@inproceedings{mayhew-etal-2024-universal,
title = "Universal {NER}: A Gold-Standard Multilingual Named Entity Recognition Benchmark",
author = {Mayhew, Stephen and
Blevins, Terra and
Liu, Shuheng and
Suppa, Marek and
Gonen, Hila and
Imperial, Joseph Marvin and
Karlsson, B{\"o}rje and
Lin, Peiqin and
Ljube{\v{s}}i{\'c}, Nikola and
Miranda, Lester James and
Plank, Barbara and
Riabi, Arij and
Pinter, Yuval},
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.243/",
doi = "10.18653/v1/2024.naacl-long.243",
pages = "4322--4337",
abstract = "We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 19 datasets annotated with named entities in a cross-lingual consistent schema across 13 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We will release the data, code, and fitted models to the public."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mayhew-etal-2024-universal">
<titleInfo>
<title>Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Mayhew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Terra</namePart>
<namePart type="family">Blevins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuheng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Suppa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hila</namePart>
<namePart type="family">Gonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="given">Marvin</namePart>
<namePart type="family">Imperial</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Börje</namePart>
<namePart type="family">Karlsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peiqin</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lester</namePart>
<namePart type="given">James</namePart>
<namePart type="family">Miranda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arij</namePart>
<namePart type="family">Riabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Pinter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 19 datasets annotated with named entities in a cross-lingual consistent schema across 13 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We will release the data, code, and fitted models to the public.</abstract>
<identifier type="citekey">mayhew-etal-2024-universal</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.243</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.243/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4322</start>
<end>4337</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark
%A Mayhew, Stephen
%A Blevins, Terra
%A Liu, Shuheng
%A Suppa, Marek
%A Gonen, Hila
%A Imperial, Joseph Marvin
%A Karlsson, Börje
%A Lin, Peiqin
%A Ljubešić, Nikola
%A Miranda, Lester James
%A Plank, Barbara
%A Riabi, Arij
%A Pinter, Yuval
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F mayhew-etal-2024-universal
%X We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 19 datasets annotated with named entities in a cross-lingual consistent schema across 13 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We will release the data, code, and fitted models to the public.
%R 10.18653/v1/2024.naacl-long.243
%U https://aclanthology.org/2024.naacl-long.243/
%U https://doi.org/10.18653/v1/2024.naacl-long.243
%P 4322-4337
Markdown (Informal)
[Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark](https://aclanthology.org/2024.naacl-long.243/) (Mayhew et al., NAACL 2024)
ACL
- Stephen Mayhew, Terra Blevins, Shuheng Liu, Marek Suppa, Hila Gonen, Joseph Marvin Imperial, Börje Karlsson, Peiqin Lin, Nikola Ljubešić, Lester James Miranda, Barbara Plank, Arij Riabi, and Yuval Pinter. 2024. Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 4322–4337, Mexico City, Mexico. Association for Computational Linguistics.