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Abstract. This paper reveals the analytic models for thelte®of fuzzy arith-
metic operations, in particular, minimum of fuzats Special attention is paid
to the synthesis of the universal direct modelsniorimum of triangular fuzzy
numbers with different relations between their paeters. Furthermore, we
present the components of the universal libraryhefresulting direct models
for various combinations of the triangular fuzzymthers masks. Modeling re-
sults confirm the efficiency of the proposed safinputing models for real-time
fuzzy information processing.
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1 I ntroduction

The development of the efficient methods for bigadanalysis and dynamic infor-
mation processing in the real-time is one of thestmimportant tasks of the signal
processing, as well as control and decision makingncertainty [1,2,3]. The big

volume of data and high speed of its appearanagiresqjusing special mathematical
approaches developed in the theory of artificialliyence and computational opti-
mization [4]. In some cases, the complexity of reathtical formalization of process-
es and systems in the conditions of uncertainig, riecessary to advance and develop
new mathematical methods and approaches [5]. OtieesE approaches, flexible to
solving real-world problem, is a theory of fuzzytssand fuzzy logic, initially devel-

oped and published by professor Lotfi Zadeh [6]965. Since the introduction of the
theory of fuzzy sets, there has been significatieinéibn, in particular, in terms of its
practical applications of mathematical methoddllifields of science and technology.
The scientists around the world are aware of theldmental theoretical develop-
ments in the theory of fuzzy sets and fuzzy lo@id 0].

The fuzzy setA that is specified on the basis of the universalEs, is called [6]

the set of pairgX, F’A(X)) , where xOE, Ha(X) 0[0,1]. Fuzzy sets and fuzzy logic

allow solving different tasks in uncertain conditsoin the field of decision-making
and complex systems control in economics, managemeegineering and logistics



[3], in particular, in marine transportation [1ijvestment [5], finances [12] and oth-
er fields. Special attention is paid to data anslysing fuzzy mathematics and soft
computing [4,13,14].

In many cases, developing the solution to the mBl require fulfilling diverse
fuzzy arithmetic operations, such as addition, subion, multiplication division,
minimum and maximum calculations [14,15,16].

2 Related Works and Problem Statement

Inverse models of resulting membership functiong¢Mfor different arithmetic op-
erations with fuzzy numbers based on usingcuts do not always provide high per-
formance of computing operations and often leadotmplications in solving control
problems in real time [2,7,17,18]. Thus, the depaient of universal direct analytic
models, that allow formalizing fuzzy arithmetic optons to improve their operating
speed and accuracy, is an important directionenfalzzy information processing and
data analysis [19,20]. Scholarly attention to thezfy set method in the past decade
resulted in publications analyzing the synthesiguérse and direct analytic models

for resulting fuzzy sets of such fuzzy arithmetigemations as fuzzy additio(|+)
[13,14,19,20], fuzzy subtraction(-) [13,14,21], fuzzy multiplication ([
[13,14,15,16] and fuzzy divisioft) [13,14].

The analytic approach, proposed in [13,15,19]vadléo form the universal result-
ing MFs for fuzzy arithmetic operations with triarigr and bell-shape fuzzy numbers

based only on the initial parameters of the aboveimeed fuzzy numbers, for exam-
ple, based on the parametexsag,a,,by,bg,b, for the triangular fuzzy numbers [19]

A=(a,ag,a,) and B=(by,by,b,). Using direct models [13,15,19-21] for corre-
sponding arithmetic operati¢n) D{(+)(—)([)]()} makes it possible to calculate
the value of the resulting MFs in real-time for amytput valuex of the resulting

MF’s support:
xDsupr(A([) 5),
where (0) is one of the arithmetic operations from the[ 6e}.(-) ([)]()} .

One of the most difficult fuzzy arithmetic operat#in terms of its mathematical
formalization is an operation of minimum of the Zyznumbers (FNs-minimum).
Using Max-Min or Min-Max convolutions for the FNsimimum realization [13,14]
at times leads to increased complexity and redpcedessing speed or to the viola-
tion of the convexity and normality properties ietresulting fuzzy sets. Kauffman
and Gupta in [13] considered the geometrical apgrdemsed on ther -cuts for the
calculation of the FNs-minimum for fuzzy numbershndifferent shapes of MFs.

Computational algorithms for the operations of Fhisimum on the basis of -
cuts [13,14,21] have high computational complexdty,it is performed in turn for all
a -levels with the step of discreteneAsr , which value significantly affects the ac-
curacy and operating speed of the computationatgases [15,20]. Therefore; -



cuts of the fuzzy set AOR (Fig. 1) is ordinary subset
A, :{x‘,uA(x) >a}, a0,1] , that contains elements] Rwhose degree of mem-

bership to a sefA is not less tharr . The subsets®, ta B, that determine the ap-
propriate a -cuts of fuzzy setsA,BORcan be written asA, =[a1(a), az(a')] ,

By =[bu(a), by(a)], a0[0.1.

The shape of the MFs of fuzzy numbers and theiogistip between their parame-
ters have significant impact on the synthesis efdiiect models of resulting MFs for
fuzzy arithmetic operations. Some individual camseglire the need to create the spe-
cial set or the special library of the direct madef resulting MFs depending on dif-
ferent factors (i.e., for triangular fuzzy numbess, the relationship between parame-
ters &, ag,a,,b1,bg,b5). These special libraries of direct models foutiéisg MFs are

presented in [19-21] for arithmetic operation aiddit[19,20] and subtraction [21]
with different kinds of asymmetrical fuzzy numbeFse usage of these special librar-
ies allows researchers to increase the computatimogerties of fuzzy arithmetic
operations with abovementioned asymmetrical fuzzyplvers.

The aim of this work is to provide the synthesigha universal analytical models
of resulting MFs for the FNs-minimum and creatéaaky of direct models for trian-
gular fuzzy numbers (TrFNs) with different combipas of their parameters (Fig. 1)
in order to increase operating speed and to retheegolume, complexity and accu-
racy of fuzzy information processing.

3 Synthesis of Analytic Modelsfor Minimum of Fuzzy Numbers
The TrFNs A=(ay,a9,a,) and B =(by,bg,by) have MFsu, (x) and s (x) with
parametersup (&) = ua (az) = g (b1) = g (b2) =0, 11 (a0) = g (bo) =1.

A=(a,8,3,)

W X

a a(a) % 0 a,(@) a
Fig. 1. Triangular Fuzzy NumbeA, AOR

The inverseA,, B, and directup(x), 1g(x) models of the TrFNsA BOR
are determined [13-15,19-21] by the correspondiygeddencies (1)-(4):



A, :[ai(a)'a’z(a)]:[a1+a(ao_a1)'az_a(az_ao)]’ (1)

0,0(x=a)U(x22,) 00(x<a)U(xza,)
#a(X) =1 Fa (x2,3),0(a < x<a,) =1 (x- a)l(a,-a) Ola<xsa). @)
Fige (% 80,8;) . 0(a, <x<a,) |(a,~x)/(a,-ag) D(a,<x<a)
B, :[bl(a)'bz(a)] :[bl"'a(bo_bl)’bz_a(bz_bo)}' 3)
0.0(x<h)U(xzb,) 00(xsb)U(x2b)

Uy (X) =9 Fq (x.h0y,by),0(b, <x<by) =4 (x=b)/(by=b),0(b,<x<by). (4
Fige (6by,b;),0(by <x<b,) |(b,=x) /(b =by) O(bg<x<b)

The operation of the FNs—minimur(g = A(D) B) based ona -cuts [13] can be

written as

C, =A,(0)B, =[a(a), &,@)](D)[b(@), b,@)] =
=[a(a) Oby(a), a,(a) Ob,@)] =[c,(@), c,@)].

We further describe in detail the proposed apprdadhe synthesis of the analytic
FNs-minimum models for TrFNs.
Let us analyze primarily the separate intersectafribe left branches of TrFNs

Fit (% 1,80) N R (x.brbg) :A B ©

®)

and right branches of TrFNs

Fright (%.80,82) N Fright (X.bo.b2) :A.BOR. 7

If left branch Heft(x,al,ao) of TrTEN A has an intersection point with left branch
Rert (X.b.bg) of TrFEN B, then we can writea, (o) =b,(a) =c,(a). Taking into
account that (a)=a +a(a,-a,) and b(a)=b+a(b,~b)we can form the
equation a, +a(a,-a,)=b,+a(b,~b,) and, after simple transformations, it is
possible to find a parameter which corresponds to the intersection point (6)

=(b-a)/(a,—a,~b,+b,). (8)

This value (8)a, if aD[O,]] , corresponds to the vertical coordinate (Fig. 2)
of the intersection point (6) with correct conditiou, (x) 0[0,1 and x4, (x) 0[0,1:



a*:yé(x*):yg(i):yg(i), where X is a horizontal coordinate of the
intersection point (6). In this case,(a*) =b1(a*)=c1(a* ) , and we can present the
intersection point (6) by two coordinate(sal(a*),a*) or (x*,,uA(x*)), where

X :al(a'* ) yA(x* ) =a , taking into account the interconnections betwemerse

and direct models of TrFNs. Using direct model2)can find
py(x)=(x -a)/ (2 -a)) (9)
and substitutings’ = al(a'* ) ,uA(x* ): a we can obtain the coordina&;(a’*) ;

(B-a)(a-a),

2 —a-b.1h [min(a,,b,), min(a, b,) |. (10)

ai(a*):a1+a* (aO_al):al+

Thus, the coordinate(aal(a*),a*) of the intersection (6) can be calculated using

the parameteréal,ao,bl,bo) of the TrFNs(A, 5) and the universal models (10) and
(8).

Let us analyze the right branches of the fuzzy rensd and B in a similar fash-
ion. If the right branchF;gy (x,ao,az) of TrFN A has an intersection (7) with the

right branchF,, (x,b,,b,) of TrFN B, then we can writes, (@) =b,(a) =c,(a) .
Taking into account that, (o) =a,-a(a,~a,) andb,(a)=b,-a(b,~b,), it is
possible to form the equatiom, -a(a,-a,)=b,~a(b,~b,) and, after simple
transformations, we can find a parameatewhich corresponds to the intersection (7)

a=(b,-a,)/(b,~b,—a,+a,). (11)
This value of (11)a, if aD[O,]] , corresponds to the vertical coordinaté (Fig.
2) of the intersection point (7) with conditionsthy, (x)0[0,1] and 4, (x)0[0,1]:
a’ :,uA(x” ):,us(f ):,ug(i’{ ) where X is a horizontal coordinate of the
intersection point (7). In this casaé(a")=b2(a“ )=c2(d* ) and we can present
the intersection (7) by two coordinate(az(a”),a” ) or (x’* ,,uA(x” )) where

X = al(a'” ) : ,ué(x” ) =a . Using the direct models (2) we can find

uy(X) = (=X )/ (2, - ) (12)

and substitutingx’ = al(a'* ) ,uA(x* ): a we can obtain the coordinaa;(a“ ):



a,(a")=a,-a" (a,-a,)=a,- %D[mm ay.b,) ,min(a, b,) |. (13)
Thus, the coordinateéa?(a“),a” ) of the intersection (7) can be calculated using

the parametergay,ay,by,b,) of the TrFNs (A B) and the universal models (13)
and (11).

Using the vertical coordinates” (8) anda™ (11) of the intersections (6) and (7),
we can synthesize the resulting inverse (14) arettd{15) models of the minimum of
TrFNs A=(ay,a9,a,), B=(by,bg,b,) for conditionsay <by,ag>bg,a,<by:

C, =A,(0)B, =[a(a) Ob(a), a,(@)Ob,@)] =[c,@), c,@)] =
) _{ai(a),Da|a D[O,a*}} {az @)Dala0[ 0a” }H )

bl(a'),Da'|aD[a'*,1] ’ bz(a),Da'|aD[a'” 1}

) _{aﬁa(ao —ai),Da|aD[0,a*]} {az ~a(a,~a,),0ala0[0,a" }H

B I b +a(b,~b,),0ala0a" 1] ~a(b,~b,),0ala0[a” 1]

(14)

where ;(0) =ay; ¢;(0)=ay; ¢ (1) =c,(1) =bo.

'D(X<al)U(X>az) 00(x<a)U(x=a,)
(x—a])/(ao—aJ),D(a1<xsa](a*))
(x-b) /(b,-b) O(afa’) <x<b] .(15)

F”gm(x,bo,bz),D(b0<x<a2(af“)) (b,~x)/(b,~by) D(b,<x<afa"))
(&, -%)/(a,~).0(a,(a" ) <x<a,)

4  ThelLibrary of Resulting Direct Modelsfor FNs-Minimum

The inverseC, (14) and the direciy, (x) (15) models for the FNs-minimum are
validated only for TrFNsA=(ay,a9,a,) and B =(by,bg,b,) under the following

conditions: & <by,ag>bg,a,<b,. At the same time a lot of real input values for
fuzzy processing can be presented as TrFNs witardiit relations between parame-
ters: ay1by,a4] bg,a4l by, [ D{(<)(:)(>)} . Therefore, for each special case it is
necessary to develop a separate analytic mode&solting fuzzy set for implementa-



tion of “FNs-minimum” if the TrFNs(A, I§) have different relations! between

parameterday,by;ag,bg;asby) .
In this section the authors aim to develop a I inverse and direct analytic
models of the resulting fuzzy se® for realization of the “minimum” as arithmetic

operation with TrFNsA and B and various combinations of the relations.
Following [19-21] we can determine a mask

Mask (A B)={d g .p} (16)

for any pair of the TrFNsSA and B, where indicatorsl,g and p are defined as
d:{o, if ag>by :{0, if ag>by :{O, if ap>b,
1, if a<b’ 1, if ag<bgy’ 1, if as<b,
The Mask (16) is a the basis for forming a 8-congrtis library (Table 1) of the
resulting mathematical model%Ml...M 8} for FNs-minimum with all possible

combinations of TrFNs(A, B) and different relation§l . The library of the developed
direct 4. (x) models{M,M,...Mg} is represented in the Table 2.

Table 1. Masks and models for pairs of TTFNM§SBOR

{dop | {123 | {124 | {r0} | {r0g | {o1r} | {orq | {003 | {004

Mi My Mz Ms My Ms Mg M- Mg

Table 2. Library of the direct modelg, (x) for resulting fuzzy numbe€ = A(0)B

Direct modejy, (x) , based on:
the functions(Fleﬂ, anm) the parameterga,,b;,a,,b;,a,,b,)
0,0(x<a)U(xza,) 0.0(x<a)U(xza,)

My} Fi (%.2,3,) 0(, < x< ay) (x-a)/(a,-a) . 0(a,<xsa,)
Fright(xiao!az)llj(a0<X<a2) ( )( ) (ao<X<az)
0,0(x<a)U(xzb,) 0,0(x<a)U(xzb,)

Fo(xa,8) (3 <x<a,) (x-2)/ (2% -a).0(a <x<a,)

Mol Fge (2 202,) D(ag<x<ay(a”))  |](a=x)/(a,-a,).0(a < x<a,(a"))

Frigm(x,bo,bz),D(az(a“)<x<b2) (b, =x)/(b,~by), ( (a”)<x<b2)




Ms

0,0(x<a)U(xza,)

Fe (X a,a,) ,D(a1<x<a (a*))
Fu (xb.0),0(a(a) <x<b,)
Fign (X.05,0,) ,D(b0< x<a2(a'” ))

0,0(x<a)U(x=4a,)
(x—al)/(ao—al),D(a1< X< al(a* )
(x—q)/(bo—bl),m(al(a*) < xsbo)
(b, —x)/(bz—bo),D(bo< X < az(a”))

M,

Frigm(x 8 az)’D(az(a )<X<az) (az_x)/(az_ao 'D(az(aﬁ)<X< 2)
0,0(x<a,)U(xzb,) 0,0(x<a)U(xzb,)
Fu(xaa) s <x<afd))  ||(x-a)/(a-a)o(a<x<a(o)

Fu (xbb;),0(a,(a") <x<b)
Fogn (%1.b,),0(b, < x<b,)

(x=b) /(b =by).0(ay(a") < x<by)

Ms

0.0(x=h)U(x>2)

Fee (x0,b)), (b<xsa1(a*))
Fe (x8,8,).0(a,(a") < x<ay)
Fige (x,8,3,),0(a, <x<a,)

0,0(x<h)U(x=b,) 0,0(x<h)U(x=b,)
Fe (Xb.0,), (b1<x<a(a )) (x=b,)/(b,~b,) D(b1<xsal(a ))
Ms |4 Fe (X.21,3,), ( sa) (x-a)/(a,~-a,) D(al(a*)<xsa0)
Foge (%,80,2,), (ao<><<a(a ) ||(2-%)/(a,-a).0(a,<x<a,(a"))
Fin (%05,0,),0 ( 2(0' )<x<b2) (b, =x)/(b,~b,) D(az(a’*)<x<b)
0,0(x<a)U(x=a,) 0,0(x<b)U(x=a,)

M

Fe (%.01,0y),0(b, < x<hy)
Fright (vao'bz) ,D(b0< x<a2(a*' ))

x-b)/(b,=b,),0(b, < x<b,)
(b, =x)/ (b, ~by), (b <x<a(a**))

Frigm(x’aoaaz):D(az(a“)<x<a2) (a2—x)/(az—ao),D(az(a”)<x<a2)
0,0(x<b)U(x=b,) 0,0(x<h)U(x=b,)

Mg|q Fre (X:01,0),0(b, < x<by) (x=0)/ (b, —b,),0(b, < x<by)
ghl(Xb b) (b0<X<b2) (bz_x)/(bz_bo)'[l(bo<)(<b2)




5 Modeling Results

Let’'s consider an example with realisation of thighanetic operation “minimum?” for
the pair (A,B) of TrFNs: A=(3,10,19), B=(5,7,24. In this case, we have:

a=3,b=5a,=10;b,= 7;a,= 17p,= 2. Using (16) we can automatically
determine (a) the correspondiriask (AB)={d g .p} ={ 1,01 for the conditions
a <b;a,>by a,<b, and (b) the corresponding model; from the library of
models{M,M,,...Mg (Table 1).

Let's calculate the coordinate(sal(a*),a*) and (aQ(a“),a”) for intersection

points (6) and (7) of the fuzzy numbélga 5) according to (10), (8), (13) and (11):

al(a*):3+—(5_3)(10_ 3 =58 a - 53 _ 0.4
10-3-7+5 10- 3 # 5
az(a,*)=17_(24—17)(17— 1()=12'1; g o 2417

24-7-17+ 10 24 7 1% 10

Then (for recognized/;) we can choose the corresponding direct mqaz[g@x)
from the library (Table 2). We further present tiesulting inverseC, = AY,(D) By
and direct/, (x) models (Fig.2) forC = A(0)B:
0,0(x<a)U(xz4a,)

Fu (% a,8,).0(a,<x<a,(a"))

He (X) =1 Feg (X*bubo) ’D(ai(a*) <Xs bo) =
Fright (X’bO'bZ) 'D(bo <X< a‘2(aﬂ ))
Fn (x20,3,), (" ) <x<a)

{3+7a,Da|aD[O,O.Z}}’ {17— @ DalaO] 0,0]7}].

5+20,0aja0[0.4]| | 24 1& Qala O] 0.7]

0,0(x<3)U(x=17)
x-3)/7,0(3<x< 5.9

x-5/20(5.8&x< ]
24-x)/170( 7<x< 12.)

17-x)/70(12.x x< 17

(
(
(
(

Ca:Aa(D)Ba:

6  TheApplication of the FNs-Minimum Library

The implementation of the developed library of diranalytic models (Table 2) for
calculation of the resulting MF;slg (x) , according to given TrFNs with various rela-
tionships between parameteag, ay,a,,b1,bq,0, of MFs, allows researchers to use
one-step-automation-mode for arithmetic operatieNs-minimum” C = A(D) B.

We further consider some examples of the devel@madytic models library applica-
tion (Table 2) for solving real-life decision-magiproblems under uncertainty.
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a
Fig. 2. FNs-MinimumC = A(C0)B of the TrFNsACRand BOR

6.1 Capacitive Vehicle Routing Problem with Fuzzy Demands at Nodes

The trucks or bunkering tankers provide correspogaiargo transportation and un-
loading operations for various nodes served andtéatin different destinations, for
example, (a) in the cities — for the trucks; (bjhe marine ports and open sea points —
for bunkering tankers. Taking into account the fedi capacity of the transporting
unit (i.e., truck or tanker), we need to solve adpze vehicle routing problem
(CVRP). The efficiency of the preliminary vehicleutes planning can be evaluated
by its ability to serve all nodes’ orders with maxim possible quantity of unloaded
cargo and minimum length of the total vehicle rgute

Transport logistic practice shows that very oftba information about cargo de-
mands of served nodes are uncertain. These denwamdde modeled by TrFNs
[9,11,22]. For example, such uncertain demandsaalS‘a(pproximatel)a0 " or (b)

“value betweena and a,“can be modelled by TrFNgy and A, represented in
Fig.1. The CVRP with fuzzy demand =(a,,,a,.a,) at nodesj{1,2,...s} is
considered in [9], wher@y; is the value of MF of TrFNA with ,u(aoj) =1; a; and
&, are the lowest and highest possible values of ddmspectively,u(alj) =0,
,u(a2j ) =0; Dpax- @ cargo capacity of the vehicle. All fuzzy demsuly, A,,.... A

may have various parameters of their TrMFs modeR2].
Solving such kinds of decision-making problems geeith vehicle route planning
(Route 1 in Fig. 4) [9,22], when vehicle should startrfraleport Dy and serve nodes

with fuzzy demands one-by-one taking into accotnet turrent fuzzy value of re-
maining cargo at the vehicl®, :(dlj,doj,dzj) and fuzzy demand of the next

node-candidated; ; .



Fig. 3. Models of fuzzy demands as TrFM§ (a) andA, (b)

Fig. 2 illustrates the situation when the next nodadidate from the unserved
node set{Se,S7,88,Sg} can be chosen to be included in Raute 2 planning pro-

cess, otherwise, the vehicle should return to #od Dy if the value of its remain-
ing cargoDs = (dy5,ds5,d 25) is insufficient [9].

Fig. 4. Solving CVRP: planneBoute 1 (a) and planning&oute 2 (b)

The decision about including the node-candidgjewith fuzzy demandAg can be
made by analyzing the resulting ME§6(D) Dg for the arithmetic operation FNs-
minimum with TrFNsA; and D5 . Calculating the distanc@istGS(AG(D) Ds, A6)

between the resulting TrFM)g (D) D5 and TrFN Ag (fuzzy demand at nod&;) with

application of one of the well-known methods forasering distance between two
fuzzy numbers (Hausdorff-, Euclid-, Hemming-distanetc.) [23,24,25], we can
include the nodes; to theRoute 2 in the condition if

Distes (A (1) Ds, Ag) < Ades (17)



where Ay is a desired value of the deviation between abevtioned TrFNs

A (0) D5 and A .
The diverse cases represented in Fig. 5 — Figpértteon the relationship between
the parametersa,ay, a,s of TTFN Ag and the parameterd;s,dgs,d ,c of TrFN

Ds. In particular, in the occasions when conditi@istGS(Ae(D)D5, AG):O the
node § will be included in theRoute 2 planning (Fig.5a, Fig. 6a). The inclusion of
the respective node will be relevant whBistgs (Ag () Ds, Ag) < Ages (Fig.6b) and
Distes ( As(J) Ds, Ag) = Ages (Fig. 7a). If the condition (17) is not fulfilledor ex-

ample Distgs(Ag(0) D5 Ag) > Ages (Fig. 7b) or Distes A (1) Ds, Ag) >> Ages
(Fig. 5b), then the nodS6 should not be included in thiRoute 2 planning.

wix) )

Fig. 5. The cases fdRoute 2 when (a)Distgg = 0and (b) Distsg >> Ayeg

Therefore, the decision maker will include any nodedidateS;,; to the corre-

sponding Route in the planning process if the condition

Fig. 6. The nodeS; is included inRoute 2: (a) Distgg = 0; (b) Distsg < Ages

Distjq,j (Aj+1(D)Dijj+1)5Ad$ (18)

is fulfilled. The desired valué\ s can be preliminary determined using simulation

approach based on the generation of random sequé¢P@e7] for modelling fuzzy
and crisp demands at nodes [28].



a b

Fig. 7. The illustration oRoute 2: (a) Distsg = Ayes ; (b) Distgg > Ages

6.2 Using FNs-minimum for the Evaluation of the Rating of Professional
Skillsor Knowledge L evel

Another effective way of the implementation of flagzy arithmetic operation “FNs-
minimum” may be an evaluation process of (a) thevdedge level of the students
[29] or (b) the employees’ professional skills @sseent. It is of outmost importance
to pay special attention to the evaluation proceslwwvith providing minimal (or
fixed) level of knowledge for each domain of theoluledge specified.

The proposed approach is based on the following steps:

(a) formation of the fuzzy number which is a fuampdel of the corresponding
grade, for exampleA, B,C ;

(b) formation of the fuzzy numbeg,,s equivalent to the student’'s knowledge lev-

el, for example, in three different domains (parts)
(c) calculation of the resulting MF of the arithmsepperation FNs-minimum for
TrEN S, and TrEN, which corresponds to the desired score;

(d) comparison of the resulting FNs-minimum wittFRr Syq ;
(e) conclusion of the desired score outcome.

7 Conclusions

The minimum of fuzzy sets is a very important fuzmythmetic operation, which

requires a lot of time for its realization. The immentation of the developed direct
analytic models’ library (Table 2) allows using ostep automation mode for opera-
tion “FNs-minimum” C = A(L)B. Modeling results confirm the efficiency of pro-

posed universal analytic models for different aggtibns. In some cases, such direct
analytic models/c (X) = s (X) provide an efficient solution to the fuzzy pro-
cessing in evaluation, control and decision-malimgcesses, in particular, for the
financial analysis [12], automatic evaluation oé tstudent’s knowledge [29], group

anonymity [30], and model design process [31,3@f, somputing based on reconfig-
urable technology [33], analysis of the big datairtyitesting of computer systems



and their components [34,35], optimization in tyzor$ logistics [9,11,22,36], rede-
signing social inquiry [37,38], partner selectioBQ], fuzzy-algorithmic reliability
analysis of complex systems in economics, managearah engineering [26,40-43]
and others.
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