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Abstract. This paper reveals the analytic models for the results of fuzzy arith-
metic operations, in particular, minimum of fuzzy sets. Special attention is paid 
to the synthesis of the universal direct models for minimum of triangular fuzzy 
numbers with different relations between their parameters. Furthermore, we 
present the components of the universal library of the resulting direct models 
for various combinations of the triangular fuzzy numbers masks. Modeling re-
sults confirm the efficiency of the proposed soft computing models for real-time 
fuzzy information processing. 
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1 Introduction 

The development of the efficient methods for big data analysis and dynamic infor-
mation processing in the real-time is one of the most important tasks of the signal 
processing, as well as control and decision making in uncertainty [1,2,3]. The big 
volume of data and high speed of its appearance requires using special mathematical 
approaches developed in the theory of artificial intelligence and computational opti-
mization [4]. In some cases, the complexity of mathematical formalization of process-
es and systems in the conditions of uncertainty, it is necessary to advance and develop 
new mathematical methods and approaches [5]. One of these approaches, flexible to 
solving real-world problem, is a theory of fuzzy sets and fuzzy logic, initially devel-
oped and published by professor Lotfi Zadeh [6] in 1965. Since the introduction of the 
theory of fuzzy sets, there has been significant attention, in particular, in terms of its 
practical applications of mathematical methods in all fields of science and technology. 
The scientists around the world are aware of the fundamental theoretical develop-
ments in the theory of fuzzy sets and fuzzy logic [7-10].  

The fuzzy set A
%

  that is specified on the basis of the universal set E , is called [6] 

the set of pairs ( ))( , A xx µ
%

, where  x E∈ , ( ) [0,1]A xµ ∈
%

. Fuzzy sets and fuzzy logic 

allow solving different tasks in uncertain conditions in the field of decision-making 
and complex systems control in economics, management, engineering and logistics 



 
 

[3], in particular, in marine transportation [11], investment [5], finances [12] and oth-
er fields. Special attention is paid to data analysis using fuzzy mathematics and soft 
computing [4,13,14].  

In many cases, developing the solution to the problems require fulfilling diverse 
fuzzy arithmetic operations, such as addition, subtraction, multiplication division, 
minimum and maximum calculations [14,15,16]. 

2 Related Works and Problem Statement 

Inverse models of resulting membership functions (MFs) for different arithmetic op-
erations with fuzzy numbers based on using α -cuts do not always provide high per-
formance of computing operations and often lead to complications in solving control 
problems in real time [2,7,17,18]. Thus, the development of universal direct analytic 
models, that allow formalizing fuzzy arithmetic operations to improve their operating 
speed and accuracy, is an important direction in the fuzzy information processing and 
data analysis [19,20]. Scholarly attention to the fuzzy set method in the past decade 
resulted in publications analyzing the synthesis of inverse and direct analytic models 
for resulting fuzzy sets of such fuzzy arithmetic operations as fuzzy addition ( )+  

[13,14,19,20], fuzzy subtraction ( )−  [13,14,21], fuzzy multiplication ( )⋅  

[13,14,15,16] and fuzzy division ( ):  [13,14].  

The analytic approach, proposed in [13,15,19], allows to form the universal result-
ing MFs for fuzzy arithmetic operations with triangular and bell-shape fuzzy numbers 
based only on the initial parameters of the abovementioned fuzzy numbers, for exam-
ple, based on the parameters 1 0 2 1 0 2, , , , ,a a a b b b  for the triangular fuzzy numbers [19] 

( )1 0 2, ,A a a a=
%

 and ( )1 0 2, ,B b b b=
%

. Using direct models [13,15,19-21] for corre-

sponding arithmetic operation( ) ( ) ( ) ( ) ( ){ }, , , :∗ ∈ + − ⋅  makes it possible to calculate 

the value of the resulting MFs in real-time for any output value x  of the resulting 
MF’s support:  

( )( )suppx A B∈ ∗
% %

, 

where ( )∗  is one of the arithmetic operations from the set( ) ( ) ( ) ( ){ }, , , :+ − ⋅ .  

One of the most difficult fuzzy arithmetic operations in terms of its mathematical 
formalization is an operation of minimum of the fuzzy numbers (FNs-minimum). 
Using Max-Min or Min-Max convolutions for the FNs-minimum realization [13,14] 
at times leads to increased complexity and reduced processing speed or to the viola-
tion of the convexity and normality properties in the resulting fuzzy sets. Kauffman 
and Gupta in [13] considered the geometrical approach based on the α -cuts for the 
calculation of the FNs-minimum for fuzzy numbers with different shapes of MFs.  

Computational algorithms for the operations of FNs-minimum on the basis of α -
cuts [13,14,21] have high computational complexity, as it is performed in turn for all 
α -levels with the step of discreteness α∆ , which value significantly affects the ac-
curacy and operating speed of the computational processes [15,20]. Therefore, α -



 
 

cuts of the fuzzy set A R∈
%

 (Fig. 1) is ordinary subset 

{ ( ) },  [0,1]AA x xα µ α α= ≥ ∈
%

, that contains elements x R∈ whose degree of mem-

bership to a set A
%

 is not less than α . The subsets Aα  та Bα  that determine the ap-

propriate α -cuts of fuzzy sets ,A B R∈
% %

can be written as [ ]1 2( ),  ( )A a aα α α= , 

[ ]1 2( ),  ( )B b bα α α= , [ ]0,1α ∈ . 

The shape of the MFs of fuzzy numbers and the relationship between their parame-
ters have significant impact on the synthesis of the direct models of resulting MFs for 
fuzzy arithmetic operations. Some individual cases require the need to create the spe-
cial set or the special library of the direct models of resulting MFs depending on dif-
ferent factors (i.e., for triangular fuzzy numbers, on the relationship between parame-
ters 1 0 2 1 0 2, , , , ,a a a b b b ). These special libraries of direct models for resulting MFs are 

presented in [19-21] for arithmetic operation addition [19,20] and subtraction [21] 
with different kinds of asymmetrical fuzzy numbers. The usage of these special librar-
ies allows researchers to increase the computational properties of fuzzy arithmetic 
operations with abovementioned asymmetrical fuzzy numbers. 

The aim of this work is to provide the synthesis of the universal analytical models 
of resulting MFs for the FNs-minimum and create a library of direct models for trian-
gular fuzzy numbers (TrFNs) with different combinations of their parameters (Fig. 1) 
in order to increase operating speed and to reduce the volume, complexity and accu-
racy of fuzzy information processing.  

3 Synthesis of Analytic Models for Minimum of Fuzzy Numbers 

The TrFNs ( )1 0 2, ,A a a a=
%

 and ( )1 0 2, ,B b b b=
%

 have MFs ( )A xµ
%

and ( )B xµ
%

 with 

parameters ( ) ( ) ( ) ( )1 2 1 2 0,A A B Ba a b bµ µ µ µ= = = =
% % % %

 ( ) ( )0 0 1.A Ba bµ µ= =
% %

 

x

µ ( )A x
%

1 0 2( , , )A a a a=
%

2( )a α0a1( )a α1a 2a

α

1 

 0 

0.5 

 

Fig. 1.  Triangular Fuzzy Number A
%

, A R∈
%

 

The inverse Aα , Bα  and direct ( )A xµ
%

, ( )B xµ
%

 models of the TrFNs ,A B R∈
% %

 

are determined [13-15,19-21] by the corresponding dependencies (1)-(4): 



 
 

 ( ) ( ) ( ) ( )1 2 1 0 1 2 2 0, , ,A a a a a a a a aα α α α α= = + − − −        (1) 

 ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 0 1 0 1 0 1 1 0

0 2 0 2 2 2 0 0 2

0, 0,

, , , / , ,

, , , / ,
A left

right

x a x a x a x a

x F x a a a x a x a a a a x a

F x a a a x a a x a a a x a

µ
 ∀ ≤ ≥ ∀ ≤ ≥
 = ∀ < ≤ = − − ∀ < ≤ 
 ∀ < < − − ∀ < <

%

U U

 (2) 

 ( ) ( ) ( ) ( )1 2 1 0 1 2 2 0, , ,B b b b b b b b bα α α α α= = + − − −        (3) 

 ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 0 1 0 1 0 1 1 0

0 2 0 2 2 2 0 0 2

0, 0,

, , , / , .

, , , / ,
B left

right

x b x b x b x b

x F x b b b x b x b b b b x b

F x b b b x b b x b b b x b

µ
 ∀ ≤ ≥ ∀ ≤ ≥
 = ∀ < ≤ = − − ∀ < ≤ 
 ∀ < < − − ∀ < <

%

U U

 (4) 

The operation of the FNs-minimum ( )( )C A B= ∧
% %%

 based on α -cuts [13] can be 

written as 

 
( ) [ ]( )[ ]

[ ] [ ]
1 2 1 2

1 1 2 2 1 2

( ),  ( ) ( ),  ( )

( ) ( ),  ( ) ( ) ( ),  ( ) .

C A B a a b b

a b a b c c

α α α α α α α
α α α α α α

= ∧ = ∧ =

= ∧ ∧ =
 (5) 

We further describe in detail the proposed approach to the synthesis of the analytic 
FNs-minimum models for TrFNs. 

Let us analyze primarily the separate intersections of the left branches of TrFNs  

 ( ) ( )1 0 1 0, , , , : ,left leftF x a a F x b b A B R∈I
% %

 (6) 

and right branches of TrFNs 

 ( ) ( )0 2 0 2, , , , : ,right rightF x a a F x b b A B R∈I
% %

. (7) 

If left branch ( )1 0, ,leftF x a a  of TrFN A
%

 has an intersection point with left branch 

( )1 0, ,leftF x b b  of TrFN B
%

, then we can write ( ) ( ) ( )1 1 1a b cα α α= = . Taking into 

account that ( ) ( )1 1 0 1a a a aα α= + −  and ( ) ( )1 1 0 1b b b bα α= + − we can form the 

equation ( ) ( )1 0 1 1 0 1a a a b b bα α+ − = + −  and, after simple transformations, it is 

possible to find a parameter α which corresponds to the intersection point (6) 

 ( ) ( )1 1 0 1 0 1/b a a a b bα = − − − + . (8) 

This value (8) [ ],    if 0,1α α ∈ , corresponds to the vertical coordinate *α  (Fig. 2) 

of the intersection point (6) with correct conditions ( ) [ ]0,1A xµ ∈
%

 and ( ) [ ]0,1B xµ ∈
%

: 



 
 

( ) ( ) ( )* * * *
A B Cx x xα µ µ µ= = =
% % %

, where *x  is a horizontal coordinate of the 

intersection point (6). In this case, ( ) ( ) ( )* * *
1 1 1a b cα α α= =  , and we can present the 

intersection point (6) by two coordinates ( )( )* *
1 ,a α α  or ( )( )* *, Ax xµ

%

, where 

( ) ( )* * * *
1 ,   Ax a xα µ α= =

%

, taking into account the interconnections between inverse 

and direct models of TrFNs. Using direct model (2) we can find 

 ( ) ( ) ( )* *
1 0 1/A x x a a aµ = − −

%

 (9) 

and substituting ( ) ( )* * * *
1 ,   Ax a xα µ α= =

%

 we can obtain the coordinate ( )*
1a α :  

 ( ) ( ) ( )( ) ( ) ( )* * 1 1 0 1
1 1 0 1 1 1 1 0 0

0 1 0 1

min , ,min ,
b a a a

a a a a a a b a b
a a b b

α α
− −

= + − = + ∈   − − +
. (10) 

Thus, the coordinates ( )( )* *
1 ,a α α  of the intersection (6) can be calculated using 

the parameters ( )1 0 1 0, , ,a a b b  of the TrFNs ( ),A B
% %

 and the universal models (10) and 

(8). 
Let us analyze the right branches of the fuzzy numbersA

%
 and B

%
 in a similar fash-

ion. If the right branch ( )0 2, ,rightF x a a  of TrFN A
%

 has an intersection (7) with the 

right branch ( )0 2, ,rightF x b b  of TrFN B
%

, then we can write ( ) ( ) ( )2 2 2a b cα α α= = .  

Taking into account that ( ) ( )2 2 2 0a a a aα α= − −  and ( ) ( )2 2 2 0b b b bα α= − − , it is 

possible to form the equation ( ) ( )2 2 0 2 2 0a a a b b bα α− − = − −  and, after simple 

transformations, we can find a parameter α which corresponds to the intersection (7) 

 ( ) ( )2 2 2 0 2 0/b a b b a aα = − − − + . (11) 

This value of (11) [ ],  if 0,1α α ∈ , corresponds to the vertical coordinate **α (Fig. 

2) of the intersection point (7) with conditions that ( ) [ ]0,1A xµ ∈
%

 and ( ) [ ]0,1B xµ ∈
%

: 

( ) ( ) ( )** ** ** **
A B Cx x xα µ µ µ= = =
% % %

, where *x  is a horizontal coordinate of the 

intersection point (7). In this case ( ) ( ) ( )** ** **
2 2 2a b cα α α= = , and we can present 

the intersection (7) by two coordinates ( )( )** **
2 ,a α α  or ( )( )** **, Ax xµ

%

, where 

( )** **
1x a α= , ( )** **

A xµ α=
%

. Using the direct models (2) we can find 

 ( ) ( ) ( )** **
2 2 0/A x a x a aµ = − −

%

 (12) 

and substituting ( ) ( )* * * *
1 ,   Ax a xα µ α= =

%

 we can obtain the coordinate ( )**
2a α : 



 
 

 ( ) ( ) ( )( ) ( ) ( )** ** 2 2 2 0
2 2 2 0 2 0 0 2 2

2 0 2 0

min , ,min ,
b a a a

a a a a a a b a b
b b a a

α α
− −

= − − = − ∈   − − +
. (13) 

Thus, the coordinates ( )( )** **
2 ,a α α  of the intersection (7) can be calculated using 

the parameters ( )0 2 0 2, , ,a a b b  of the TrFNs ( ),A B
% %

 and the universal models (13) 

and (11). 
Using the vertical coordinates *α  (8) and **α (11) of the intersections (6) and (7), 

we can synthesize the resulting inverse (14) and direct (15) models of the minimum of 
TrFNs ( )1 0 2, ,A a a a=

%
, ( )1 0 2, ,B b b b=
%

 for conditions 1 1 0 0 2 2, ,a b a b a b< > < : 

 

( ) [ ] [ ]

( )
( )

1 1 2 2 1 2

* **
1 2

* **
1 2

*
1 0 1

*
1 0 1

( ) ( ),  ( ) ( ) ( ),  ( )

( ), 0, ( ), 0,
,  

( ), ,1 ( ), ,1

, 0,

, ,1

C A B a b a b c c

a a

b b

a a a

b b b

α α α α α α α α α

α α α α α α α α

α α α α α α α α

α α α α

α α α α

= ∧ = ∧ ∧ = =

       ∀ ∈ ∀ ∈      = =   
    ∀ ∈ ∀ ∈          

  + − ∀ ∈  = 
 + − ∀ ∈  

( )
( )

**
2 2 0

**
2 2 0

, 0,
,  

, ,1

a a a

b b b

α α α α

α α α α

    − − ∀ ∈       
  − − ∀ ∈        

, (14) 

where ( )1 10c a= ; ( )2 20c a= ; ( ) ( )1 2 01 1c c b= = . 

 ( )

( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

1 2 1 2

* *
1 0 1 1 1 0 1 1 1

* *
1 0 1 0 1 0 1 1 0

** *
0 2 0 2 2 2 0 0 2

**
0 2 2 2

0, 0,

, , , / ,

, , , / ,

, , , / ,

, , ,

left

C left

right

right

x a x a x a x a

F x a a a x a x a a a a x a

x F x b b a x b x b b b a x b

F x b b b x a b x b b b x a

F x a a a x a

α α

µ α α

α α

α

 ∀ ≤ ≥ ∀ ≤ ≥

 ∀ < ≤ − − ∀ < ≤

= ∀ < ≤ = − − ∀ < ≤

 ∀ < < − − ∀ < <

 ∀ < <


%

U U

( )( )
( ) ( ) ( )( )

*

**
2 2 0 2 2/ ,a x a a a x aα










 − − ∀ < <


. (15) 

4 The Library of Resulting Direct Models for FNs-Minimum  

The inverse Cα  (14) and the direct ( )C xµ
%

(15) models for the FNs-minimum are 

validated only for TrFNs ( )1 0 2, ,A a a a=
%

 and ( )1 0 2, ,B b b b=
%

 under the following 

conditions: 1 1 0 0 2 2, ,a b a b a b< > < . At the same time a lot of real input values for 

fuzzy processing can be presented as TrFNs with different relations between parame-

ters: 1 1 0 0 2 2, ,a b a b a b   , ( ) ( ) ( ){ }, ,∈ < = > . Therefore, for each special case it is 

necessary to develop a separate analytic model of resulting fuzzy set for implementa-



 
 

tion of “FNs-minimum” if the TrFNs ( ),A B
% %

  have different relations   between 

parameters ( )1 1 0 0 2 2, ; , ; ,a b a b a b .  

In this section the authors aim to develop a library of inverse and direct analytic 
models of the resulting fuzzy sets C

%
 for realization of the “minimum” as arithmetic 

operation with TrFNs A
%

 and B
%

 and various combinations of the relations  . 

Following [19-21]  we can determine a mask 

 ( ) { }Mask , , ,A B d g p=
% %

 (16) 

for  any pair of the TrFNs A
%

 and  B
%

, where indicators ,d g  and p  are defined as 

0 01 1 2 2

1 1 0 0 2 2

0,    if   0,    if   0,    if   
;   ;       

1,    if   1,    if   1,    if   

a ba b a b
d g p

a b a b a b

>> > 
= = =  < < < 

. 

The Mask (16) is a the basis for forming a 8-component’s library (Table 1) of the 
resulting mathematical models { }1 8...M M  for FNs-minimum with all possible 

combinations of TrFNs ( ),A B
% %

and different relations  . The library of the developed 

direct ( )C xµ
%

 models { }1 2 8, ,...,M M M  is represented in the Table 2.  

Table 1. Masks and models for pairs of TrFNs ,A B R∈
% %

  

{ }, ,d g p   { }1,1,1  { }1,1,0  { }1,0,1  { }1,0,0  { }0,1,1  { }0,1,0  { }0,0,1  { }0,0,0  

Mi
 

M1
 

  M2
 

M3
 

M4
 

M5
 

M6
 

M7
 

M8
 

Table 2. Library of the direct models ( )C xµ
%

 for resulting fuzzy number ( )C A B= ∧
% %%

  

 Direct model ( )C xµ
%

, based on: 

the functions ( ),left rightF F   the parameters ( )1 1 0 0 2 2, , , , ,a b a b a b   

M1 

( ) ( )
( ) ( )
( ) ( )

1 2

1 0 1 0

0 2 0 2

0,

, , ,

, , ,

left

right

x a x a

F x a a a x a

F x a a a x a

 ∀ ≤ ≥
 ∀ < ≤
 ∀ < <

U

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 0 1 1 0

2 2 0 0 2

0,

/ ,

/ ,

x a x a

x a a a a x a

a x a a a x a

∀ ≤ ≥


− − ∀ < ≤
 − − ∀ < <

U

  

M2 

( ) ( )
( ) ( )
( ) ( )( )
( ) ( )( )

1 2

1 0 1 0

**
0 2 0 2

**
0 2 2 2

0,

, , ,

, , ,

, , ,

left

right

right

x a x b

F x a a a x a

F x a a a x a

F x b b a x b

α

α

 ∀ ≤ ≥


∀ < ≤
 ∀ < <


∀ < <

U

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1 0 1 1 0

**
2 2 0 0 2

**
2 2 0 2 2

0,

/ ,

/ ,

/ ,

x a x b

x a a a a x a

a x a a a x a

b x b b a x b

α

α

∀ ≤ ≥


− − ∀ < ≤
 − − ∀ < <
 − − ∀ < <

U

  



 
 

M3 

( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

1 2

*
1 0 1 1

*
1 0 1 0

**
0 2 0 2

**
0 2 2 2

0,

, , ,

, , ,

, , ,

, , ,

left

left

right

right

x a x a

F x a a a x a

F x b b a x b

F x b b b x a

F x a a a x a

α

α

α

α

 ∀ ≤ ≥

 ∀ < ≤

 ∀ < ≤

 ∀ < <

 ∀ < <


U

 

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

*
1 0 1 1 1

*
1 0 1 1 0

**
2 2 0 0 2

**
2 2 0 2 2

0,

/ ,

/ ,

/ ,

/ ,

x a x a

x a a a a x a

x b b b a x b

b x b b b x a

a x a a a x a

α

α

α

α

 ∀ ≤ ≥

 − − ∀ < ≤

 − − ∀ < ≤

 − − ∀ < <

 − − ∀ < <


U

  

M4 

( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )

1 2

*
1 0 1 1

*
1 0 1 0

0 2 0 2

0,

, , ,

, , ,

, , ,

left

left

right

x a x b

F x a a a x a

F x b b a x b

F x b b b x b

α

α

 ∀ ≤ ≥


∀ < ≤


∀ < ≤


∀ < <

U

 

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )

1 2

*
1 0 1 1 1

*
1 0 1 1 0

2 2 0 0 2

0,

/ ,

/ ,

/ ,

x a x b

x a a a a x a

x b b b a x b

b x b b b x b

α

α

∀ ≤ ≥


− − ∀ < ≤


− − ∀ < ≤


− − ∀ < <

U

  

M5 

( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )

1 2

*
1 0 1 1

*
1 0 1 0

0 2 0 2

0,

, , ,
 

, , ,

, , ,

left

left

right

x b x a

F x b b b x a

F x a a a x a

F x a a a x a

α

α

 ∀ ≤ ≥


∀ < ≤


∀ < ≤


∀ < <

U

 

( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )
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5 Modeling Results 

Let’s consider an example with realisation of the arithmetic operation “minimum” for 
the pair ( ),A B

% %
 of TrFNs: ( )3,10,17A =

%
, ( )5,7,24B =

%
. In this case, we have: 

1 1 0 0 2 23;  5;  10;  7;  17;  24a b a b a b= = = = = = . Using (16) we can automatically 

determine (a) the corresponding ( ) { } { }Mask , , , 1,0,1A B d g p= =
% %

 for the conditions 

1 1 0 0 2 2; ;  a b a b a b< > <  and (b) the corresponding model M3 from the library of 

models { }1 2 8, ,...,M M M (Table 1). 

Let’s calculate the coordinates ( )( )* *
1 ,a α α  and ( )( )** **

2 ,a α α  for intersection 

points (6) and (7) of the fuzzy numbers( ),A B
% %

 according to (10), (8), (13) and (11): 

( ) ( )( )* *
1

5 3 10 3 5 3
3 5.8;        0.4

10 3 7 5 10 3 7 5
a α α

− − −= + = = =
− − + − − +

; 

( ) ( )( )** **
2

24 17 17 10 24 17
17 12.1;       0.7

24 7 17 10 24 7 17 10
a α α

− − −= − = = =
− − + − − +

. 

Then (for recognized M3) we can choose the corresponding direct model ( )C xµ
%

 

from the library (Table 2). We further present the resulting inverse ( )C A Bα α α= ∧  

and direct ( )C xµ
%

models (Fig.2) for ( )C A B= ∧
% %%

: 
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,  

5 2 , 0.4,1 24 17 , 0.7,1
C A Bα α α

α α α α α α

α α α α α α
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 + ∀ ∈ − ∀ ∈       

. 

6 The Application of the FNs-Minimum Library  

The implementation of the developed library of direct analytic models (Table 2) for 
calculation of the resulting MFs ( )C xµ

%

, according to given TrFNs with various rela-

tionships between parameters 1 0 2 1 0 2, , , , ,a a a b b b  of MFs, allows researchers to use 

one-step-automation-mode for arithmetic operation “FNs-minimum” ( ) .C A B= ∧
% %%

  

We further consider some examples of the developed analytic models library applica-
tion (Table 2) for solving real-life decision-making problems under uncertainty. 
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Fig. 2.  FNs-Minimum ( )C A B= ∧
% %%

 of the TrFNs A R∈
%

and B R∈
%

 

6.1 Capacitive Vehicle Routing Problem with Fuzzy Demands at Nodes 

The trucks or bunkering tankers provide corresponding cargo transportation and un-
loading operations for various nodes served and located in different destinations, for 
example, (a) in the cities – for the trucks; (b) in the marine ports and open sea points – 
for bunkering tankers. Taking into account the limited capacity of the transporting 
unit (i.e., truck or tanker), we need to solve capacitive vehicle routing problem 
(CVRP). The efficiency of the preliminary vehicle routes planning can be evaluated 
by its ability to serve all nodes’ orders with maximum possible quantity of unloaded 
cargo and minimum length of the total vehicle routes.  

Transport logistic practice shows that very often the information about cargo de-
mands of served nodes are uncertain. These demands can be modeled by TrFNs 
[9,11,22]. For example, such uncertain demands as (a) “approximately

0
a ” or (b) 

“value between 1a  and 2a “can be modelled by TrFNs 1A
%

 and 2A
%

 represented in 

Fig.1. The CVRP with fuzzy demands ( )1 0 2, ,j j j jA a a a=
%

 at nodes { }1,2,...,j r∈  is 

considered in [9], where 0 ja  is the value of MF of TrFN jA
%

 with ( )0 1jaµ = ; 1 ja  and 

2 ja  are the lowest and highest possible values of demand, respectively, ( )1 0jaµ = , 

( )2 0jaµ = ; maxD - a cargo capacity of the vehicle. All fuzzy demands 1 2, ,..., rA A A
% % %

 

may have various parameters of their TrMFs models [9,22].  
Solving such kinds of decision-making problems deals with vehicle route planning 

(Route 1 in Fig. 4) [9,22], when vehicle should start from deport 0D  and serve nodes 

with fuzzy demands one-by-one taking into account the current fuzzy value of re-

maining cargo at the vehicle ( )1 0 2, ,j j j jD d d d=
%

 and fuzzy demand of the next 

node-candidate 1jA +
%

. 



 
 

 

Fig. 3.  Models of fuzzy demands as TrFNs 1A
%

 (a) and 2A
%

 (b)  

Fig. 2 illustrates the situation when the next node-candidate from the unserved 
node set { }6 7 8 9, , ,S S S S  can be chosen to be included in the Route 2 planning pro-

cess, otherwise, the vehicle should return to the deport 0D  if the value of its remain-

ing cargo ( )5 15 05 25, ,D d d d=
%

 is insufficient [9].  

 

Fig. 4.  Solving CVRP: planned Route 1 (a) and planning Route 2 (b)   

The decision about including the node-candidate 6S  with fuzzy demand 6A
%

 can be 

made by analyzing the resulting MFs ( )6 5A D∧
% %

 for the arithmetic operation FNs-

minimum with TrFNs 6A
%

  and 5D
%

. Calculating the distance ( )( )65 6 5 6,Dist A D A∧
% % %

 

between the resulting TrFN ( )6 5A D∧
% %

 and TrFN 6A
%

 (fuzzy demand at node 6S ) with 

application of one of the well-known methods for measuring distance between two 
fuzzy numbers (Hausdorff-, Euclid-, Hemming-distance, etc.) [23,24,25], we can 
include the node 6S  to the Route 2 in the condition if 

 ( )( )65 6 5 6, desDist A D A∧ ≤ ∆
% % %

, (17) 



 
 

where des∆  is a desired value of the deviation between abovementioned TrFNs 

( )6 5A D∧
% %

 and 6A
%

.  

The diverse cases represented in Fig. 5 – Fig. 7 depend on the relationship between 
the parameters 16 06 26, ,a a a  of TrFN 6A

%
 and the parameters 15 05 25, ,d d d  of TrFN 

5D
%

. In particular, in the occasions when condition ( )( )65 6 5 6, 0Dist A D A∧ =
% % %

 the 

node 6S  will be included in the Route 2 planning (Fig.5a, Fig. 6a). The inclusion of 

the respective node will be relevant when ( )( )65 6 5 6, desDist A D A∧ < ∆
% % %

 (Fig.6b) and 

( )( )65 6 5 6, desDist A D A∧ = ∆
% % %

 (Fig. 7a). If the condition (17) is not fulfilled, for ex-

ample ( )( )65 6 5 6, desDist A D A∧ > ∆
% % %

 (Fig. 7b) or ( )( )65 6 5 6, desDist A D A∧ >> ∆
% % %

 

(Fig. 5b), then the node 
6

S  should not be included in the Route 2 planning. 

 

Fig. 5.  The cases for Route 2 when (a) 56 0Dist = and (b) 56 desDist >> ∆   

Therefore, the decision maker will include any node-candidate 1jS +  to the corre-

sponding  Route in the planning process if the condition 

 

Fig. 6.  The node 6S  is included in Route 2: (a) 56 0Dist = ; (b) 56 desDist < ∆   

 ( )( )1, 1 1,j j j j j desDist A D A+ + +∧ ≤ ∆
% % %

 (18) 

is fulfilled. The desired value des∆  can be preliminary determined using simulation 

approach based on the generation of random sequences [26,27] for modelling fuzzy 
and crisp demands at nodes [28]. 



 
 

  

Fig. 7.  The illustration of Route 2: (a) 56 desDist = ∆ ; (b) 56 desDist > ∆   

6.2 Using FNs-minimum for the Evaluation of the Rating of Professional 
Skills or Knowledge Level 

Another effective way of the implementation of the fuzzy arithmetic operation “FNs-
minimum” may be an evaluation process of (a) the knowledge level of the students 
[29] or (b) the employees’ professional skills assessment. It is of outmost importance 
to pay special attention to the evaluation procedures with providing minimal (or 
fixed) level of knowledge for each domain of the knowledge specified.  

The proposed approach is based on the following five steps:  
(a) formation of the fuzzy number which is a fuzzy model of the corresponding 

grade, for example, , ,A B C
% % %

;  

(b) formation of the fuzzy number ansS
%

equivalent to the student’s knowledge lev-

el, for example, in three different domains (parts); 
(c) calculation of the resulting MF of the arithmetic operation FNs-minimum for 

TrFN ansS
%

 and TrFN, which corresponds to the desired score; 

(d) comparison of the resulting FNs-minimum with TrFN ansS
%

; 

(e) conclusion of the desired score outcome.  

7 Conclusions 

The minimum of fuzzy sets is a very important fuzzy arithmetic operation, which 
requires a lot of time for its realization. The implementation of the developed direct 
analytic models’ library (Table 2) allows using one step automation mode for opera-
tion “FNs-minimum” ( )C A B= ∧

% %%
. Modeling results confirm the efficiency of pro-

posed universal analytic models for different applications. In some cases, such direct 
analytic models ( ) ( )( )C A Bx xµ µ ∧=

% %%

 provide an efficient solution to the fuzzy pro-

cessing in evaluation, control and decision-making processes, in particular, for the  
financial analysis [12], automatic evaluation of the student’s knowledge [29], group 
anonymity [30], and model design process [31,32], soft computing based on reconfig-
urable technology [33], analysis of the big data during testing of computer systems 



 
 

and their components [34,35], optimization in transport logistics [9,11,22,36], rede-
signing social inquiry [37,38], partner selection [39], fuzzy-algorithmic reliability 
analysis of complex systems in economics, management and engineering [26,40-43] 
and others. 
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