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Abstract

The level of abstraction of much of the work in
knowledge-based systems (the rule, frame, logic level)
is too low to provide a rich enough vocabulary for
knowledge and control. | provide an overview of a
framework called the Generic Task approach that
proposes that knowledge systems should be built out
of building blocks, each of which is appropriate for a
basic type of problem solving. Each generic task uses
forms of knowledge and control strategies that are

characteristic to it, and are generally conceptually
closer to domain knowledge. This facilitates
knowledge acquisition, and can produce a more

perspicuous explanation of problem solving. The
relationship of the constructs at the generic task level
to the rule-frame level is analogous to that between
high level programming languages and assembly

languages. 1 describe a set of generic tasks that have

been found particularly useful in constructing
diagnostic, design and planning systems; diagnostic
reasoning is used to illustrate the approach. 1

describe the Generic Task Toolset for constructing
knowledge systems, which embodies the Generic Task
approach. | conclude with the implications of this

approach for the functional architecture of intelligence.

1. Overview of the Paper

The first part of the paper is a critique of the
level of abstraction in much of the current discussion
on knowledge-based systems. It will be argued that
the level of rules-logic-frames-networks is inappropriate
for discussing many issues of knowledge organization
instead the level of

and control. We advocate

abstraction associated with the language of generic

tasks, types of knowledge, and types of control
strategies.
Following this | will outline the elements of a

framework for the design of knowledge-based systems
that we have been developing in our laboratory over
the last knowledge-based
reasoning tasks can often be decomposed into a
generic  tasks, each associated with certain
types of knowledge and a family of control  strategies.
At each stage in the reasoning, the system will engage
generic tasks, depending upon the
knowledge available and the state of problem solving.
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Diagnostic reasoning will be wused to illustrate the

application of these ideas. I will discuss the
advantages of this approach for knowledge acquisition,
knowledge representation, control of problem solving,
and explanation. These advantages are made possible
by the richer vocabulary in terms of which knowledge

and control are represented for each task.

| then describe how the above approach Ileads
naturally to a new technology: a toolset which helps
higher level
1 will review the toolset, and discuss
Finally, |

discuss what this approach entails for the architecture

one to build
building blocks.
the advantages that accrue from its use.

expert systems by using

of intelligence, and discuss a number of related

theoretical issues.

These ideas have evolved over the years as a result
of work in diagnostic and design problem solving. A
number of earlier publications (Chandrasekaran 1983,
1984, 1986) trace the development of the ideas.

2. Critique of Uniform Architectures
Knowledge representation has been a major concern

of Al, in particular and quite naturally, for
knowledge-based problem solving (or "expert
systems”). The general assumption, and consequently

the methodology, has been that there is something
called domain knowledge that needs to be acquired—
quite independent of the problems one might wish to

solve—and that the role of the knowledge
representation formalism is to help encode it. Logics
of various kinds, rule-based languages and frame

representations have been three popular kinds of
proposals for knowledge representation. Each of these
representations has a natural family of inference
mechanisms that can operate on it. Each of the
knowledge representations, along with an
scheme that is appropriate  for it, defines an

inference
architecture. When the inference scheme is fixed, the
representation formalism is also said to provide a shell
for inserting knowledge.

These architectures (with relatively small additions,
if needed) are computationally universal. Thus the
important point about building knowledge systems
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with them is not whether a task can be performed,

but whether they offer knowledge and control
constructs that are natural to the task. All of these
(and other similar) languages fall short when one

considers tasks of some complexity such as planning or
diagnosis.

2.1. Lack of Expressiveness for Higher Level Tasks
The level of abstraction of these languages obscures
the essential nature of the information processing that
is needed for the performance of higher level tasks.
They are like knowledge system assembly languages,
rather than programming languages with constructs for

capturing the essence of the information processing
phenomena.
Intuitively one thinks that there are types of

knowledge and control strategies that are common to
diagnostic reasoning in different domains, and similarly
that there are common structures and strategies for,
say, design as a cognitive activity; but that the
structures and control strategies for diagnostic
reasoning and design problem solving will generally be

different. However, when one looks at the formalisms
(or equivalently the languages) that are commonly
used in expert system design, the knowledge

representation and control strategies do not typically
capture these distinctions. For example in diagnostic
reasoning one might generically wish to speak in terms
of malfunction hierarchies, rule-out strategies, setting
up a differential, etc., while for design the generic
terms might be device/component hierarchies, design
plans, ordering of subtasks, etc. Ideally one would
like to represent diagnostic knowledge in a domain by
using the vocabulary that is appropriate for the task,
but the languages in which the expert systems have
been implemented have sought uniformity across tasks,
and thus have had to lose perspicuity  of
representation at the task level.

In addition, the control strategies that these
languages come with (such as forward or backward
chaining for rule systems) do not explicitly indicate
the real control structure of a task that a problem
solver is performing. For example, the fact that RI
(McDermott 1982) performs a linear sequence of
subtasks as a way of performing its design task is not
explicitly encoded. This task-specific control structure
is "encrypted" and hence invisible at the level of the
pattern-matching control of OPSS5. The knowledge
base of a system that is built in one of these
architectures ends up accumulating a large number of
programming devices as if they were part of domain
knowledge. This detracts from the modularity of
domain knowledge, since debugging a piece of
knowledge involves studying the interaction between
domain knowledge and the task as mediated by the
implicit programming knowledge in the knowledge
base.
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2.2. Artifactual versus Real Issues

Because of the mismatch between architecture and
information processing task, control issues arise that
are artifacts of the architecture, but are often
misinterpreted as issues having to do with control at
the task level. For example rule-based approaches
often concern themselves with conflict resolution
strategies. Yet if the knowledge were viewed at a
different level, one can often abstract organizations of
knowledge that only a small, highly relevant body of
knowledge is brought up, without any need for conflict
resolution at all. In many rule-based systems, these
organizational constructs can be "programmed" in the
rule language by the use of context setting rules and
metarules, but because the rules and metarules, per se,
have been considered to be knowledge-level phenomena
(as opposed to the implementation-level phenomena,
which they often are), knowledge acquisition has often
been directed towards strategies for conflict resolution,
when they ought to be directed to issues of knowledge
organization.

In  sum, these architectures, by encouraging
knowledge acquisition and representation at a level far
removed from the organization and control of a task,
create barriers in building understandable, modifiable
knowledge systems.

3. Generic Tasks

Our work is based an alternative view, viz.,, that
knowledge representation and use cannot be separated
(Gomez and Chandrasekaran  1981). That s,
knowledge should be in different forms, depending
upon the type of function for which it is used. By
"use" | do not mean a highly domain-specific thing
such as, "This piece of knowledge will be useful in the
treatment of cancer,” but a more generic problem
solving use that can be applied to a variety of
domains. The following information specifies the
generic task abstractly.

* The function of the task. What type of problem
does it solve? What is the nature of the
information that it takes as input, and produces
as output?

« The representation and organization of knowledge.
What are the primitive terms in which the forms
of knowledge needed for the task can be
represented? How should knowledge be
organized and structured for that task?

« The control strategy. What control strategy
(inference  strategy) can be applied to the
knowledge to accomplish the function of the

generic task?

3.1. Generic Tasks and Generic Task Problem Solvers

In order to understand how problem solvers are
built using generic tasks, we can think of a task
specification in accordance with the above as a virtual
specification of a shell. When domain knowledge is



encoded using the primitive terms, organization and
structure that are specified for the task, and then
combined with the inference strategy that comes with
the task, we have a generic task problem solver. The
totality of domain knowledge is distributed among a
number of such problem solving modules, representing
a variety of generic tasks. Thus a Generic Task
problem solver is not merely an information processing
strategy: it is a inference strategy that uses knowledge
to solve parts of the problem. The interaction
between modules is based on their information needs
and functions: a module which needs information of a
certain type gets it from a module whose function
matches it.

4. Generic Tasks in Diagnostic Reasoning

The motivation in our work on diagnosis is to
make a connection between diagnostic problem solving,
and the general properties  of intelligence as
information processing strategies. | will now describe
a functional architecture approach to performing
diagnosis, which uses and integrates information
provided by a number of generic problem solvers.
This approach originated with the MDX system
(Chandrasekaran and Mittal 1983), and has been
refined in the construction of the RED system (Smith
et al. 1985, Josephson et al. 1987].

Let us view diagnostic problem solving as a task in
which the goal is to explain a set of observations of a
system. The explanation is to be in terms of
malfunctions that may have caused the observations.
Since the malfunctions can interact in a number of
ways, the problem solver has to produce a set of
malfunction hypotheses that explain all the data
without including unnecessary hypotheses and also
taking into account the possible interactions between
hypotheses.

Let us consider domains satisfying the following
properties:

available in the form  of
hierarchies mirroring the
relationship among the

1. Knowledge is
malfunction
class/subclass
malfunctions.

2. Given a typical observation, only a relatively

small subset of these malfunctions could be
implicated. Also interactions between
malfunctions with respect to an observation are
limited.

Property 2 requires that sufficient variety of

observations are available from several parts of the
system to substantially disambiguate the diagnostic
situation.  This property holds true in medicine and
in a number of mechanical domains. De Kleer's work
on diagnosing multiple malfunctions (de Kleer and
Williams  1986) involves a situation where the
worst-case assumptions about interactions apply. In
those domains, such as digital circuits, Property 2
does not hold.

The knowledge available in domains satisfying these
properties makes possible a decomposition of problem
solving into two submodules: a hierarchical classifier
which uses the hierarchy to select a small set of
plausible malfunctions, and an abductive assembler that
uses a subset of these hypotheses to make a composite
that provides a coherent and parsimonious explanation
of data. The malfunction hierarchy has more general
classes of malfunctions in its higher level nodes and
more specialized ones as their successors, e.g, "Liver"
has as a successor, "hepatitis." The forms of
knowledge for the former module use terms in which
hierarchies are described, while the forms of knowledge
for the latter module deal with interactions among the
hypotheses. | will describe the problem solving
behavior of these and other modules in a rather
oversimplified manner. References are given where
details can be found.

Gomez (Gomez and Chandrsekaran 1981) proposed
hierarchical classification as a core process in medical
diagnosis, and investigated the inference methods
useful for that task. The inference mechanism for
hierarchical classification can be thought of as
variations on the strategy of establish-refine, i.e., the
hypothesis space is explored top down, by attempting

to establish the top level hypotheses first. When a
hypothesis is ruled out, all its more specialized
successors can also be ruled out, while if it is
established, the conclusion can be refined by

considering its successors. This process can be
repeated until a number of terminal nodes of the
hierarchy are established. This process can be
expected to produce a small number of highly

plausible hypotheses, each of which explains a portion
of the data.

Josephson et al., (Josephson et al. 1987) have
investigated the inference method needed for abductive

assembly. It can be thought of as a means-ends
process, driven by the need to explain the most
significant unexplained observation at any stage of

problem solving. As hypotheses are accumulated to
explain the significant observations, the composites are
critiqued for redundancy, logical compatibility and so
on. Driven by these criteria, a coherent collection of
hypotheses that best explain the data is made.

Returning to the classification process, domain
knowledge is required to establish or reject each of the
hypotheses in the hierarchy. What is needed is a way
to decide how well a hypothesis fits a set of
observations. This function can be accomplished in a
number of ways in different domains depending upon
what kind of domain knowledge is available.

A generic strategy called hypothesis matching
(Chandrasekaran et al. 1982, Chandrasekaran 1983) or
structured matching (Bylander and Johnson 1987) is
useful in a number of domains for performing this
function. We can build up a hierarchy of abstractions
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from the data to the hypothesis. For example, given
the hypothesis, "Liver disease," one way to decide on
the degree of fit between the data and the hypothesis
is first to see how the data match the intermediate
abstractions, "Chemical test evidence," "physical
evidence," and "historical evidence." Each of the
abstractions will normally involve a subset of the data
applicable to Liver as a whole. Each step in the
abstractions can be computed by pattern matching,
and the values passed up for further matching. This
pattern matching is actually implemented in our work
as tables analogous to Samuel's Signature Tables
(Samuel 1967), but the details are not important for
the current discussion. For each of the hypotheses in
the hierarchy, a structured matcher can be built using
the scheme.

The matcher requires values for specific data items.
In the above example, data relevant to a decision

about "historical evidence" might be "evidence of
exposure to anesthetics?", or "fever responds to
drugs?". In the first example, the associated database

might have the information that the patient had
undergone major surgery a few days earlier, and in

the latter, the data base may have the complete
information about the patients prescriptions and
temperatures. In either case, the needed information

can be obtained by making appropriate inferences from
domain knowledge: about the relationship between
anesthetics and surgery in the first example, and some
complex processing of raw data to make the
abstraction about fever response in the latter. Thus
there is need for an inferencing database to make the
necessary data abstractions. I will not go into the
details of the representation and inference control here,
save to note that they are different from the
representation and inference for the other problem
solvers: hierarchical classification, abductive assembly
and structured matching. Mittal (Mittal tt al. 1984)
recognized the inferencing database as an important
component generic activity in the design of MDX.

The overall problem solving for diagnosis can now
be traced as follows. The hierarchical classifier's
problem solving activity proceeds top down, and for
each hypothesis that is considered, the structured
matcher for that hypothesis is invoked for information
about the degree of fit with the data. The structured
matcher turns to the inferencing database for
information about the data items that it is interested
in. The database completes its reasoning and passes
on the needed information to the structured matcher.
After acquiring all the needed data from the database
in a similar fashion, the structured matcher completes
its matching activity for that hypothesis and returns
that value of the match to the classifier, along with
the data that the hypothesis can explain. The
classifier's activity now proceeds along the lines of its
control strategy: i.e., it either rules out the hypothesis,
or establishes it and pursues the successors. This
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process of each problem solver invoking other problem
solvers who can provide the information needed for
the performance of its own task is repeated until the
classifier concludes with a number of high plausibility
hypotheses, and information about what each of them
can explain. At this point, the abductive assembler
takes over and proceeds to construct the composite
explanatory hypothesis for the problem.

These are not the only problem solvers that could
be useful for diagnosis, of course. Additional problem
solvers with their own types of knowledge and control
can be helpful. If the classificatory structure or the
structured matcher is incomplete in its knowledge,
case-based reasoners (Kolodner and Simpson 1986), or
deeper domain models such as qualitative reasoners
and  functional reasoners (Sembugamoorthy  and
Chandrasekaran 1986) can be invoked. MDX2
(Sticklen 1987) is an example of a diagnostic system
whose classifier interacts with a cognitive deep model
of parts of its domain for obtaining information about
the relationship between observations and hypotheses.

The four generic tasks that we have just described
(hierarchical classification, abductive assembly,
structured matching, and database inference) are all
distinct: the knowledge representation and inference
method for each is distinctly different. They are also
generic in the sense that each could be used by any
other problem solver needing its functionality in that
domain.

The description that | just gave of problem solving
omits many of the subtleties in the inference strategies
of each of the problem solvers, since my aim was to
introduce the methodology rather than present the
complete theory of diagnosis. However, the following
additional points are relevant since they refer to the
important role played by the generic task architecture.

1. The interaction between the abductive assembler
and the classifier may be much more dynamic,
where the refinement of medium confidence
hypotheses in the classificatory structure can be
done at the command of the assembler, which is
looking for hypotheses to explain some
unexplained data.

2. The control of classificatory behavior in the
presence of additive and subtractive observations
can be complicated. For these and other
complexities in control of classification problem
solving, see (Sticklen t al.  1985).

3. Multiple and tangled hierarchies can be
incorporated as is being done in MDX2 (Sticklen
1987). Since a particular hypothesis can occur
in more than one hierarchy, that is, it can be
classified according to more than one perspective,
the restriction of the hierarchies to tree
structures is not burdensome or unnatural.



4. Because of the property that for each
observation, only a small number of malfunctions
at each level of the hierarchy can be implicated,
multiple malfunctions are a natural for this
architecture. Interactions are allowed as long as
they can be reasoned about during classification
(Gomez and Chandrasekaran 1981) and assembly

within the general assumption of
near-independence.
5. Test ordering and data validation: In the

description of the approach | have assumed that
all the data are available. However, the
architecture makes it easy to focus the test
ordering decisions in a natural way. For each
hypothesis knowledge is available about what
tests are wuseful for it to be established or
rejected, and as mentioned in 2 above the
assembler can propose that hypotheses which
were not strongly enough established for
refinement be refined further in the interests of
explaining remaining observations. This may
actually call for additional tests to establish or
reject the successors. Also, the assembler will
often be able to identify equally plausible, but
alternative, hypotheses. In order to resolve
them, additional tests may be necessary. This
architecture makes possible test ordering that can
be driven by the goals of each of the tasks.

The localization of goals and knowledge that is
helpful in test ordering can also be employed to
provide a form of know ledge-based sensor
validation, since sensors that conflict in their
contribution to a hypothesis can be located and
critiqued. See (Chandrasekaran and Punch 1987)
for further details.

4.1. The Fallacy of Surface Phenominalism

If one were to look at the behavior of the
diagnostic  system described above, without any
awareness of its internal architecture of generic tasks,
almost all of the standard architectures could be
ascribed to it, depending upon the level of abstraction
at which the behavior is observed. As the hypothesis
matcher is working through the hierarchical
abstraction, it would appear to be a rule processor
using evidences on the antecedent side to reach a
conclusion about the intermediate abstractions or the
hypothesis. At this level it would also appear to be a
data-directed activity. At the classifier level, the
system may seem to be a frame system moving from
hypothesis concept to hypothesis concept. At this
level it would appear to be a hypothesis-directed
activity. The term ‘“the fallacy of surface
phenominalism" refers to the pitfalls that are possible
in going from external problem solving behavior, such
as protocols of human experts, directly to an
architecture.

5. Conceptualization and Design of the

Generic Task Toolset

Each of the generic tasks can be used as a
programming technique within a more general
programming language like LISP, PROLOG, or OPSS5.
However, this does not prevent an knowledge engineer
from going outside the boundaries of a generic task.
These bounds are important to specify because they
ensure that the advantages of generic tasks will be
maintained. One natural way to do this is to
implement a software tool for each generic task to be
used in a general programming environment. Such
tools also provide an empirical means for testing the
clarity of these ideas and the usefulness of the
approach in actual systems.

We have been motivated by the problems of
diagnosis, design and planning in developing our
toolset. In addition to the generic tasks that were
described in connection with the diagnosis, we have

found two other generic tasks very useful for our
purposes: object synthesis using plan selection and
refinement (Brown and Chandrasekaran 1986) for
certain classes of design problems, and @ state

abstraction (Chandrasekaran 1983) for certain types of
prediction of system-level consequences as a result of
state changes to subsystems. Due to space limitations,
| do not describe them here.

For each generic task, we have developed a tool
that can encode the problem solving and knowledge
that is appropriate for the task. Below is a list of
the tools that correspond to the generic tasks that we
have studied: CSRL (Conceptual Structures
Representation Language) is the tool for hierarchical
classification (Bylander and Mittal 1986); DSPL
(Design Specialists and Plans Language) is the tool for
object synthesis using plan selection and refinement
(Brown and Chandrasekaran 1986); ID  ABLE
(Intelligent DAta Base LanguagE) is the tool for
knowledge-directed information passing (Sticklen 1983);
HYPER (HYPothesis matchER) is the tool for
hypothesis matching (Johnson and Josephson 1986);
PEIRCE (named after the philosopher C. S. Peirce) is
the tool for abductive assembly of hypotheses (Punch
et al. 1986); and WW HI (What Will Happen If) is the
tool for state abstraction.

The tools are intended to ensure the following
advantages of the generic tasks:

»  Multiformity. The more traditional architectures
for the construction of knowledge based systems
emphasize the advantages of uniformity of
representation and inference. However, in spite
of the advantage of simplicity, we argued earlier
that uniformity results in a level of abstraction
problem. A uniform representation cannot
capture important distinctions between different
kinds of knowledge-use needs. A uniform
inference engine does not provide different control
structures for different kinds of problems.
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The generic task approach provides multiformity.
Each generic task provides a different way to
organize and wuse knowledge. The knowledge
engineer can choose which generic task is the
best for performing a particular function, or can
use different generic tasks for performing the
Different problems can use
different generic tasks and different combinations
of generic tasks.

same function.

* Modularity. A knowledge-based system can be
designed by making a functional decomposition of
its intended problem solving into several
cooperating generic tasks, as illustrated in our
discussion on diagnosis. Each generic task
provides a way to decompose a particular
function into its conceptual parts, e.g., the

categories for hierarchical classification, and
allows domain knowledge of other forms to be
inserted into a generic task, e.g., evidence
combination knowledge in hierarchical
classification (Sticklen 1987). Each generic task
localizes the knowledge that is used to satisfy

local goals.

* Knowledge  Acquisition. Each generic task is
associated with its own knowledge acquisition
strategy for building an efficient problem solver

(Bylander and Chandrasekaran 1987). For
example in hierarchical classification, the
knowledge engineer needs to find out what

specific categories should be contained in the
classification hierarchy and what general
categories provide the most leverage for the
establish-refine strategy.

« Explanation. This
providing

approach
explanations of

directly helps in
problem solving in
expert systems in two important ways: how the
data match local goals and how the control
strategy operates (Chandrasekaran et al 1987).
Also, the control strategy of each generic task is
specific enough for generating explanations of
why the problem solver chose to evaluate or not
to evaluate a piece of knowledge. This is
because of the higher level of abstraction in
which control is specified for generic tasks.

« Exploiting
Inference.

Interaction between Knowledge and

Rather than trying to separate
knowledge from its use, each generic task
specifically integrates a particular way of
representing knowledge with a particular way of
using knowledge. This allows the attention of
the knowledge engineer to be
representing and organizing knowledge for
performing problem solving.

focused on

» Tractability.
generic task generally provides tractable problem
solving (Allemang et al. 1987, Goel et al 1987).
(One major

Under reasonable assumptions, each

exception is abductive assembly,
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which  can become intractable under certain
conditions, making it hard then for humans and
machines to perform the task.) The main
reasons why they are tractable are that a
problem can be decomposed into small, efficient
units, and knowledge can be organized to take

care of combinatorial interactions in advance.

It should be noted that these advantages are
attained at the cost of generality. Each generic task
is purposely constrained to perform a limited type of
problem solving and requires the availability of
appropriate domain knowledge.

The Generic Task toolset is implemented as a
collection of specialists interact by passing
messages for control and information exchange. This
is a natural implementation at the level of generic
tasks. As is turns out, the problem solving activities
generic task problem solver  are also
implemented in our toolset as a collection of
specialists; e.g., within the hierarchical classifier, each
of the classificatory hypotheses is a problem solving
module in its own right.

which

within a

How the different generic problem solvers interact
is an active research issue. The current theory and
the toolset are based on each of the problem solvers
explicitly invoking another problem solver for needed
information. | believe that a more attractive
long-term approach would be one where the problem
solver broadcasts the need for some information, and
other problem solvers which can deliver the
information respond to the request. This reduces the
degree of explicitness needed at system design time.
This also increases the possibility that a piece of
added

system will be able to contribute its problem solving

knowledge or a module somewhere in the
power without the designer needing to foresee this

possibility.

5.1. Abstract Representation of Control:

It is often stated that using rule-based approaches
makes it possible to have control knowledge explicitly
represented as collections of rules. This declarative
form of representation of control is said to help in
reasoning about, modifying or explaining the control
behavior of the system.

The GT problem solvers are active agents. Thus
it might appear that the advantages of explicitness of
control may be lost in the approach. As it turns out,
the control strategies associated with each of the
generic task architectures are implemented as a family
of message types. The user can modify them within
limits permissible for each generic task and the
explanation generation system uses the content of the
messages directly in its description of the control
behavior. The fact that the messages have both a
procedural content to them as well as a declarative
representation gives them all the
abstract representation of control.

advantages of



6. Generic Tasks and Other Use-Specific
Architectures
In the late 70's, when we embarked on this line of

research — characterised by an attempt to identify
generic tasks and the forms knowledge and control
required to perform them — the dominant paradigms

in knowledge-based systems were rule and frame type
architectures. While our work on use-specific
architectures was evolving, dissatisfaction at the
limited vocabulary of tasks that these architectures
were offering was growing at other research centers.
Clancey in particular noted the need for specifying the
information processing involved by using a vocabulary
of higher level tasks. Task-level architectures have
been gathering momentum lately: McDermott and his
coworkers (Marcus and McDermott 1987) have built
SALT, a shell for a class of design problems, where

critiquing proposed designs by checking for
constraint-violations is applicable. Clancey (Clancey
1985) has proposed a shell called Heracles which
incorporates a strategy for diagnosis: he calls it
heuristic  classification. Bennett (Bennett  1986)
presents COAST, a shell for the design of

configuration problem solving systems. Gruber and
Cohen (Gruber and Cohen 1987) offer a system called
MUM for managing uncertainty and so on. All these
approaches share the basic thesis of our own work,
viz., the need for task-specific analyses and
architecture support for the task. However, there are
some differences in assumptions and methodology in
some cases that needs further discussion. Further,
once we identify task-level architectures as the issue
for highest leverage, then the immediate question is:
what is the criterion by which a task is deemed to be
not only generic but is appropriate for modularization
as an architecture? How about an architecture for the
generic task of "investment decisions"? Diagnosis?
Diagnosis of process control systems? Is uncertainty
management a task for which it will be useful to have
an architecture? Are we going to proliferate a chaos
of architectures without any real hope of reuse?
What are the possible relationship between these
architectures? Which of these architectures can be
built out of other architectures? | do not propose to
answer all these questions here, but they seem to be
the appropriate kinds of questions to ask when one
moves away from the comfort of universal
architectures and begins to work with different
architectures for different problems.

At this stage in the development of these ideas,
empirical investigation of different proposals from the
viewpoint of usefulness, tractability and composability
is the best strategy. From a practical viewpoint, any
architecture that has a useful function and for which
one can identify knowledge primitives and an inference
method ought to be considered a valid candidate for
experimentation. As the tools evolve, one may find
that some of the architectures are further
decomposable into equally useful, but more primitive,

architectures; or that some of them do not represent
particularly useful functionalities, and so  on.
Nevertheless, the following distinctions can be made on
conceptual grounds, and can be used to drive the
empirical investigations.

» "Building blocks" out of which more complex
problem solvers can be composed, such as the
tasks in the theory presented earlier in the
paper.

« Explicit high level strategies which we want a

system to follow, where the strategies are
expressed in terms of some set of tasks.
Heuristic Classification is an example.

+ Compound tasks, such as the form of diagnosis
described in earlier in the paper. An
architecture for this compound task will bring
with it its constituent generic tasks and also
show how to integrate them from the viewpoint
of the overall task.

» Tasks which do not necessarily correspond to
those human experts do well, but nevertheless
can be captured as appropriate combinations of
knowledge and inference and a clear function can
be associated with them, e.g.,, constraint
satisfaction schemes.

| want to examine how the tasks in these different
senses relate to the generic task theory.

Heuristic classification (Clancey 1985) is a strategy
in the sense of its being an appropriate behavior for
diagnosis, i.e., it is a collection of tasks to be
performed to accomplish the goal. Heraeles, the
architecture that supports heuristic classification, uses
metarules as a way of programming this strategy in a
rule system: the metarules represent abstractly the
control behavior that would be required for each of
the tasks in the strategy. Heracles as a shell will
enable the designer to build diagnostic systems using
all or portions of the above strategy. In our work, we
wish to get as much of the strategy as possible to
emerge from the interaction of more elementary
problem solvers. It is not clear that each of the tasks
in a higher level strategy such as heuristic
classification necessarily corresponds to one of the
problem solvers in our sense. For example, as | have
mentioned, the data abstraction part of his strategy
actually emerges in our architecture for diagnosis from
the abstraction step in the hypothesis matcher and
data-to-data reasoning processes in the
knowledge-directed data base. From a theoretical
viewpoint this is not an irrelevant distinction: Our
theoretical goal is an "atomic" theory of knowledge
use, so that more complex problem solving behaviors
can be seen to emerge from the interaction of such
atoms. From a practical viewpoint, while our
architecture produces many of the needed behaviors in
an emergent manner, the constituent parts still may
need to be integrated to make the overall system

Chandraaakaran 1189



produce the needed behavior. Thus, direct study of
such "compound" problem solving behaviors such as
heuristic classification is illuminating and technically
useful.  Eventually, however, if the atomic theory is
right, it will be able to show how the subtasks in
heuristic classification arise from the form in which
domain knowledge is available, and also provide a
more principled vocabulary of subtasks in behaviors:
e.g., what's “group and differentiate" and where does
it come from?

Regarding compound tasks, 1 need to point out
that some of the generic tasks in our repertoire, such
as object synthesis by plan selection and refinement,
seem to me to be more complex than others and
represent several generic tasks organized and integrated
for a certain purpose. The DSPL planner, e.g., has
plan selectors which use structured matching. The
current set in our laboratory has evolved empirically.
As we experimentally discover decomposability, we will

proceed to separate compound tasks into simpler
constituent tasks. We are also building even higher
level architectures for practically important

applications. For example, we are currently building a
diagnostic shell which will integrate the problem
solvers as outlined in our discussion. The shell can
then be  directly used for the  design and
implementation of diagnostic systems of this particular
type.

There may be significant technological value in
generic tasks whose function is to solve problems
which human experts find it difficult to do without
pencil and paper or computers, if they are integrated
appropriately with other generic tasks. Constraint
satisfaction problems are of this type. Design by
constraint satisfaction is a useful method, but humans
are not in general very good at solving problems in
this  way. The only caution in using this form of
reasoning for design is that such architectures may
encourage formulating design problems which have
interesting and useful decompositions other than as
constraint satisfaction problems, causing difficulties in
debugging and explanation, i.e., they may preclude a
study of domain knowledge that helps a human
designer in producing explainable und maintainable, if
only satisficing, designs.

7. What Makes a Building Block

Clearly, highly domain specific tasks, such as a
shell for designing drug-therapy administration
systems, are not generic in an interesting Al sense,
though they may be generic within the domain (e.g.,
the drug-therapy shell can be instantiated for different
drugs).

The work of Cohen and his coworkers (Gruber and
Cohen 1987) in regard to the MUM system (and its
successor MU for uncertainty management) raises
interesting issues related to this. It incorporates a
strategy for explicitly reasoning about balancing
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uncertainty reduction with costs of tests to reduce
uncertainty. They regard diagnostic reasoning as an
instance of the uncertainty management problem. On
the other hand, it can also be argued that uncertainty
management is a component of diagnostic problem
solving.  Clearly all problem solving, whether design
or diagnosis, can be thought of as instances of
uncertainty reduction.

It seems to me that there are clearly situations in
which managing uncertainty requires explicit and
conscious strategies, and MU can be useful in those
cases. However, it seems unlikely that uncertainty
management is a generic building block activity in the
sense of this paper, since the forms and strategies for
handling uncertainty seem to be conditioned by the
demands of the problem being solved and the form in
which knowledge is available. The structured matcher
handles uncertainty in one fashion, while the classifier
deals with it in another. In  (Chandrasekaran and
Tanner 1986), 1 have discussed this view that
uncertainty handling is not a unitary activity. | can
see MU serving as a local advisor for uncertainty
decisions within each of the generic tasks, when it is
felt necessary to make some decisions, say test
ordering, requiring explicit uncertainty manipulation.

8. Towards a Functional Architecture of
Intelligence
The generic

tasks that are represented in our

toolset were specifically chosen to be useful as
technology for building diagnosis, planning and design
systems with compiled expertise. For capturing
intelligent  problem solving in general, we will
undoubtedly require many more such elementary

strategies and ways of integrating thern. For example,
the problem solving activities in qualitative reasoning
and device understanding, e.g., qualitative simulation,
consolidation, and functional representation, qualify as
generic problem solving activities, as do weak methods
such as means-ends analysis. The work of Schank and
his associates has also generated a body of such
representations and inference processes that have a
generic character to them. All  these tasks have
well-defined information processing functions, specific
knowledge representation primitives and inference
methods. Thus candidates for generic information
processing modules in our sense are indeed many.
What does all this mean for an architecture of
intelligence?

I am led to a view of intelligence as an interacting
collection of functional units, each of which solves an
information processing problem by using knowledge in
a certain form and corresponding inference methods
that are appropriate. Each of these units defines an
information processing faculty. | discuss elsewhere
(Chandrasekaran 1987) the view that these functional
units share a computational property: they provide the
agent with the means of transforming essentially



intractable problems into versions which can be solved
efficiently by using knowledge and inference in certain
forms. For example, Goel et al., (Goel et al. 1987)
show how classification problem solving solves
applicable cases of diagnosis with low complexity,
while diagnosis in general is of high complexity.
Knowledge is indeed power, but how it acquires its
power is a far subtler story than the first generation
knowledge based systems made it appear.

This view generates its own research agenda: As a
theory, the generic tasks idea has quite a bit of work
ahead of it to tell a coherent story about how the
tasks come together and are integrated, and how more
complex tasks such as planning come about from more
elementary ones. How complex inference methods
develop from simpler ones and how learning shapes
these functional modules, are issues to be investigated.

The theory does not take a position on the
information processing architecture over which these
functional units may be defined, i.e., this is not an
argument for or against the architecture of the
substratum being realized as a rule processor or as a
frame system. In fact, a continuing issue in Al is
how the rule/frame viewpoints may be integrated
within a principled framework.

The generic tasks idea has strong implications to
knowledge representation and suggests a view of what
mentalese, the language of thought, might be. What
ultimately characterizes the generic task approach is
not the proposals for specific generic tasks, which will
undoubtedly evolve empirically, but a commitment to
the following view: Knowledge and its use need to be
specified together in knowledge representation.
Because how knowledge is used depends upon the form
in which knowledge appears, the enterprise of
knowledge  representation is one of developing
vocabularies simultaneously for the expression and use
of knowledge. The languages in which each of the
generic information  processing units encode their
knowledge and communicate their information needs
and solutions collectively defines the language of
thought.
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