilitated by avoiding the same mistake in future cases. 

We have presented an approach to learning causal theories which creates 
dispositional attributes such as "strength" to facilitate future learning. This 
technique has been applied successfully to a number of examples of causal 
theories and an example of a social theory: OCCAM required many 
examples to induce that parents (as opposed to any adult) have a goal of 
satisfying the hunger of their children. A dispositional attribute (which 
might be called "affection") was formed which facilitated learning that 
parents have a goal of preserving the health of their children. This social 
knowledge provided an explanation for a parent paying the ransom in 
kidnapping, which enabled OCCAM to create a kidnapping schema by 
explanation-based learning techniques. 
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