
Transforming the Axiomisation of Ontologies:
The Ontology Pre-Processor Language

Mikel Egaña1, Robert Stevens1, and Erick Antezana2,3

1 Computer Science, University of Manchester
2 Department of Plant Systems Biology, VIB, Gent, Belgium

3 Department of Molecular Genetics, Ghent University, Gent, Belgium
mikel.eganaaranguren@cs.man.ac.uk
robert.stevens@manchester.ac.uk

erant@psb.ugent.be

Abstract. As ontologies are developed there is a common need to trans-
form them, especially from those that are axiomatically lean to those that
are axiomatically rich. Such transformations often require large numbers
of axioms to be generated that affect many different parts of the ontol-
ogy. This paper describes the Ontology Pre-Processor Language (OPPL),
a domain-specific macro language, based in the Manchester OWL Syn-
tax, for manipulating ontologies written in OWL. OPPL instructions can
add/remove entities, and add/remove axioms (semantics or annotations)
to/from entities in an OWL ontology. OPPL is suitable for applying the
same change to different ontologies or at different development stages,
and for keeping track of the changes made (e.g. in pipelines). It is also
suitable for defining independent modelling macros (e.g. Ontology Design
Patterns) that can be applied at will and systematically across an on-
tology. The presented OPPL Instruction Manager is a Java library that
processes OPPL instructions making the changes to an OWL ontology.
A reference implementation that uses the OPPL Instruction Manager
is also presented. The use of OPPL has been demonstrated in the Cell
Cycle Ontology.

1 Introduction

The use of OWL ontologies is rapidly increasing, especially in areas such as
bioinformatics. As ontologies are more widely used, more tools are needed to
fulfill the requirements of new users. One of those requirements is an abstract,
straight-forward, high-level language for manipulating ontologies in a re-usable
and efficient way.

This is particularly necessary when many of the ontologies currently written
in OWL are axiomatically lean and increased computational inference will only
arise with increased axiomatisation. For example, in many bio-ontologies, much
of the ontology’s semantics are bound up in the term names (rdfs:label)
and these need to be made explicit so that reasoners can use those seman-
tics. The Gene Ontology (GO) [1], one of the most used bio-ontologies, is a

good example of such a problem. In GO, we can find classes with labels like
alanine:sodium symporter activity but with only some is-a and
part-of relationships that can hardly be exploited by a reasoner. However,
we can add new axioms based in the label; we can add, for example, the ax-
iom transports only (alanine or sodium) and exploit that axiom in
querying and structural maintenance4. The large size and repetitive nature of
much of this axiomatic enrichment (for example, many term names share a sim-
ilar syntactic structure [2, 3]) mandates the use of some form of transformation
language that can be used to define reusable transformations.

Another justification for such a language comes from the fact that there
are bio-ontologies that are built using automatic procedures (e.g. pipelines).
For example, the Cell Cycle Ontology5 (CCO) [4] is generated as a result of
gathering data from existing ontologies and databases using a pipeline. Each
version of CCO is generated automatically; any extra axioms that need to be
added to enrich the existing knowledge can not be added by hand (they would
be overwritten). Therefore, an OPPL implementation has been integrated into
the CCO pipeline (see section 4), so the needed enrichment is defined as a set
of OPPL instructions that are automatically applied in CCO.

A general justification for a high level language is based in how OWL ontolo-
gies are currently manipulated by the user. OWL ontologies can be manipulated
in different ways. The most obvious and common method is via editors such as
Protégé6, but such manipulations are not reusable: a user makes changes through
a graphical interface, and if another user wants to recreate the changes, they will
need to be applied step-by-step (Swoop7 allows for change sets to be reused by
different users, but the ontology needs to be loaded and changes applied each
time). Another method is to manipulate the ontology programmatically via APIs
such as the OWL API8. When interacting with the ontology programmatically,
the manipulations are reusable, but such access can only be performed by an
API-familiar programmer, and each change of the ontology can represent a large
amount of programming effort. The Protégé script tab9 offers some level of ab-
straction but still full programming knowledge is required. Therefore a high level
language for defining reusable actions is required.

The Ontology Pre-Processor Language10 (OPPL) fulfills the requirements
cited above. OPPL offers an abstract and straight-forward syntax that can be
used to manipulate OWL ontologies. The OPPL manipulation actions can be
easily re-used in different OWL ontologies, at different stages and by different
users, offering most of the expressivity and re-usability of an API-level access
to the ontology, with minimal notions of programming required. The intended
4 The Gene Ontology Next Generation (GONG) workflow does precisely that:

http://www.gong.manchester.ac.uk/
5 http://www.cellcycleontology.org
6 http://protege.stanford.edu/
7 http://code.google.com/p/swoop/
8 http://owlapi.sourceforge.net/
9 http://www.med.univ-rennes1.fr/˜dameron/protegeScript/

10 http://oppl.sourceforge.net/

audience of OPPL is formed by ontology curators who need to do flexible and
automatic ontology building but without necessarily having a strong computa-
tional background.

2 OPPL syntax

The OPPL syntax is based in the Manchester OWL Syntax [5], with some ex-
tensions: mainly the keywords ADD, REMOVE and SELECT. The OPPL syntax is
case sensitive.

The central unit of the OPPL syntax is the so-called OPPL instruction.
It describes one or more actions to be performed upon an entity or groups of
entities11: each action, or OPPL statement, is delimited by a semicolon (;).
See Fig. 1 for details.

SELECT Class: admin;ADD label "office admin";
OPPL statement OPPL statement

OPPL instruction

Fig. 1. An example of an OPPL instruction, composed of two OPPL statements.

There are two types of OPPL instructions which are explained in detail in
subsections 2.1 and 2.2.

2.1 Single statement OPPL instructions

This OPPL instruction is formed by only one OPPL statement that adds/removes
an entity to/from an ontology. For example, if we want to add a class named
undergraduate to the ontology, we would use the following instruction:

ADD Class: undergraduate;

To remove a class from the ontology, we would use, for example, the following
instruction:

REMOVE Class: undergraduate;

The OWL API (which is used by OPPL to access the ontology, see sec-
tion 3) only allows the addition of axioms, in conformance to OWL semantics.
As a result, it is not possible to add a class per se, instead, only an axiom
11 An entity is assumed to be a named class, a named individual, or an object property.

Currently OPPL does not support data properties nor datatypes.

that references the class can be added. Therefore the cited OPPL statement
(ADD Class: undergraduate;), when processed, adds an axiom stating
that the class undergraduate is a subclass of owl:Thing. This assumption
is made to make the OPPL syntax more simple. A REMOVE statement deletes
the axioms that reference entities, not the entities as such.

2.2 Multiple statements OPPL instructions

This type of OPPL instruction is composed of at least two OPPL statements.
The first statement is always a SELECT/ADD statement, followed by one or more
ADD/REMOVE statements.

In the case that the first statement is a SELECT statement, it selects entities
from the ontology and the following ADD/REMOVE statements add/remove ax-
ioms (semantic axioms such as restrictions or annotations) to/from the selected
entities. The selection is made according to a condition, which can be a seman-
tic axiom (e.g. having a concrete restriction like part-of some nucleus as
a necessary condition) or an annotation value. Any entity that matches the con-
dition will be selected and the next ADD/REMOVE statements will be applied to
it. For example:

SELECT equivalentTo participates_in
only (intellectual_dinner and party);
ADD label "professor";
REMOVE subClassOf lives_on only (not campus);

This instruction does the following: selects any class that has the necessary
and sufficient restriction participates_in only (intelectual_dinner
and party). Then, adds the rdfs:label “professor” to it. Finally, removes
the necessary restriction lives_on only (not campus) from it.

Annotation values can be used to select entities, and regular expressions
support for annotation values12 is included for this purpose. In the following
example, any class in which the rdfs:label matches the regular expression
“(.+) (development)” (e.g. “cell development”) will be selected. The selected
class(es) will become subclass(es) of development, and the necessary restric-
tion acts_on some cell will be added (<1> refers to the first group of the
matching string):

SELECT label "(.+) (development)";
ADD subClassOf development;
ADD subClassOf acts_on some <1>;

The SELECT statement need not be a condition to fulfill; a single entity can
be selected:
12 The regular expressions are Java style:

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

SELECT Class: admin;
ADD label "administrator";

Conditions can also be defined to select object properties:

SELECT inverse participates_in;ADD range student;

In the case that the first statement is an ADD statement (instead of SELECT),
an entity will be added and the next ADD/REMOVE statements will be applied
to it. For example:

ADD Class: professor;
ADD label "staff";
ADD equivalentTo participates_in only
(intellectual_dinner and party);

This OPPL instruction adds a class professor first. Then, it adds the
rdfs:label “staff” to it. Finally, it adds the necessary and sufficient restriction
participates_in only (intelectual_dinner and party).

2.3 OPPL syntax design

The development of the OPPL syntax has been driven by the authors’ daily needs
while working with bio-ontologies (mainly enrichment of the Gene Ontology in
the GONG workflow and enrichment of CCO), and therefore some features that
would make the OPPL syntax more complete have been left aside as they did
not provide an immediate benefit. However, there are pointers that OPPL could
follow to provide a more complete syntax. For example, more programming-
like features (loops, conditional control, subroutines, etc.) would be desirable. A
SET statement that simply changes axioms (instead of only removing or adding
them) will probably also be part of the future OPPL syntax. Some segmentation
capability is also needed: for example, the ability to extract parts of an ontology
to introduce them in a new ontology.

For the same reason, there has also been an equilibrium between the needs
of the authors to introduce more and more tailored instructions and the aim to
keep OPPL simple and clean. Some examples of tailored instructions include the
ability to distinguish between primitive/defined classes:

SELECT_PRIMITIVE descendantOf domain;
ADD label "primitive";

SELECT_DEFINED descendantOf domain;
ADD label "defined";

Another example of such tailored instructions is the disjointWithSiblings
statement, that can be used, for example, to make all the classes of a subtree
disjoint with their siblings:

SELECT descendantOf person;ADD disjointWithSiblings;

There are also two instructions (assertedSubClassOf and
assertedSuperClassOf) that allow to query for super/subclasses without
using the reasoner, which means that, for example, inconsistent classes can be
selected:

SELECT assertedSubClassOf participates_in some sport;
ADD label "is this a student?";

The complete OPPL syntax can be learned by following the examples pro-
vided in the OPPL web site13. Other instructions not reviewed in this paper
include disjointWith, differentFrom, sameAs, type, descendantOf,
ancestorOf, subPropertyOf, etc.

3 OPPL design and implementation

The core OPPL is provided as an stand-alone Java library (OPPLInstruction-
Manager) that can be used to write applications (Fig. 2). The OPPLInstruction-
Manager processes each OPPL instruction that is provided to it and performs
the changes in an OWL ontology chosen by the user. The changes to the ontology
are made by the OPPLOWLManager class, a wrapper for the OWL API, when
prompted to do so by the OPPLInstructionManager. The OPPLOWLManager
performs all the actions related to OWL: accessing the model, querying the
model via reasoners, changing the model, and loading or writing ontologies.

Each OPPL instruction is executed independently, therefore, if, for example,
an OPPL instruction adds an axiom the following OPPL instruction can safely
remove it. For the same reason, if an OPPL instruction removes an entity and
a later OPPL statement of an OPPL instruction needs to operate upon it, the
execution will fail, but the execution will continue with the next OPPL state-
ments of that OPPL instruction. Similarly, if a SELECT statement is unable to
select an entity, the rest of the OPPL statements in that OPPL instruction will
not be executed.

The parsing of the Manchester OWL Syntax expressions is made by the parser
provided by the OWL API, through the OPPLOWLManager, which returns an
OWLDescription object (from the OWL API) that is used to query the reasoner.
The user can choose which reasoner to use: Pellet14, FaCT++15 or any reasoner
via the DIG interface16. Errors are flagged at different levels: OPPL syntax,
reasoning, Manchester OWL syntax, OWL model changes, etc.

The OPPLInstructionManager is independent of the OPPL instructions provider,
which is anything that implements the OPPLInstructionsProvider interface. In

13 http://oppl.sourceforge.net/test.oppl
14 http://pellet.owldl.com/
15 http://owl.man.ac.uk/factplusplus/
16 http://dig.sourceforge.net/

the provided reference implementation the OPPL instructions provider is a flat
file parser (by convention, files with the suffix .oppl are used), but it would
be simple to program any other OPPL instructions provider (e.g. to include the
OPPLInstructionManager in another program). In the reference implementation,
.oppl flat files allow comments starting with hash (#) and the OPPL instruc-
tions are divided by white lines (the OPPL instructions can be multi-line). See
Fig. 3 for an example OPPL file.

Create object properties inmediately_precedes and inmediately_preceded_by

ADD ObjectProperty: inmediately_preceded_by;ADD functional;ADD
subPropertyOf preceded_by;
ADD domain CCO_U0000002;ADD range CCO_U0000002;

ADD ObjectProperty: inmediately_precedes;ADD functional;ADD
subPropertyOf precedes;ADD inverse inmediately_preceded_by;ADD domain
CCO_U0000002;ADD range CCO_U0000002;

Meiotic cell cycle: G1 -> S -> G2 -> M

SELECT Class: CCO_P0000327;ADD subClassOf inmediately_preceded_by some
CCO_P0000325;ADD subClassOf inmediately_precedes some CCO_P0000326;

OPPL file
<owl:Class rdf:about="http://www.cellcycleontology.org/ontology/owl
CCO#CCO_B0000000">
 <rdfs:label xml:lang="en">core cell cycle protein</rdfs:label>
 <oboInOwl:hasDefinition>
 <oboInOwl:Definition>
 <rdfs:label xml:lang="en">A protein </rdfs:label>
 <rdfs:subClassOf rdf:resource="http://www.cellcycleontology.org/ontology/owl/
CCO#CCO_U0000005"/>
</owl:Class>

OWL file

OPPL APPLICATION

OPPL Instructions Provider
(flat file parser)

OPPL OWL Manager (OWL API)

OPPL Instruction Manager

Instruction 1
Instruction 2
Instruction 3
Instruction 4

Instruction n

Reasoner

<owl:Class rdf:about="http://www.cellcycleontology.org/ontology/owl
CCO#CCO_B0000000">
 <rdfs:label xml:lang="en">core cell cycle protein</rdfs:label>
 <oboInOwl:hasDefinition>
 <oboInOwl:Definition>
 <rdfs:label xml:lang="en">A protein </rdfs:label>
 <rdfs:subClassOf rdf:resource="http://www.cellcycleontology.org/ontology/owl/
CCO#CCO_U0000005"/>
</owl:Class>

New OWL file

Error messages

Fig. 2. Simplified design of the current OPPL implementation.

In the reference implementation, the OPPL application is executed through
the command line: the path to the flat file with the OPPL instructions and the
path to the OWL ontology are passed as arguments.

Create object property inmediately_precedes

ADD ObjectProperty: inmediately_precedes;ADD functional;
ADD subPropertyOf precedes;ADD inverse inmediately_preceded_by;ADD domain
CCO_U0000002;ADD range CCO_U0000002;

Meiotic cell cycle: G1 -> S -> G2 -> M

SELECT Class: CCO_P0000327;ADD subClassOf inmediately_preceded_by some
CCO_P0000325;ADD subClassOf inmediately_precedes some CCO_P0000326;

Query 1: Proteins acting in the mitotic S phase (At)

ADD Class: query_1;ADD subClassOf query;REMOVE subClassOf Thing;
ADD comment "Proteins acting in the mitotic S phase";

SELECT subClassOf participates_in some (CCO_P0000014 or (part_of some
CCO_P0000014));ADD subClassOf query_1;

Fig. 3. An extract of an OPPL file applied to CCO.

4 Application on the Cell Cycle Ontology

The cell cycle is the process by which a new cell comes into existence and divides
into two cells, and all the steps in the middle. The cell cycle is a very important
research field of life sciences, as its malfunction is the cause of diseases such
as cancer. The Cell Cycle Ontology gathers the current scientific knowledge
about the cell cycle. This system composes five ontologies: an ontology for each
considered model organism (H. sapiens, S. cerevisiae, S. pombe and A. thaliana)
and a central ontology that includes the four ontologies plus relationships across
proteins from the different model organisms. An automatic pipeline retrieves and
manipulates data from different ontologies and databases that is finally included
into the ontologies, thus, the five ontologies are created anew each time the
pipeline is executed.

OPPL is used to add new axioms to the CCO ontologies. OPPL has been
chosen because it is very inefficient to manually add the axioms to five newly cre-
ated ontologies each time the pipeline is executed (they would be overwritten in
the next execution) and may also be error prone. Therefore, OPPL flat files have
been devised with some new enriching axioms17 and the OPPL reference imple-
mentation is executed as part of the pipeline, adding the axioms to each newly
created ontology (Fig. 3). The defined axioms can be regarded as independent
“modelling modules” or “modelling libraries” (e.g. Ontology Design Patterns18)
to be applied or re-used.

Using OPPL in CCO also means that the design decisions become explicit
(the rationale behind each added axiom is documented in the flat files via com-
ments) and flexible (OPPL instructions with very complex semantics can be

17 ftp://ftp.psb.ugent.be/pub/cco/oppl/cco.oppl
18 http://odps.sourceforge.net

tested and rejected/accepted by simply commenting/uncommenting lines on the
OPPL flat files). OPPL can also be used for querying; sample queries against
CCO are stored in OPPL flat files19 and executed via the OPPL reference im-
plementation (Fig. 3).

The fact that OPPL instructions could be applied on demand has eased the
development and maintenance of the Cell Cycle Ontology. CCO is automatically
built monthly which implies that a careful maintenance policy is needed, not only
for keeping suitable identifiers, but also for enriching the semantics via a pre-
defined set of OWL axioms. The implementation of that set of axioms as part
of the CCO automatic building pipeline by means of OPPL has demonstrated
many features of OPPL such as re-usability, modularity, and maintainability
while dealing with huge and complex ontologies such as CCO. Currently, CCO
has more than 54000 classes (more than 30000 proteins) which are connected by
about 10 different types of properties resulting in a relatively highly connected
network of concepts. Moreover, the file size of CCO composite ontology in OWL
is over 90 MB which clearly suggests the need for a suitable tool like OPPL for
modifying it automatically.

5 Conclusion

OPPL offers a straight-forward syntax for manipulating OWL ontologies. Using
OPPL ontologies can be manipulated in a repeatable manner (for example OPPL
complex instructions can be shared amongst users), and complex modelling can
be done in a one-step fashion (define the axioms once, apply many times); OPPL
increases the efficiency of ontology maintenance and makes development time
shorter. OPPL has been used in the development of the Cell Cycle Ontology
and has demonstrated its utility.

In a near future, the development of a Protégé plugin for enabling a user-
friendly development with OPPL is expected, with functionalities such as auto-
complete for writing OPPL instructions. In this way, the best of both paradigms
(normal access through graphical interface and access through OPPL instruc-
tions) will be available in ontology development.

Regarding the syntax, role chains, data types and dataproperty support will
be added. Regular expressions in class URIs will also be supported in the short
term. In a longer term, a BNF grammar (once the syntax has become stable)
and SWRL support are expected.

The provided OPPL Instruction Manager and reference implementation are
licensed under the LGPL20.

19 ftp://ftp.psb.ugent.be/pub/cco/oppl/cco.query.oppl
20 http://www.gnu.org/licenses/lgpl.html

Acknowledgements

Mikel Egaña is funded by the University of Manchester and EPSRC. Erick An-
tezana is funded by the European Science Foundation (ESF) for the activity
entitled “Frontiers of Functional Genomics”.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis,
A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver,
L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin,
G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet 25(1) (May 2000) 25–29

2. Ogren, P., Cohen, K., Acquaah-Mensah, G., J. Eberlein, L.H.: The Compositional
Structure of Gene Ontology Terms. In: Pacific Symposium on Biocomputing. Vol-
ume 9. (2004) 214–225

3. Egana, M., Wroe, C., Goble, C., Stevens, R.: In situ migration of handcrafted
ontologies to reason-able forms. Data and Knowledge Engineering, in press

4. Antezana, E., Tsiporkova, E., Mironov, V., Kuiper, M.: A cell-cycle knowledge
integration framework. In Leser, U., Naumann, F., Eckman, B.A., eds.: DILS.
Volume 4075 of Lecture Notes in Computer Science., Springer (2006) 19–34

5. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.H.:
The Manchester OWL Syntax. In: OWL: Experiences and Directions 2006 Athens,
Georgia, USA, November 10-11 2006. (2006)

