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Abstract

Providing input when solving a mathematical problem in a technology-enhanced
learning system is often a challenging task for a learner. Input editors either provide
clickable palettes to construct terms, or require knowledge of some linear syntax. To
alleviate this problem, the learning environment ActiveMath was extended with a
new interface supporting learners with providing a stepwise solution in the fraction
domain. The interface allows learners to insert intermediate steps using pre-defined
templates such as “The least common multiple of and is ”, where a blank
can be filled in using a dedicated simple input field. Developing similar interfaces
for other mathematical domains is labor intensive and error prone. In this article,
we investigate how the Ideas domain reasoners can be used to derive the necessary
information for the automatic generation of such templates, by making the structure
of domain rules explicit using OpenMath expressions.

1 Introduction

The question of how to design a user interface for interactive problem-solving is central
to technology-enhanced learning environments. Depending on the level of sophistication
of the system, the input mechanism for a learner ranges from a single blank field to input
a solution to carefully designed forms that can be considered to provide support by their
structure. Building such elaborate input templates is a tedious task, and requires a
thorough analysis of the domain and expertise in interface design. In the case of Angle,
a cognitive tutor for geometry [5], the interface is based on a specific cognitive model
for Euclidean geometry, which tightly binds it to this domain.

For mathematical domains involving formulæ, designing this interface becomes even
more delicate given the complexity of formula input per se. Although mathematical
input editors such as MathDox and Wiris are widely used, their application in learning
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environments still raises usability issues, as they typically require typing some linear
syntax, offer palettes for the construction of formulæ, or allow a combination of these
approaches. This places extraneous cognitive load [9] on the learner and can interfere
with the learning process. Alternative approaches, such as allowing drag-and-drop to
combine formulæ, were tried [6], but so far none were adopted. Formula input is not
only tedious for learners, but it also complicates evaluation for the underlying intelligent
tutoring system, which may have to deal with erroneous and incomplete input in addition
to the evaluation of the (intended) mathematical expression provided by the learner.

The user interface may also have a more general impact on the potential effective-
ness of a tutoring system. VanLehn [10] contrasted the impact of eight hypotheses that
potentially explain why human tutoring is more effective than tutoring by systems. Ac-
cording to his article, the two most promising hypotheses are that humans are superior
in scaffolding and giving feedback. He postulates that a major reason for the more effec-
tive use of feedback and scaffolding by human tutors is their management of interaction
granularity, which VanLehn defines as “the amount of reasoning required of participants
between opportunities to interact”. This leads to the Interaction Granularity Hypoth-
esis: the smaller the tutoring system’s interaction granularity, the higher its potential
effectiveness. This has an impact on the interface design of systems supporting problem-
solving. In order to support small interaction granularity, the level of detail at which
the learner inputs a solution also needs to be refined.

We have developed an interface for stepwise input of problem solutions based on
templates that embody general methods used in that domain (e.g. expansion of frac-
tions for fraction problems), which we describe in more detail in Section 2. While the
templates are domain-specific, the approach of decomposing a problem into sub-steps is
more general and should at least transfer to domains with an algorithmic character. In
Section 3, we characterize the essence of sub-steps in our interface. After introducing
the Ideas domain reasoners in Section 4, we present an example of automatic sub-step
extraction. Finally, we discuss problems we encountered and raise questions for future
work.

2 Steps interface

The Steps interface is part of the web-based intelligent learning environment Active-
Math [7]. It is designed in such a way that a learner can freely construct her own
solution path for a problem [1]. The Steps interface has been implemented for the do-
main of fraction addition exercises. Figure 1 shows a screenshot of the Steps interface
during the problem-solving process. In the remainder of this section, we will describe
features as implemented in the fraction domain.

When an exercise is started, a learner is presented with a single input blank that
can be used to supply the overall solution. The basic idea is that the learner inserts as
many steps as she needs using an interactive element referred to as a line, which allows
the manipulation of intermediate steps. A line consists of a drop-down menu from which
the learner selects a description of the intention of the step. The menu-items are the
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Figure 1: A Steps exercise in progress

operations that are relevant in fraction-addition problems: expand, reduce, find prime
factors, find common denominator, compute inverse, transform, add, subtract, multiply,
divide, find least common multiple, and find greatest common divisor. After selecting
an operation, a corresponding template to be filled in by the learner is inserted in the
line. For instance, if the learner chooses expand fraction, she will get the template “
expanded by is ”, as shown in Figure 1. Steps are added or removed by clicking on
the corresponding buttons on the right.

This approach decouples the learner’s intention (e.g., expanding a fraction) from
the actual execution (e.g., computing the expansion step) and eliminates the need for
heuristics to guess what the learner is trying to achieve. The separation of intention and
execution is useful for the system to interpret the learner’s input. In addition, by the
introduction of sub-steps, the complexity of input to be entered in one single blank can
be reduced (e.g., 2+3=5 vs. 2 + 3 = 5 ). We replaced the complex input editor
usually available in ActiveMath with a dedicated light-weight textfield replacement
supporting input of numbers, basic arithmetic operations as well as fraction input.

3 What’s in a template?

A template represents the application of a domain method. It has a descriptive name
(such as add) which is displayed in the drop-down menu. The representation of the
template consists of a formula or text interspersed with blanks to be filled in by the
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learner. This simple format supports the learner at multiple levels by pre-structuring
the input format.

A template contains structural information about the represented method. The add

template, for instance, is + = , which makes it easy to identify summands and
the result. Making the + explicit in the template structure gives away that an addition
term should contain a + symbol, which in this case is a trivial fact. Distributing the
input of the addition term over two blanks reduces the chances of learners struggling
with typing mistakes. Still, one has to be careful with the amount of guidance offered by
structural help. It can be tempting to create templates that do more than just making
input more comfortable or interpretable. The following template for one of de Morgan’s
laws can certainly be considered as a form of scaffolding for a learner who is not familiar
with it, but might not be appropriate in all situations: ¬( ∧ ) = ∨ .

Another more subtle form of structural support is obtained by offering a particular
input editor to the learner to fill in a blank. A template, in addition to making structure
explicit by means of showing blanks, also contains implicit knowledge about the type of
input that is expected. In the template “ expanded by is ”, it is relatively clear that
the first and last blanks should be filled in with fractions, while the second blank should
be filled in with a number. This type information can guide instantiation of the blanks:
blanks expecting numeric input could be rendered with a very simple input editor, while
a blank in a derivative exercise to be filled in with an elaborate function expression could
be rendered using a palette-based editor such as WIRIS OM1.

A template also embodies a certain step granularity. Consider the task of solving a
quadratic equation. We could have a single template for the application of the quadratic
formula, representing an equivalence with the equation on its left-hand side and the
solution set on the right-hand side. An alternative to such a template for a big step could
be to define additional templates for the sub-steps of applying the quadratic formula: (i)
identification of a, b, and c, (ii) computation of the discriminant ∆, and (iii) specification
of solutions. In this way, sets of templates can be used to allow a learner to work
on different levels of granularity. Adding templates for algebraic manipulations to the
example above would further expand a learner’s freedom by allowing the usage of various
strategies (e.g., clever factorization).

Templates do not only support learners, they also enable fine-grained diagnostics in
the system. A template filled by the learner carries valuable information, such as the
intention of the learner, derived from the selection of the template, and the instantiation
of the domain method, derived by the filled in blanks. More elaborate information such
as correctness, applicability conditions, and strategic cleverness could be computed from
the template by domain reasoners.

4 Rewrite strategies, rules, and canonical forms

The Ideas domain reasoners are constructed around rewrite strategies [4] that specify
how an exercise can be solved incrementally. A strategy calculates which rule should be

1http://www.wiris.com
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applied (and how) to solve an exercise, and traces steps submitted by learners. Feedback
is calculated automatically from a rewrite strategy and the set of rules that are supported
by the domain.

The granularity of steps is an important design consideration in a domain reasoner.
The compositional specification of strategies allows for coarse-grained steps that combine
several rules. For fine-grained steps, views [2] are used in the rules. A view defines a
canonical form and can be used for matching and normalizing expressions. Consider for
example the expression 2(x + 3) and the rewrite rule a(b + c) → ab + ac. A view for
calculating with natural numbers could take care of the implicit calculation 2 · 3 = 6,
and turn 2(x + 3) into 2x + 6 after distribution. Another view based on the algebraic
law a − b = a + (−b) would help to also let the distribution rule work on 2(x − 3) by
matching the rewrite rule’s + symbol in a more liberal way.

Consider the exercise to compute 2
7 + 1

2 from Figure 1. The worked-out solution
generated by the fractions domain reasoner for this exercise is:

2
7 + 1

2
= {expand by 2}

4
14 + 1

2
= {expand by 7}

4
14 + 7

14
= {add fractions}

11
14

The derivation does not show that the domain reasoner starts with an implicit step
that computes the least common multiple of the denominators. This multiple is then
used for determining how to expand both fractions. The rewrite rule for expansion,
a
b →

ac
bc with c 6= 0, is parameterized over the expansion factor (meta-variable c) since it

does not appear on the rule’s left-hand side. The rewrite rule for adding two fractions,
a
c + b

c = a+b
c , also performs the addition of two numbers in the numerator.

5 Generation of templates based on Ideas

The derivations generated by Ideas and the structured solutions that can be produced
using Steps share similar characteristics. We postulate that this similarity can be
exploited to generate domain-specific templates for the Steps interface from Ideas
semi-automatically, and even fully automatically for certain domains. In the remainder
of this section, we propose an approach to extract templates from a simple domain
reasoner for fractions. We first reconsider a part of the fraction example from Figure 1
and make the ingredients of templates more explicit. The template used in the first line
contains information about the semantics of the step. It represents the application of
expansion of fractions to two arguments, and establishes an equality statement between
this and the result (the third argument). In addition, it constrains the input by using
our simple input editor for numerical input to fill in the blanks.

We represent a template as an OpenMath object. The OpenMath standard is a
suitable choice for exchanging information about templates, as it allows us to express
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<template name="Find LCM">

<typemap>

<typeof varname="a" typename="Integer">

<typeof varname="b" typename="Integer">

<typeof varname="c" typename="Integer">

</typemap>

<OMOBJ>

<OMA>

<OMS cd="relation1" name="eq" />

<OMA>

<OMS cd="arith1" name="lcm" />

<OMV name="a" />

<OMV name="b" />

</OMA>

<OMV name="c" />

</OMA>

</OMOBJ>

</template>

Figure 2: Representation of the Find LCM template with OpenMath

the semantics of the template, and, if necessary, to define new symbols that can be
used to convey the intended meaning of a template. Figure 2 shows the OpenMath
representation of a template for finding the least common multiple.

The OpenMath object in Figure 2 represents the equation lcm(a, b) = c. To obtain
a template, the variables in this equation are replaced by blanks. The variable names
can also be used to identify the blanks in further communication between the learn-
ing environment and the domain reasoner, for instance to provide feedback about the
correctness of the blanks filled in by the learner. Information about the types of the
variables is stored in a type map, which is used for selecting the input editors for the
blanks.

The rewrite rules of Ideas can already be represented as Formal Mathematical Prop-
erties (FMPs) in OpenMath [3], and thus it is relatively easy to also let the domain
reasoners support the automatic generation of templates. For example, the rewrite rules
for finding the least common multiple and expansion are defined as follows:

lcmRule :: RewriteRule Expr

lcmRule = describe "Find LCM" $ makeRewriteRule "findlcm" $

\a b -> lcm a b :~> lcm’ a b

expandRule :: RewriteRule Expr

expandRule = describe "Expand by" $ makeRewriteRule "expand" $

\a b c -> expand (a / b) c :~> (a *! c) / (b *! c)

These definitions make use of a Haskell library for datatype-generic rewriting in Haskell [8].
The meta-variables of the rewrite rules are represented as lambda-bound variables in the
host language. The rewrite rules contain OpenMath symbols for the operations in the
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fraction domain (e.g., function lcm for the application of the symbol arith1.lcm), but
also symbols representing calculations (lcm’ and operator *! for multiplication). In fact,
the XML template shown in Figure 2 can be generated from the definition of lcmRule,
with 1 and 0 as the default depths for replacing subexpressions by blanks in the left-
hand side and right-hand side, respectively. The type map is computed from the type
signatures of the operations.

Because precise control over the granularity in the generated templates is needed,
we expect that adding annotations cannot be fully avoided. Hence, template generation
will be semi-automatic. The domain reasoners are extended with the new ruletemplate
service that given a rule returns a template.

To render the OpenMath-based template representation as Steps templates in the
User Interface, we replace the previously hard-coded templates by a call to a new ser-
vice providing a list of available templates. This list is obtained by parsing template
descriptions as returned by the ruletemplate service. Labels are extracted from the name

attribute of the top-level template tag.
The current implementation assumes to find the application of relation1/eq at the

top level of the OpenMath expression to identify left- and right-hand sides. For each
of these expressions, OpenMath symbols are presented using pre-authored presentations
encoded in the system. OMVs are transformed to blank placeholders containing type
information extracted from the typemap. When the template is finally requested for
presentation, these placeholders for blanks are replaced by the actual HTML/JavaScript
code for the required mathematical input editor.

6 Conclusion

In this paper we have discussed domain-specific templates for supporting the input of
intermediate steps in mathematical exercises, and how these templates can be generated
semi-automatically from rule specifications in the Ideas domain reasoners. The genera-
tion of templates is based on the close correspondence between the explicit rewrite rules
and the implicit calculations in the domain reasoner on the one hand, and the small in-
teraction granularity in the Steps interface on the other hand. The canonical forms that
are used in the domain reasoner’s rewrite rules can provide enough information about
the structure of the templates, as well as the types of the blanks. We have proposed a
representation for templates based on the OpenMath standard.

In the future we want to explore whether automatically generated templates provid-
ing various levels of structural support can be used for adaptive scaffolding purposes.
This could be particularly useful for domains involving term rewriting such as algebraic
manipulation of mathematical expressions. We also want to investigate how we can make
the tree structure underlying many problem-solving processes more explicit. Another
line of research we will follow will focus on using domain reasoners to interpret learner in-
put. Templates extracted from the domain reasoners contain enough information to run
fine-grained diagnostics which will allow precise identification of the learner’s problems.

Finally, we will investigate how blank locations and types at suitable granularity
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levels can be automatically derived from rewrite rules and rewrite strategies in existing
domain reasoners.
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