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ABSTRACT

In this paper we present a fast and efficient match al-
gorithm, which consists of two key techniques: Spectral
Correlation Based Feature Merge(SCBFM) and Two-Step
Retrieval(TSR). SCBFM can remove the redundant infor-
mation. In consequence, the resulting feature sequence
has a smaller size, requiring less storage and computation.
In addition, most of the tempo variation is removed; thus
a much simpler sequence match method can be adopted.
Also, TSR relies on the characteristics of Mel-Frequency
Cepstral Coefficient(MFCC), where the precise match in
the second step depends on the first step to filter out most
of the dissimilar references with only the low order MFCC
feature. As a result, the whole retrieval speed can be fur-
ther improved. The experimental evaluation verifies that
SCBFM-TSR yields more meaningful results in compar-
atively short time. The experiment results are analyzed
with a theoretical approach that seeks to find the relation
between Spectral Correlation(SC) threshold and storage,
computation.

Keywords: Content based music retrieval, spectral cor-
relation, dynamic programming, feature merge, pre-
filtering.

1 INTRODUCTION

Acoustic data contains all the information of the music.
Content Based Music Retrieval (CBMR) in acoustic form
is generally the most natural but difficult due to the high
dimensionality of the features, complex computation, and
large database size. Therefore there is a great need to
simplify acoustic-based music retrieval and provide a real-
time response when the involved music is exploded in vol-
ume.

CBMR usually consists of two main steps: feature ex-
traction and feature sequence match. Firstly, the audio
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segments are divided into overlapped frames, each gen-
erating a feature vector. Secondly, the feature sequence
of the query is compared with those in the database. The
computation cost for feature comparison increases as the
number of music in the database gets large. To reduce the
huge computation with almost no efficient indexing algo-
rithms, many researchers have tried two ways: improving
the CBMR by reducing the dimensionality of the features
[7, 8, 9, 10] and optimizing the algorithms on matching
two music segments sequences [1, 2, 3, 4, 5, 6, 12, 14].

In our algorithm, we calculate the cepstrum coeffi-
cients for each frame by short time spectrum analysis with
regard to a particular music signal. We set a Spectral Cor-
relation(SC) threshold to indicate the inter-frame spectral
redundancy degree. If the SCs of multiple continuous
frames are above the threshold, these frames are merged as
a single frame, thus reducing the total number of frames.
In this way, most of the time variation is removed, and
a much simpler match method can be adopted for the re-
maining frames. We notice that the different order MFCC
represents different spectral information and the low order
cepstrum coefficients usually reflect the spectral structure.
On these basis, we utilize the low order MFCC to filter all
the music in the database; then among the survivors, we
use all the cepstrum coefficients, both the low order and
high order, to retrieve the best target. The pre-filtering
method further improves the retrieval speed.

The rest of the paper is organized as follows. A re-
view of related work is provided in Section 2. A fast and
effective algorithm, SCBFM-TSR, is described in Section
3. The experiment results and evaluations are given in
Section 4. Finally Section 5 concludes the paper.

2 RELATED WORK

As a general nonlinear alignment method, Dynamic Pro-
gramming (DP) is exploited in the speech recognition
to account for tempo variations in speech pronunciation
[11, 13]. Many researchers [1, 2, 6, 12, 14] have stud-
ied DP and also applied DP or optimized DP in CBMR
to match the query input against the reference melodies
in the database. In these works [1, 5, 6, 12] usually
query is determined from acoustic signals, and is matched
against the database composed of pitch sequences. In
other words, the sequence comparison relies on similar-
ity measurement between acoustic input and symbolic
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database.
Among music retrieval research implemented on

acoustic input and acoustic database, the ”energy profile”
is adopted as the feature in [2], and the spectrum-based
minimum-distance is used to improve the accuracy; both
of the features sequence are compared by DP. Yang [14]
also adopted the short time spectrum as the feature, ex-
cept that only the signal of the local maximum is selected
to calculate the feature. A variation of DP methods is
used in feature comparison and the result is further re-
fined with the linear filtering. More recently Haitsma, J.,
and T. Kalker [3] constructed a cryptography hash func-
tion to classify pre-defined fingerprints of acoustic data in
a database. A two-stage search algorithm is built on only
performing full fingerprint comparisons at candidate posi-
tions pre-selected by a sub-fingerprint search. H.Harb [4]
reported a query by example music retrieval system based
on the local (1s) and global (10-20s) acoustic similarities.
The symmetric KL(KullBack Leibler) distance between
the spectral features (MFCC) of two short audio slices is
calculated as the local similarity.

Different from the existing methods, we remove the
spectral redundancy by merging the adjacent similar
frames. Based on the MFCC properties, we use the low
order MFCC to pre-filter the reference melodies; this is to
further improve the retrieval speed while maintaining the
retrieval ratio.

3 SCBFM-TSR

In the following, we present a fast and efficient algorithm,
SCBFM-TSR, which shows: (1) the redundant spectral in-
formation can be diminished, further, tempo variation can
be tolerated. (2) keeping only the few significant spectral
features can provide a concise description for a musical
sound. (3) SCBFM-TSR is much faster than the straight-
forward application of DP between the two raw musical
sounds while holding almost the same retrieval ratio.

3.1 Feature extraction

Mel-Frequency Cepstral Coefficient (MFCC) is adopted
as the spectral feature. It is extracted from each frame,
and is calculated from the short time spectrum. The bins
of the magnitude spectrum are grouped and smoothed by
the filter banks constructed according to the perceptually
motivated Mel-frequency scaling; the log value of the re-
sulting vector is further transformed by DCT in order to
make the MFCC coefficients uncorrelated. Both the query
music and those in the database are in single-channel 16-
bit wave format and re-sampled to the rate of 22.05kHz.
The music is divided into overlapped frames. Each frame
of music contains 1024 samples and the adjacent frames
have 50% overlapping. Each frame is weighted by a ham-
ming window, which is further appended with 1024 ze-
ros to fit the length of FFT. Then the spectrum of each
frame,Si = {si,1, si,2, ..., si,K}, i = 1, 2, ...I, is calcu-
lated, whereK stands for the maximum frequency and
I is the number of frames of the music slice in question.
The SCρ is calculated for eachSi, and the L-order MFCC
featureMi = {mi,1,mi,2, ..., mi,L}, i = 1, 2, ...I is ob-

tained.

3.2 Feature merge

The SC of each frame,Si, is calculated, and the MFCC
features,Mi, are merged as following:

(1) Remove the direct current components

si,k = si,k − s̄i, s̄i =
1
K

K∑

k=1

si,k (1)

(2) Calculate the SC betweenSi and Sj (< ·, · >
stands for the inner product between two vectors.)

ρi,j =
< Si, Sj >√

< Si, Si >< Sj , Sj >
(2)

Set = []
i=1;
while i ≤ I

appendMi to Set
j=i+1;
while j ≤ I && ρi,j > ρth

j++;
end
i=j;

end

Figure 1: Frame merge procedure

(3) Frame merge.
In Fig.1, out of the continuous frames with an SC big-

ger than a certain threshold, for exampleρth = 0.7, only
the first frame is kept. Fig.2 gives an example of frame
merge. For the query music, frame 1 and 2 are spectral
similar, so the two frames are merged to one frame s1.
Frame 4 and 5 are spectral similar to frame 3, merged to
s3. By merging the neighboring spectral similar frames,
the storage and computation are decreased, and most of
the time variation is removed.

3.3 Feature sequence match

The other advantage of frame merge is to mitigate the
tempo variation problem. In Fig.2, the query music and

Figure 2: Feature merging and matching
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reference music have different timing where the same
notes (for example, 3rd, 4th and 5th frames in the query
and 4th and 5th frames in the reference) have different
length. However, by merging frames, the redundant infor-
mation is removed. If the two sequences have the same
score, it is reasonable that the merged sequences almost
have the same timing, that is, the tempo feature of the
merged query is nearly the same as that in the merged ref-
erence music. Therefore a much simpler match method
can be adopted for the remaining frames: each frame is
compared with multiple neighboring frames so as to con-
sider the remaining time variation effect. The minimum of
all the frames in the query music is added together to get
the distance between the query music and the reference
music.

query feature sequence:Mi1 ,Mi2 , ..., MiQ

rth reference feature sequence:Mr
j1

,Mr
j2

, ..., Mr
jR

for m = j1, j2, ..., jR

Dr
m = 0

for l = i1, i2, ..., iQ
dr

l = minn∈[−N,N ] |Ml −Mr
m+l+n|;

Dr
m = Dr

m + dr
l

end
end;
Dr = minm Dr

m

Figure 3: Sequences match procedure

Figure 3 gives the procedure of the feature sequence
comparison between the query and one of the reference
melodies. By merging correlated frames, the remaining
query feature becomesMi1 ,Mi2 , ...,MiQ

while the rth

reference feature becomesMr
j1

,Mr
j2

, ..., Mr
jR

. Then the
query is matched against therth reference at different time
shifts. For a specific time shift m, each frame in the query
is compared with 2N+1 neighboring frames in the refer-
ence music so as to consider the remaining time variation
effect. The minimumsdr

l of all the query frames are added
together to getDr

m, the distance between the query mu-
sic and the reference music at time shift m. The distance
between the query and therth reference,Dr, is the min-
imum amongDr

m with different m. Then for all the ref-
erence melodies, the following equation gives the desired
music.

r = arg min
r

Dr (3)

In the real system, for a certain query, usually several
retrieval results are given, ranked in the decreasing order
of Dr, with the best matching reference melody at the top.

3.4 Acceleration of retrieval speed

For the purpose of obtaining a faster response as the num-
ber of music melodies increases, it is necessary to speed
up the whole retrieval procedure.

MFCC is the DCT result of Mel-scaled spectrum. The
low order MFCC is the low frequency components of
the DCT, and reflects the basic spectral profile, which
roughly stands for the music score; the high order MFCC

Figure 4: Two-step retrieval based on MFCC

is the high frequency component of the DCT, and reflects
more details of the energy distribution in the different Mel
bands. Based on the property of MFCC, the retrieval can
be further accelerated with two-step retrieval by a pre-
filtering method.

Figure 4 explains the basic idea of the two-step re-
trieval. In the first step, only the low order MFCC of the
query is used to roughly choose some candidates, remov-
ing most of the unlikely references in the music database.
Only a small percentage of reference music survives as the
candidates, and constructs a new database. In the second
step, the desired music is searched with all MFCC coef-
ficients in the small database. In consequence, the whole
retrieval speed can be improved efficiently.

In our method, we used the following parameters:
ρth: SC threshold
L: MFCC order
L1: number of low order MFCC used for pre-filtering

in the first step in Fig.4
S: survive rate of the retrieval, the ratio between query

output and all the references in the database
S1: survive rate of the pre-filtering
S2: survive rate of the second step retrieval
In the above,S = S1 · S2, that is, the number of final

retrieval results is the same for both the normal retrieval
and the two-step retrieval with pre-filtering. For the for-
mer, the retrieval ratio isR(ρth, L, S), a function ofρth,
L andS; for the latter, the retrieval ratio is the product of
the retrieval ratio in the pre-filtering stage and the retrieval
ratio in the second stage:R(ρth, L1, S1) · R(ρth, L, S2),
which further depends onL1 andS1.

Though pre-filtering can improve the retrieval speed,
it may lower the retrieval ratio, because the desired music
may get lost in the pre-filtering stage. Thus it is required
thatR(ρth, L1, S1) must be high enough so that the total
retrieval ratio is almost not affected.

3.5 Computation analysis

Figure 5 shows the match procedure of DP (Fig.5(a))
and SCBFM-TSR (Fig.5(b)) respectively. When two se-
quences are matched, DP always acquires the optimal
path, an alignment between query and reference found
by recursively building a Dynamic Time Warping (DTW)
table. However, it consumes enormous computation
time. Its matching line is curved due to tempo variation.
In SCBFM-TSR, both the query and references have a

698



Figure 5: Match procedure

smaller length by merging similar frames, and the match-
ing line tends to be straight because most of the time vari-
ation is removed. That is, the remaining query and refer-
ence melodies almost have the same tempo.

In order to analyze the computation, we take the fol-
lowing assumption: (1) The average number of frames
of all the references is R, and that of query is Q. (2) In
SCBFM-TSR, by merging similar adjacent frames, only
few of the frames remain, which depends on the SC
thresholdρth; the percentage of the remaining frames is
δ(ρth).

The order of the computation for DP,CDP , is given in
Eq.4. In SCBFM-TSR, the number of remaining frames
for the references and query isδ(ρth) · R andδ(ρth) · Q
respectively. The corresponding computation,CFM , is
given in Eq.5. With the two-step retrieval, in the pre-
filtering stage,L1 cepstrum coefficients are used, andS1

percentage of references survive; in the second stage, the
surviving references are searched with L cepstrum coeffi-
cients to get the best target. The total computation of the
two stages,CPF , is given in Eq.6.

CDP = R ·Q · L (4)

CFM = [δ(ρth) ·R] · [δ(ρth) ·Q] · L (5)

CPF = [δ(ρth) ·R] · [δ(ρth) ·Q] · L1

+[δ(ρth) ·R · S1] · [δ(ρth) ·Q] · L
= [δ(ρth) ·R] · [δ(ρth) ·Q] · [L1/L + S1](6)

By pre-filtering, the total computation in Eq.6 is de-
creased by a factorFPF = L1/L + S1 compared with
Eq.5. Reducing eitherL1 or S1 can decease the compu-
tation. However,L1 andS1 have different effects on the
retrieval ratio.

4 EXPERIMENTS AND RESULTS

Our music database consists of 166 melody pieces and
is generated from Chinese folks (44 pieces from 12-
Chinese-girl band) and western instruments sound (122

Figure 6: Spectral correlation and frame merge,ρth = 0.7
(No Word melody from 12-girl band)

pieces performed by different instruments), including
most of overlapped timbre, that is, all pieces consist of
captivating polyphonic. These pieces are collected from
CD-recordings and the Internet but the reference melodies
in the database and music query samples are different ver-
sions so that they are played with different tempo. Each
melody in the database is segmented into 60 seconds long
melodic slip. Each query melodic slip contains part of the
music and is about 8 seconds long. In the simulation, gen-
erally L = 8, L1 = 4, S1 = 20%, andρth = 0.7 except
especially pointed out.

In the following, first the various SCs of different
music segments and the corresponding frame merge are
shown. Next the effect ofρth, L1, andS1 on storage,
computation and retrieval ratio are discussed in order to
demonstrate the feasibility of the SCBFM-TSR method
and that the pre-filtering can speed up retrieval meanwhile
the retrieval ratio is almost not affected.

4.1 Spectral correlation and frame merge

When the note duration is longer than the frame length,
the adjacent frames may have very similar spectral struc-
ture, and are strongly correlated. Figure 6-7 show the SC
(ρ) of the frames for two extreme cases. In Fig.6, the mu-
sic is relatively simple, and most of the adjacent frames
have a bigger SC than the SC threshold; thus they are
merged. Out of the total 344 frames, only 4.9%, 17 frames
are kept, which means that a single note contains about
344/17 = 20 overlapped frames. In the experiment, the
frame step length is 23.2ms, so the average note length is
460ms, corresponding to the slow rhythm. In Fig.7, the
music spectral is much more complex, and the spectral
features changes frequently. However, still more than half
frames are merged and only 47.8% frames are kept. It is
obvious that much of the spectral redundancy can be re-
moved by setting up the SC threshold.
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Figure 7: Spectral correlation and frame merge,ρth = 0.7
(Freedom melody from 12-girl band)

4.2 Storage

Figure 8 shows the feature storage with respect to SC
thresholdρth. The storage is normalized with the conven-
tional one forρth = 1.0. The normalized storage actually
equalsδ(ρth) defined in Section 3.5. Whenρth = 0.4,
δ(ρth) is less than 10%.δ(ρth) monotonically increases
asρth does. Whenρth reaches 1.0, no frames are merged
andδ(ρth) equals 1. From the experiment, we approxi-
mate the relation between the storage and the SC threshold
ρth as below:

δ(ρth) = 0.0001e9ρth + 0.1085 (0 < ρth < 1) (7)

Though the adjacent frames may be highly correlated, the
music is composed of different notes, which has little cor-
relation. So asρth becomes smaller,δ(ρth) can not reach
0. This is reflected in Fig.8 that asρth is below 0.8, the
slope of the storage decreases quickly; it is also reflected
in Eq.7 by the constant item.

The pre-filtering method improves the retrieval speed
and affects the retrieval ratio, however, it does not change
the storage. So for both the retrieval with and without pre-
filtering, the storage is the same.

4.3 Computation

Figure 9 shows the computation with respect toρth. The
curves corresponding toρth = [0.4, 0.8] are amplified
in the middle to display the result more clearly. The
upper curve stands for the computation with only frame
merge, stated in Eq.5; and the bottom curve is the com-
putation with both frame merge and pre-filtering, stated
in Eq.6. The computations are normalized by the one
given in Eq.4. When calculating Eq.5 and Eq.6,δ(ρth) is
the experiment result described in Fig.8. Merging frames
contribute to the storage reduction of the references to the
percentageδ(ρth). With the same operation on the query

Figure 8: Feature storage (Normalized by the storage for
ρth = 1.0)

Figure 9: Average computation (Normalized by the com-
putation without pre-filtering forρth = 1.0)

segment, the computation in both Eq.5 and Eq.6 is pro-
portional toδ(ρth)2, so the computation reduction is very
efficient. At ρth = 0.7, δ(ρth) = 0.195, and the com-
putation is reduced to 0.038, nearly 1/25 of the original
computation.

The computations are the monotonically increasing
function of ρth, and the one with pre-filtering is smaller
for all ρth. For the pre-filtering case,L1 = 4, L = 8,
S1 = 20%, the corresponding factorFPF = 0.7. Other
combinations ofL1, L andS1 with the sameFPF have
the identical computation.

4.4 Retrieval ratio

Figure 10 gives the retrieval ratio for both top-4 retrieval
and top-1 retrieval. For most of the cases, the retrieval
ratio with pre-filtering is almost the same as that without
pre-filtering for both top-4 and top-1 retrieval. Whenρth

is smaller than 0.7, the retrieval ratio increases asρth does.
The retrieval ratio is almost unchanged whenρth is within
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Figure 10: Retrieval ratio of top-4 retrieval and top-1 re-
trieval with respect to different SC thresholdρth, S1 =
0.2, L1 = 4)

[0.7, 0.8]. As ρth increases further, the retrieval ratio for
both top-1 and top-4 retrieval decreases. This is due to the
fact that asρth gets very big, most of the feature frames
are kept, and the simple feature match method adopted in
our proposal can not deal well with the remaining time
variation. Under all cases, top-1 retrieval result is worse
than top-4 result, however, it still gives good result when
ρth is within [0.7, 0.8].

From Fig.8-10, both the storage and the computation
increase asρth does. The retrieval ratio reaches its max-
imum whenρth lies within [0.7, 0.8]. It is obvious that
there is a tradeoff between the storage, computation, and
retrieval ratio. When the SC thresholdρth is set to 0.7,
we can achieve almost the highest retrieval ratio with lit-
tle storage and computation.

5 CONCLUSION

We have proposed a fast and efficient algorithm, SCBFM-
TSR, to accelerate the content-based music retrieval. The
SCBFM method has shown three main traits: (1) it re-
moves the spectral redundancy and in turn reduces the
feature storage of the reference music in the database; (2)
both the query and the reference melodies have a short
feature sequence, which improves the retrieval speed; (3)
most of the tempo variation is removed, thus a simple fea-
ture sequence match method can be used. In addition,
relying on the characteristic of MFCC, the TSR method
further speeds up the whole retrieval.

Experimental results have shown that SCBFM-TSR
approach can detect the desired melodies while tolerat-
ing tempo variations. Also, with a mathematical method-
ology, the relation between storage, computation and SC
threshold is derived.

Future work may include the study of the higher-level
content-based music information retrieval such as acous-
tic instrument timbre similarity, musical genre classifica-
tion, and singer identification and so on. We are currently
collecting more music melodies and building the acoustic-

based distributed retrieval system.
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