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Abstract

The UK government and the public wish to see the National Health Service (NHS) use data and Artificial
Intelligence for public good [13][16]. However, there is a major challenge in making health data available
for research whilst respecting patient privacy. Synthetic data generation is an emerging technique that
enables access to data that, in some way, shares the characteristics of the original data. In this paper
we introduce SqlSynthGen (SSG), a method for generating synthetic relational datasets. SSG offers a
human-readable, risk-guided approach to refining data fidelity while managing disclosure risk. This paper
presents SSG, specifically focusing on its application for generating synthetic data from NHS hospitals.

1 Introduction

Hospitals electronic health record systems are typically built using relational databases containing millions of
records. While hospital staff access this data for their clinical duties, other professional communities— scientists,
software engineers and educators — rightly must follow lengthy processes to be granted access. Controls are
in place to ensure patient data —which is both sensitive and valuable [28]— is accessed for only legitimate
reasons. Current practices involve preparing employee contracts, implementing de-identification or anonymisation
mechanisms to remove personal information, and accessing data only via Trusted Research Environments [14].

While protecting patient privacy is of utmost importance, these processes impede collaboration and engage-
ment, and introduce delays to researchers already working to arduous grant deadlines. For instance, researchers
can use data to improve diagnostic accuracy, refine our understanding of diseases, or develop personalised
treatments [30]. Patient data can be used to train the next generation of healthcare practitioners and researchers.
Synthetic data is an accelerator: it can provide a simulcrum with the characteristics of patient data that can be
shared onwardly. This can be used to support education and training, to quality control applications and code, and
to test reproducible analytical pipelines in the open. This will accelerate academic progress for patient benefit.

In order to both protect user privacy and control access, current techniques employ mechanisms including
data agreements, de-identification or anonymisation, aggregation over the original data, and provision of trusted
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research environments (TRE) for access by third parties. While these techniques provide an extra layer of
protection, they are not immune to vulnerabilities [21]. For example, de-identified data releases are still
susceptible to linkage attacks. Aggregation requires releasing only aggregate population metrics, such as counts
or averages, but outliers remain vulnerable to identification [30]. Instead of releasing real patient data —either
partial or aggregate— an option is to release synthetic patient data.

Synthetic data is data that is manufactured, as opposed to real data that is collected from real-life events
and people. Synthetic data generators (SDG) use algorithms to produce synthetic data entries while preserving
statistical properties of the real dataset. There are multiple SDG approaches in the literature, each one targeting a
specific data type, such as tabular data or time-series data [17]. SDGs can, when appropriately constructed, offer
mathematical guarantees of the preservation of user privacy [19, 8] by incorporating differential privacy.

In this paper, we describe our work on developing a new SDG approach at the University College London
Hospitals (UCLH) NHS Foundation Trust. Each year, UCLH admits 100,000 patients and stores their data in a
relational database. Broadly, we discover that these are their requirements regarding their utilisation:

• REQ-1: The synthetic datasets should be in the form of relational datasets for any given relational schema

• REQ-2: The generator can manufacture synthetic data by utilising aggregates and statistical properties
extracted from real patients

• REQ-3: Ensure that information disclosed about real patients are easily understandable by humans.

Listing 1: Requirements for Synthetic Data Generation at UCLH Trust

We developed SQLSYNTHGEN [12] to meet the requirements in Listing 1. SQLSYNTHGEN is an open-source
Python package that can replicate the database schema of a relational database. Once the replica is in place,
SQLSYNTHGEN can generate synthetic samples at different levels of fidelity: from low-fidelity random values
compliant with the database schema, to high-fidelity samples from probability distributions learned from real
data.

SQLSYNTHGEN uses a white-box approach where information extraction from real data are expressed as
SQL queries in human-readable format, rather than black-box approaches, such as deep generative models with
thousands of parameters [6]. For ensuring patient privacy, SQLSYNTHGEN supports differential privacy (DP)[10]
to add quantifiable noise to the information extracted from the real data.

2 Sharing Patient Data

This section starts by enumerating motivations for sharing patient data. An understanding of motivations is
important because these determine the requirements of appropriate data sharing mechanisms. The reasoning for
sharing data dictates what minimum data needs to be shared, and this in turn defines the requirements to be met if
the data is to be shared reasonably safely.

We then survey the current privacy preservation practices currently adopted by hospitals to enable collaborators
controlled access to hospital data. We show that these are a) linked to inadequate privacy protection measures [21,
30], or b) a cause of unnecessary friction to analysis [23]. While synthetic data is considered a potential solution
to overcome the above challenges, many patient datasets are organised as relational databases. Current synthetic
data generators have limitations: a) they do not address the unique challenges of the relational structures [22][32];
b) they require users to specify dataset schemas [29]; or c) they can achieve differentially private, explainable,
high-fidelity synthetic data for relational databases but currently face limitations in scalability. [8].
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2.1 On the Benefits of Sharing Patient Data

Enhancing Research Quality and Innovation: Collaboration can lead to more comprehensive research studies,
allowing healthcare practitioners and researchers to test hypotheses or observe trends across a broader dataset
than is available internally. How well a dataset represents the true distribution matters more than simply dataset
size[2]. In the medical domain, where lack of data is a common occurrence, the amalgamation of diverse datasets
has a better chance of representing true underlying distributions.

Access to Specialised Expertise: External collaborators bring specialised knowledge and skills that complement
the in-house capabilities of a hospital. For example, collaborations with methodology researchers can lead to
state-of-the-art data analysis and interpretation, thereby improving both method development and treatment
outcomes. Software engineers and machine learning operations engineers can build customised cyber-physical
infrastructure to support analysis of patient data in real time[14].

Accelerating Medical Discoveries: By pooling resources and data between hospitals, research can proceed at
a faster pace[2], potentially leading to quicker discoveries in disease mechanisms, treatment effectiveness, and
development of new therapies or medical technologies. Sharing patient data can facilitate the recruitment of
participants for clinical trials, ensuring a diverse and adequate sample size. This can be crucial in studying rare
diseases or sub-types of common diseases, especially in hospitals that offer specialisations not commonly offered
elsewhere in the world.

Expanding Research Funding Opportunities: Collaborative research often has better chances of securing
funding[31]. Funding bodies frequently encourage or require collaboration across institutions as a criterion for
grants, viewing it as a way to maximise the impact of their investment.

Bench-marking and Quality Improvement: Comparing data across institutions can help identify best practices
and areas for improvement in patient care and management. This bench-marking is used to drive quality
improvement initiatives within a hospital[33].

Education and Training: Collaborations provide educational opportunities to clinical research employees at
hospitals, researchers and students at universities and research institutions, exposing them to different perspectives,
methodologies, and cutting-edge research through joint ventures and knowledge exchanges.

Building Networks and Reputation: Collaborations can enhance a hospital’s reputation in the medical and
scientific community[31]. They extend the hospital’s influence and recognition, which can attract top talent and
more collaborations in the future.

2.2 Current Practices For Sharing Patient Data

De-identification and Anonymisation of Patient Data: De-identification is the process of obscuring or
replacing personal identifiers to prevent the direct association of data with an individual. Common de-identification
methods include explicit removal, masking or pseudonymisation of direct identifiers, and aggregating data to
remove specificity eg. binning.

Anonymisation aims to ensure that data cannot be linked back to an individual by any means. Anonymisation
strips datasets of all personal identifying information but it is not provable when this has been achieved. Con-
servative measures will strip a lot of information thereby heavily affecting the value of the dataset, and we still
cannot be certain that there is not some way to de-anonymise.
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For example, the removal of timestamps from a medical dataset as part of an de-identification or anonymisation
process is performed because timestamps can be used to re-identify a patient by linking a patient’s records over
multiple de-identified datasets. The pattern of timestamps can disclose information about a patient’s health, as
well as their frequencies away from home.

However the stripping of timestamps from a medical dataset erases important information because medical
information is highly time-contextual. Part of the richness of medical data is its time-series nature. Medical data
that has been stripped of time stamps has reduced richness of data and is limited what can be learnt from it.

Effectiveness of both de-identification and anonymisation techniques is highly dependent on context, which
includes the dimensionality, volume, and statistical properties of data. Other important aspects that need to
be considered include which types of applications or analyses the data are to be used for, whether the data
will be released publicly or with additional access control, and whether the data are tabular, relational, or have
longitudinal or transactional characteristics.

Trusted Research Environments: Trusted Research Environments (TREs) are an important part of the data
sharing mechanism ecosystem. TREs are the secure infrastructure and governance model that allows researchers
to access and analyse data; they are often used in conjunction with other data-sharing mechanisms.

TREs play a major role in controlling data access levels. Initially, data access is controlled through secure
authentication and authorisation mechanisms. This means that only approved researchers can access the data, and
they can only access specific datasets approved for their role and research projects. Activities in TREs are closely
monitored and logged.

In addition, TREs provide both physical and virtual security. Data in TREs are often stored in physically
protected facilities. Virtual security measures such as firewalls, intrusion detection systems and regular penetration
testing maximise protection against external threats. Finally, to ensure no privacy leakage, data egress from TREs
is restricted. Researchers can analyse data within TREs but cannot take it out.

This means that working with data within TREs is far from a comfortable experience [23]. In order to
provide security measures, computational resources can be limited and the list of approved software packages
for analysis is restricted and not easily updated. There is significant process overhead generated by the need
for detailed authentication into remote machines, activity logging, monitoring and compliance checks. There
is a steep learning curve in working within a TRE, and new users are heavily dependent on support staff for
technical assistance. Finally, the inability to egress data limits the sharing of interim findings and prevents close
collaboration on ongoing data analysis.

Honorary contracts and data agreements: In order for non-hospital/clinical staff to work with medical data,
they typically either need to become honorary employees of a trust or their current institution need to enter into a
data sharing agreement with the trust. Both are lengthy and restrictive.

The process of obtaining an honorary contract typically begins with an initial inquiry and application to the
relevant department or clinical group at the hospital. This is followed by credential verification and background
checks, including border security investigations. Once these checks are satisfactorily completed, the relevant
departments can grant approval.

To get a data agreement signed between two institutions, the first step is to identify the need for data sharing,
specifying what data will be shared and how it will be used. Next, security requirements for storing, protecting,
and accessing the data must be agreed upon by both parties. All these elements need to comply with relevant
regulations. Finally, the agreement must be reviewed by the legal and compliance teams of both institutions to
ensure all requirements are met and all parties are protected.
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3 From Sharing Real Data to Sharing Synthetic Data

Real data is recorded from real life. Synthetic data is manufactured data, and can be created such that data
elements are random, structurally or type accurate, or have distributions that mirror statistical properties of
another dataset. In the last case, statistical properties can be directly or indirectly observed, to inform the data
manufacturing process. When any properties of one dataset is used to guide the manufacturing process of another
dataset, the first dataset is referred to as the ’real’ or ’original’ data. In the use case presented in this paper, ’real’
data is hospital patient data. Our manufactured data is commonly referred to as ’synthetic’ data.

While manufactured patient data is not about real individuals, it is a fallacy to imagine that adoption of
synthetic data in data sharing practices prevents disclosure of sensitive information. This section shows how
synthetic data generators can manufacture outputs which disclose more, or less sensitive information, and how
this affects the ways in which outputs can be used.

3.1 Synthetic Data Generators

Synthetic data generators (SDG) manufacture data. There is a tension observed in the process of manufacturing
synthetic data which involves three factors: fidelity, utility and privacy. Fidelity measures the extent to which
synthetic data resembles the real dataset. Utility is the measure of the usefulness of synthetic data to a given task.
Privacy is a measure of the information disclosed about the real dataset during generation of the synthetic dataset.
These three factors inform the manufacturing process and limit the ways its outputs can be used. Synthetic data
which is very similar to the real dataset (high fidelity) risk leaking information about real patients (low privacy).
Conversely, low fidelity datasets typically contain little information relating to the real data, so individuals are
unlikely to be identified. However, this low fidelity also limits the dataset’s utility. For instance, medical data
stripped of personal identifiers such as timestamps loses its richness and reduces the scope of insights that can be
derived from it.

However, low-fidelity or coarse-grained datasets can still be useful, as utility is dependent on the context
or task. In some cases, low-fidelity datasets are valuable if they provide sufficient information for engineering
applications e.g. software testing. When paired with real data, multi-fidelity datasets can reduce computational
costs and prevent over-fitting in machine learning tasks [26][27][5]. Low fidelity datasets can remove blockers
at the beginning of research for initial exploration, building pipelines, and testing models. These tasks can be
conducted in a secure environment restricted to students and researchers, with scripts later ported to the hospital
for training on real data if the initial analysis proves promising.

This means that there is a class of low-fidelity datasets that is useful in common research and engineering
tasks. The benefits of using these datasets can be realised with little cost to patient privacy.

Figure 1: Shows the range of fidelity for synthetic data. High fidelity data can result in higher utility, but also
increased risk of identification. Sourced from UK Office of National Statistics[24].

The UK Office of National Statistics [24] have defined a spectrum of fidelity for synthetic data, shown in
Figure 1. In the context of healthcare relational datasets:

• Structurally correct datasets have the same column names, tables and relationships as real data.
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• Valid datasets imply that the values in the synthetic dataset are correct and valid, e.g. date of births are
valid dates.

• Plausible datasets imply that the relationship between values are realistic, e.g. a patient’s date of death is
not before their date of birth.

• Multivariate plausible datasets implies that the values are correlated across different variables, e.g. a
male patient is likely to be both heavier and taller than a female patient.

• Multivariate detailed datasets are more realistic than a multivariate plausible data set, but less than a
replica of the real data. An example are rows of data showing that a patient with a diabetes diagnosis has
more records of blood sugar readings than a patient with a broken bone.

3.2 Synthetic Data For UCLH NHS Trust

University College London Hospitals National Health Services Foundation (UCLH NHS) Trust is a pioneering
institution within the UK, renowned for its treatment care and specialist services not widely available in other
NHS Trusts. It is closely affiliated with University College London; this is a partnership that emphasises research
and education, integrating medical research and teaching at the undergraduate and postgraduate levels directly
into the clinical environment. As an institute that emphasises medical care, research and education, and as
custodians of highly sensitive medical data, UCLH NHS Trust are in a position to leverage research capabilities to
supercharge innovation if they can develop a process for thoughtful access to this data. However, consequences of
unintentionally releasing identifiable information include loss of individuals’ privacy, loss of institutional prestige,
as well as substantial legal fines.

3.2.1 Problem Statement

Machine learning (ML) infrastructure are deployed in hospitals to enable AI in healthcare delivery and adminis-
tration. ML infrastructure supports tasks such as structuring data from electronic health records into a format that
can be used as inputs to AI algorithms, deploying image analysis and predictive analysis tools, and presenting the
results to healthcare practitioners in a timely and useful format.

To achieve these tasks, engineers who build the infrastructure need to gain an understanding of the data
structures and data flow within the hospital. Researchers need to evaluate if target datasets meet their purposes
for hypothesis testing, and are adequate in terms of quality and quantity. It is onerous to issue contracts to entire
teams of engineers, researchers and students, but there are no other ways to share data with external collaborators.

However, what engineers and researchers need when working on early stages of exploratory analysis to
understand data in terms of content, structure and data flow is information about the data, rather than having
access to individual rows of data itself. Here is an opportunity to frame the problem as: What information can be
released about sensitive data, which is maximally beneficial to engineers and researchers, with minimal cost to
patient privacy?

3.2.2 Requirements

Listing 1 enumerates the requirements of building synthetic data generators for UCLH Trust. This section expands
on each requirement; the following section demonstrates how the design of SSG fulfils these requirements.

Produce relational datasets for any given schema: Many data holders, including hospitals, store patient
electronic health records in relational databases. Data is often structured within complex schema that capture
both single observations and time series data. These relational databases also include tables for vocabularies such
as definitions of drugs, observations and diagnoses.
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Under this requirement, a minimally useful synthetic dataset must at the very least a) be structurally correct.
That is, it will contain the same tables, columns, and data types as the real data, and b) meet foreign key constraints.
In order to increase analytical value as shown in Figure 1, the synthetic generator will need to generate values
which are valid and plausible, e.g. valid gender values and a plausible distribution of height and weight. A
multivariate plausible dataset will have values that correlate across multiple tables, e.g. the correlation between
gender and height are represented across the ‘Demographic‘ and ‘Observation‘ tables.

An additional complexity here is in generating synthetic time series data, e.g. blood pressure values every ten
minutes for a patient in intensive care unit. In order to be multivariate plausible, the data needs to contain the
correct frequencies for data collection as well as plausible values that depend on a patient’s physiology. This is
generated across multiple tables as well.

Generate synthetic data using statistical properties computed from real patients Hospitals are mandated or
encouraged by various information acts to release hospital information to the public. The main reasons for this
are a) allowing insights into quality of care provided by public or insurance funds and b) to enable patients to
make informed decisions regarding where to seek care based on hospital performance and specialisations[33].

The type of information that is released in the public domain includes quality of care indicators, patient
safety data, readmission rates and service availability. This includes aggregate data about patient outcomes,
infection rates, details on specialised services, bed occupancy, Accidents and Emergency (A&E) wait times as
well as statistical properties on patients returning for treatment within a period of discharge. This information is
published regularly and does not compromise individual patient privacy.

Synthetic data generators can use aggregate data and statistical properties of real data to generate datasets
which are measurably closer to real data. A synthetic dataset generated using public information is unlikely to
reveal any additional patient information beyond what is already publicly available.

Ensure that information disclosed about real patients are easily understandable by humans. Aggregates
and statistical properties are well-understood mathematical concepts. A comprehensive explanation of such
information extracted from real patients datasets for the purpose of generating synthetic data should cover the
following three points:

1. Extracted Information: Detail what specific information about patients has been extracted.

2. Computation Process: Explain how this information is computed.

3. Usage for Synthetic Data: Describe how this information is used to shape the synthetic data.

Providing this explanation in a single, human-readable source ensures consistency and prevents obsolescence
across multiple data generation iterations. This offers a clear audit trail of the generation process and helps
identify the disclosure risks of its outputs.

The concept of synthetic data is complex, people may not understand how data that does not represent real
individuals still needs privacy considerations. It is furthermore difficult to understand how the application of
differential privacy to aggregates and statistics can provide additional protection.

Differential privacy (DP) [10] is the gold standard that protects individuals within a dataset while still allowing
for the useful analysis of the aggregate data. Its internal mechanics of noise addition for the purpose of privacy
preservation can leave users without a clear understanding of its outputs and how to interpret them correctly[9].

The application of differential privacy to synthetic data compounds the explanations’ complexities. There is a
struggle to understand how DP offers probabilistic but not absolute guarantees. Explaining this to custodians of
highly sensitive data is difficult because privacy is expected but not always technically feasible.

However, this is an important discussion, there is a necessary understanding to be achieved here because the
interplay between privacy and utility governs the results of a differentially private synthetic data generator. The
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only people who can take the responsibility for managing the balance between privacy and utility are the data
custodians.

4 Generating Synthetic Data Using SQLSYNTHGEN

SQLSYNTHGEN (SSG) is a software package developed to meet the requirements outlined in Section 3.3. When
connected to an existing relational database, SSG builds a new empty database with the same schema. It copies
over the non-sensitive data, such as look-up tables, and generates structurally correct synthetic data with random
values. Optionally, SSG can refine these synthetic values using aggregates and statistical properties. SSG can
apply differential privacy to obfuscate the true values of these properties in a measurable way. The new database
is then populated with these synthetic values.

4.1 Technical Overview

The default output dataset from SSG is structurally correct and has no disclosure risk. These are datasets that sit
on the far left end of the spectrum in Figure 1. No information about the real dataset has been disclosed, beyond
the structure in which they are stored. This can already be useful e.g. for building software testing modules and
pipe-lining scripts, and can be safely released if vocabularies and schema can be shared. This meets REQ-1:
Produce relational datasets for any given schema.

SSG can be further configured to generate synthetic data that (in reference to Figure 1), can be as sophisticated
as multivariate plausible data. This is achieved by allowing the user to define SQL statements that extract
aggregate statistics and statistical properties from the real data. These extracted values are then used to shape the
distributions and marginals of the synthetic data. This meets REQ-2: To generate synthetic data using statistical
properties computed from real patients.

As part of its process, SSG generates a human-readable audit trail that details the entire data generation
process. This includes what information was extracted from real data, the methods used for extraction, the
computed results, and how these values were injected into the synthetic data generation. The audit trail is a human
readable file whose contents are incorporated directly into the SDG process. Ensure that information disclosed
about real patients are easily understandable by humans.

SSG pipeline design enables the selective production of synthetic datasets with varying levels of fidelity.
Users control the shaping of synthetic data by specifying which information is extracted from real data, how it
is computed, and how it is utilised. SSG’s configuration supports agile development, allowing for incremental
fidelity improvements as needed, while maintaining transparency, auditability, and control over privacy risks at
every stage. Additionally, users have the option to apply differential privacy to protect the marginals extracted
from the source data.

In order to support this design, SSG’s process for generating synthetic relational datasets can be broken into
three separate steps, as shown in Figure 2. They are as follows:

1. SSG builds a new database to store synthetic data. This new database will be populated by synthetic data
generated in the next steps. Look-up tables which do not have any privacy concerns are copied over entirely,
to maintain foreign key constraints.

2. By default, SSG generates random but structurally correct data.

3. As an option, SSG can refine random values for higher accuracy by using extracted statistics from real data,
with or without DP. For example, mean of height by age and gender can be extracted from real patients and
the correlation be used to generate higher fidelity data.
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Figure 2: The processes of SQLSynthGen in order

For more information and tutorials about SQLSynthGen, please refer to our repository at https://github.
com/alan-turing-institute/sqlsynthgen. Our repository [12] contains installation instructions,
comprehensive documentation and trouble shooting guides to help get started with the software. The repository
also contains a simple tutorial using a Kaggle dataset [7] as well as an advanced example based on the Observa-
tional Medical Outcomes Partnership (OMOP)[25], which provides a standardised data model for observational
healthcare data.

In the following sections, we demonstrate the use of SSG in creating synthetic data based on a publicly
available AirBnB Kaggle dataset [7].

4.2 Building a Replica of a Real Dataset

In this example, let us consider that our dataset is contained in a database called ‘airbnb‘ in a local PostgreSQL
instance. We want to port the schema to a new ‘airbnb_synthetic‘ database, and populate the ‘airbnb_synthetic‘
database with synthetic rows that mirror some of the statistical properties of the ‘airbnb‘ dataset.

Build schema tables: We connect to the real dataset by setting connection credentials in environment variables.
We run a series of commands sqlsynthgen make-tables, sqlsynthgen create-tables and
sqlsynthgen make-generators to auto-generate two Python files.

The first file, ‘orm.py‘, outlines the structure of the PostgreSQL ‘airbnb‘ dataset by mapping each table
in ’airbnb’ to a corresponding Python class. Each column in these tables is represented as a class field. This
mapping is generated using SQLAlchemy[4], which is a SQL toolkit and Object-Relational Mapping (ORM)
library for Python. By using SQLAlchemy in SSG for mapping, users do not need to perform any additional
configuration to describe the schema of the real dataset. The ‘orm.py‘ file serves as a foundation for building
a new ‘airbnb_synthetic‘ PostgreSQL database, complete with the necessary tables, columns and data types.
Listing 2 shows a snippet from ‘orm.py‘ that demonstrates how the ‘users‘ table from the ‘airbnb‘ dataset is
mapped as a Python class.
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1 class User(Base):
2 __tablename__ = "users"
3

4 id = Column(String, primary_key=True)
5 date_account_created = Column(Date)
6 ...

Listing 2: Section of PostgreSQL table ‘user‘ represented as a Python class

Copy over lookup tables: A lookup table, or a vocabulary, is a table used to store a predefined set of values
that are referenced by other tables. They contain a finite and static set of values such as codes, names of categories
or descriptions. Look-up tables are a good practice adopted help normalise databases by removing redundancy
and enabling efficient data management. They work by using foreign key constraints to ensure values in related
tables are consistent and valid. These foreign key constraints need to be satisfied when generating synthetic data
in relational datasets. On their own, vocabularies provide only limited utility, since the more interesting aspects
of the data are usually found in the non-vocabulary tables.

The fidelity of the synthetic dataset can be improved by ensuring the vocabulary tables have perfect fidelity
from the beginning, since they do not raise privacy concerns (although some vocabularies are copyright-protected).
In this section, we demonstrate how SSG addresses vocabulary tables by copying them in their entirety, thereby
eliminating the need for synthesis.

First we specify vocabulary tables in a config.yaml; the listing 3 below denotes ‘countries‘ as a vocabulary
table. All values in denoted vocabulary tables are copied to an auto-generated .yaml file. Listing 4 shows a
snippet of data from the ‘countries‘ table which has been copied to a auto-generated countries.yaml file.

tables:
countries:

vocabulary_table: true

Listing 3: A yaml section to demarcate table ’countries’ as a vocabulary table

- country_destination: AU
destination_km2: 7741220
destination_language: eng

:
- country_destination: CA
destination_km2: 9984670
destination_language: eng
distance_km: 2828.1333

:

Listing 4: Example of data rows copied from ‘countries‘ vocabulary table

The primary reason for copying vocabularies this way is to maximise transparency for auditing purposes.
Data holders can audit each value extracted from the real dataset, before creating any synthetic data. Note that we
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have to be careful in making sure that the tables marked as vocabulary tables truly do not hold privacy sensitive
data, otherwise catastrophic privacy leaks are possible, where the original data is exposed raw and in full.

The downside of this approach is clear when scaling up to address vocabulary tables which are very large.
Therefore our generator pipeline is modular to ensure that vocabularies need only be copied once when creating
more rows to add into a synthetic dataset.

Generate Random Values that are Structurally Correct: The second auto-generated file, ‘ssg.py‘, contains
Python code that generates random values matching the data types defined by the Python classes. This human-
readable Python code serves as part of the audit trail, demonstrating how values for populating each table column
are generated. For complex schemas with multiple tables and columns, the generator code for each column is
easily identifiable and can be customised independently of rest of the generator.

Listing 5 demonstrates the auto-generated Python code for generating ‘id‘ and ‘date_account_created‘ values
for the ‘User‘ table. ‘id‘ is assigned generic, password-like values, and ‘date_account_created‘ is assigned a
random date value.

class usersGenerator:
num_rows_per_pass = 1

def __init__(self, src_db_conn, dst_db_conn):
pass
self.id = generic.person.password()
self.date_account_created = generic.datetime.date()
...

Listing 5: A Python class for generating synthetic id and date_account_created values for Postgres table ‘User‘

Refine values using aggregate statistics: The default behaviour of SSG is to generate syntactically correct,
random values. This section shows how we incorporate aggregate and statistical properties of real data in order to
generate synthetic data that retain those properties.

We demonstrate an example to generate normally distributed synthetic values to populate a ‘users.age‘ column,
with reference to the mean and standard deviation values of the real data. The user begins by defining SQL
statements in the ‘age_stats‘ section of a ‘config.yaml‘ file. This is demonstrated in listing 6. SSG uses the
credentials provided to authenticate to the database and execute SQL statements to compute the required values.
Computed values are recorded in an auto-generated src-stats.yaml file, demonstrated in listing 7. These
can be can be referenced by the Python data generators. Listing 8 shows the Python provider function that
generates a distribution of values to meet the statistical properties computed and recorded in ‘config.yaml‘ and
‘src-stats.yaml‘.
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src-stats:
- name: age_stats
query: >
SELECT AVG(age)::float AS mean, STDDEV(age)::float AS std_dev
FROM users
WHERE age <= 100

tables:
users:

row_generators:
- name: airbnb_generators.user_age_provider
kwargs:
query_results: SRC_STATS["age_stats"]

columns_assigned: age

Listing 6: A section of the config.yaml file that shows an SQL statement to compute mean and average of column
‘users.age‘. Results are stored as ‘age_stats‘.

age_stats:
- mean: 36.54434029695572
std_dev: 11.708339792587486

Listing 7: Example of mean and standard deviation values computed from ‘users.age‘ column

import random
def user_age_provider(query_results):

mean: float = query_results[0]["mean"]
std_dev: float = query_results[0]["std_dev"]
return random.gauss(mean, std_dev)

Listing 8: A provider function

The primary reason for extracting information using SQL statements and documenting it in ‘config.yaml‘
is to maximise transparency for auditing purposes. Similar to vocabularies, users can audit information that is
disclosed about real data by reviewing the human-readable ‘config.yaml‘ and ‘src-stats.yaml‘ files. Multiple
properties, such as marginals, percentiles, and skewness, can be used simultaneously to enhance the fidelity
of synthetic data. These computations can be resource-intensive with large datasets. To address this, the SSG
generator process is modularised: properties are computed and stored once, allowing subsequent generators to
reference these values, which will be reliable provided the real dataset has not changed significantly.

Introduce differential privacy into aggregate statistics: Differential privacy is arguably the most popular
technique for providing privacy guarantees on SDGs. Let us imagine two datasets:

• A synthetic dataset B generated with information of person X .
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• A synthetic dataset A generated without information of person X .

If both datasets were generated using a differentially-private mechanism, performing a query on dataset A
should provide the same, or almost the same, result as performing the same query on dataset B [19]. Differentially
private mechanisms hide the presence or absence of person X —or one any individual— in the dataset, which
implies strong protection of their privacy [21]. To accomplish this, these mechanisms inject random noise to the
synthetic data. The amount of noise is a function of the privacy parameter epsilon " that measures how similar the
datasets A and B are required to be. " needs to be chosen carefully to provide the required privacy guarantee.

One of the most common fundamental techniques for generating synthetic data in a differentially private
involved 3 steps: 1) select, or choose, some queries over the original data, 2) measure, or execute, those queries
using a differentially private mechanism, and 3) generate synthetic data using these measurements [20].

SQLSYNTHGEN enables the select and measure steps by supporting differentially private SQL queries in
‘src-stats.yaml‘ (Listing 9).

src-stats:
- name: age_stats

dp-query: >
SELECT AVG(age) AS mean, STDDEV(age) AS std_dev
FROM query_result

epsilon: 0.5
delta: 0.000001
snsql-metadata:
max_ids: 1
id:
type: string
private_id: true

age:
type: float
lower: 0
upper: 100

Listing 9: A differentially-private SQL query.

Internally, SQLSYNTHGEN uses SMARTNOISE SQL [1] to execute differentially private queries. As seen in
Listing 9, SMARTNOISE SQL needs additional information besides the SQL query for applying a differentially
private mechanism, including the privacy parameter epsilon ". Regarding the final generate step, the query results
are made available to provider functions —demonstrated in Listing 8— so SQLSYNTHGEN users can use these
measures for data generation.

5 Discussion

The proliferation of research on synthetic data over the past five years underscores its significance in addressing
data scarcity and sensitivity issues in machine learning. With 25,600 papers published from 2023 to mid-2024
alone, these studies span diverse domains, including computer vision, natural language processing, and healthcare
[11], primarily focusing on the generation, evaluation, and application of synthetic data, particularly using GANs
[3]. Originally research-driven, these methods are now being translated into practical applications, revealing new
challenges and considerations [18].
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Our development of a Synthetic Data Generator (SDG) for sharing sensitive hospital information has
highlighted these key challenges:

There is a lack of generators developed for relational data: The development of synthetic generators
commonly explore image, text data, or tabular data. Our experience is that synthetic data generators overlook
the relational data format, possibly because of the foreign key constraints satisfaction criteria. This is a problem
because hospital datasets are often stored in relational formats.

There is a lack of explainability in privacy preserving mechanisms: Explainability in synthetic data
generators is a crucial issue for custodians of sensitive data, especially in hospitals. The lack of explainability
undermines discussions between hospital data stakeholders, including both staff and patients. One discussion
impacted by the lack of explainability is that of maintaining a balance between privacy guarantees and the utility
of the synthetic data. While ensuring that synthetic data generators do not leak sensitive information is essential,
explaining the privacy preservation mechanisms involved can be complex. Furthermore, the processes used by
generators based on GANs and deep neural networks are opaque, making it difficult to assure stakeholders of
the synthetic data’s reliability and safety. Finally, both generators and metrics (e.g., fidelity, diversity) used to
evaluate the quality of synthetic data are not easily interpretable.

We specifically addressed this explainability challenge in a series of workshops with patient and public
involvement, and using SSG as an exemplar. There were two key messages from our stakeholders. Firstly, they
were reassured to understand the distinction in the source of the data. Anonymised data is processed from the
original data whereas synthetic data is generated de novo. Secondly, they valued using a language that talked
about sharing information (with synthetic data) in contrast to sharing data (with anonymisation). There was
recognition that information is already shared and tools like SSG are trustworthy because they are transparent
about what information is used to generate the synthetic data.

Despite its design to address these challenges, our SQLSYNTHGEN tool has several limitations:

Lack of Autonomous Model Discovery: Unlike GANs-based [3] or Bayesian-based [8] generators, SSG
cannot autonomously discover underlying models or relationships. Users must predetermine the models, limiting
the tool’s adaptability and the transferability of algorithms trained on its outputs to real-world data.

Need to Ensure Security: The design of SSG includes copying vocabulary tables in their entirety and executing
SQL statements on real data based on user configurations, makes it a powerful tool. However, these features
introduce risks of user errors. Accidental copying tables with sensitive data could lead to severe data breeches.
Executing SQL statements without proper access controls could damage real patient information.

Lack of Evaluation: SSG allows users to selectively disclose information used to shape synthetic data outputs
but it lacks an integrated evaluation mechanism. Since each piece of information is independently disclosed, there
is an opportunity here to iteratively fine-tune the balance between fidelity and privacy by combining SSG with an
evaluation tool such as TAPAS [15].

6 Conclusion

The number of research papers on synthetic data has surged significantly, indicating its growing importance in
addressing data scarcity and sensitivity issues in machine learning. There is a notable gap in the development of
synthetic data generators specifically for relational data structures. Most exciting developments on generators
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focus on time-series, graph, audio, imaging or tabular data structures, often neglecting the complexities associated
with relational databases, such as foreign key constraints. This limitation is significant because many practical
applications, particularly in healthcare, rely heavily on relational data formats.

Aside from the oversight in provision for relational data, the lack of explainability in privacy-preserving
mechanisms is a critical challenge. For synthetic data to be trusted and widely adopted, especially in sensitive
domains like healthcare, stakeholders need to understand how privacy is preserved. The opacity of deep learning
models and GANs currently used in generating synthetic data makes it difficult to provide this assurance, which
can hinder stakeholder discussions and acceptance.

The direction for future work on the application of synthetic data generation in sensitive data context is clear:

1. Development of Relational Data Generators: There is a clear need for synthetic data generators that can
handle relational data formats effectively, addressing issues like foreign key constraints.

2. Improving Explainability: Enhancing the explainability of synthetic data generation processes will be
crucial for gaining stakeholder trust and facilitating broader adoption by custodians of sensitive data.

3. Integrated Evaluation Frameworks: Combining synthetic data generators with comprehensive evaluation
or attack frameworks can help explainability as well as ensuring an optimal balance between fidelity and
privacy.

By addressing these challenges and focusing on these future directions, the practical application of synthetic
data can be significantly enhanced, making it a more viable solution for real-world problems, particularly in
sensitive domains such as healthcare.
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