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Abstract. Represented knowledge is subject to frequent changes. To meet

these requirements for dynamics, SPARQL update, an update language
for RDF graphs, was developed. Even though there is some research

on semantics of SPARQL ABox update for RDFS ontologies and ap-

proaches addressing updates in interplay with rather restricted TBoxes
languages, up till now there is no definition of semantics for SPARQL

updates for OWL knowledge bases. In this paper, we define a SPARQL

update semantics for OWL-DL ABoxes and show how existing methods
like justification-based explanation can be used to conduct SPARQL

updates in the presence of OWL-DL TBoxes. We argue that the inter-
play of the deletion and the insertion task of SPARQL update queries

renders it not advisable to consider these tasks separately. This is why

we introduce query-driven semantics aiming at optimizing the effect of
the whole update operation.
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1. Introduction

OWL [16] is a family of languages which are broadly used for knowledge repre-
sentation purposes. It is based on description logics (DL) [4] and offers versatile
means to model terminological knowledge as well as knowledge about data. For
knowledge represented in RDF [21], SPARQL [22] provides possibilities to query
this knowledge. Similarly, the SPARQL-DL [23] query language, a distinct subset
of the SPARQL query language, renders it possible to query OWL knowledge
bases. A SPARQL-DL interface is included in every OWL API 3 reasoner which
allows these reasoners to answer SPARQL-DL queries.

Besides querying represented knowledge, the management of changes consti-
tutes an interesting challenge. Nearly all represented knowledge is subject to fre-
quent changes and even the construction of a knowledge base can be seen as an
evolutionary development. To meet these requirements for dynamics, SPARQL
update [9], an update language for RDF graphs, was developed. Even though
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there is some research on semantics of SPARQL update for RDFS ontologies [1,13]
and approaches addressing updates in interplay with rather restricted TBoxes
languages [2], up till now there is no definition of semantics for SPARQL updates
for OWL knowledge bases. We define SPARQL update semantics for OWL-DL
ABoxes and show how existing methods like justification-based explanation can
be used to conduct SPARQL updates in the presence of OWL-DL TBoxes.

2. Running Example

We consider the knowledge base K = (T ,A), given in description logic syntax,

T = {SoftwareEngineer v Employee, (1)

Secretary v Employee, (2)

Student u Employee v StudentTrainee, (3)

∃attendsCourse.> v Student} (4)

A = {SoftwareEngineer(john), (5)

Employee(john), (6)

StudentTrainee(john), (7)

Student(john)} (8)

with a SPARQL update which removes the status of being a StudentTrainee from
all students who are employees and assigns them to some special course c1.

INSERT {?X :attendsCourse :c1}

DELETE {?X a :StudentTrainee}

WHERE {?X a :Student, ?X a :Employee}

The update is supposed to be incorporated into the ABox by removing and adding
as few assertions as possible. According to [9], the overall processing model is to
first evaluate the pattern in the WHERE clause, then to perform the deletion and
after that the insertion. In order to use a uniform notation, we stick to description
logic syntax and represent the triples which are supposed to be deleted or in-
serted as ABox assertions. W.r.t. the query presented above, the task is to delete
StudentTrainee(john) and to insert attendsCourse(john, c1). To accomplish the
deletion, we have to find a minimal set of ABox assertions whose deletion prevents
StudentTrainee(john) from being entailed by the knowledge base. This can be
done by removing one of the following two sets

{StudentTrainee(john),Student(john)}

{StudentTrainee(john),Employee(john),SoftwareEngineer(john)}



from the ABox. Note that both these possibilities constitute a minimal way to
delete StudentTrainee(john) since no proper subset implements the deletion. For
example the knowledge base resulting from removing only StudentTrainee(john)
from the ABox would still entail StudentTrainee(john) since Student(john),
Employee(john) together with the TBox axiom (3) imply StudentTrainee(john).
In general, when considering knowledge bases with expressive TBoxes, there are
many possibilities to accomplish a deletion. Determining which assertions to delete
leads to different semantics for SPARQL update delete. Sec. 6 introduces some
possible choices. Considering the insertion part of the example SPARQL update
query, the task is to insert attendCourse(john, c1) into the ABox. Taking a closer
look at the knowledge base, the last axiom in the TBox reveals that inserting
attendCourse(john, c1) implies Student(john) which directly contradicts the first
possibility to delete StudentTrainee(john) mentioned above. This illustrates, that
it is not advisable to consider insertion and deletion separately as this might have
undesired effects. To remedy this situation, in Sec. 6 we introduce query-driven
semantics taking into account the whole query.

Inserting new assertions into an ABox might introduce inconsistencies. In this
case, debugging techniques can be used to remove the inconsistency. Choosing one
of the possibly many ways to resolve an inconsistency can be done by choosing
one of the semantics we introduce in Sec. 6.2.

3. Background and Related Work

3.1. Related Work

The problem of belief revision and updating knowledge bases has received much
attention in research [3,12]. [11] introduces a kernel semi-revision operator for
belief bases in OWL-DL. The basic idea of this operator is to add the new in-
formation to the knowledge base, then compute all justifications for possible in-
consistencies and remove one element from each of these justifications. Since in
the last step the previously introduced information might be removed, it is not
guaranteed that the inserted information is contained in the result. In contrast to
this, some of the semantics we introduce guarantee that the result contains the
inserted information whenever this is possible.

In [5], the prioritized assertional-based revision of DL-Lite knowledge bases is
addressed. In their setting, it is assumed that the data is associated with priority
or credibility information, possibly originating from the combination of data from
different sources where each source has a certain reliability level.

Instance-level insertion and deletion for DL-LiteF , a tractable extension of
DL-Lite which is oriented towards data intensive applications, is investigated in
[6]. Since all reasoning tasks in DL-LiteF are tractable, approaches developed for
this logic cannot be expected to be suitable for OWL-DL.

With respect to SPARQL update, [1] discusses possible semantics for
SPARQL update in the presence of DL-Lite TBoxes. Due to the low expressivity
of DL-Lite, inconsistencies are not an issue. [2] addresses the problem of handling
inconsistencies due to class disjointness introduced by SPARQL updates. The ap-



proach is restricted to a DL-Lite fragment called DL−LiteRDFS¬ covering RDFS
as well as concept disjointness axioms. Different semantics of SPARQL ABox up-
dates are defined similar to the notion of the inconsistency tolerant semantics in-
troduced in [15]. [2] use skillful query-rewriting to determine and resolve inconsis-
tencies. These rewritings exploit the fact that in DL−LiteRDFS¬ inconsistencies
are caused by at most two ABox assertions. In contrast to this, inconsistencies in
OWL-DL can be caused by an arbitrary number of ABox assertions.

[18] presents an approach for interactive ontology revision. User interaction
is used to decide if an axiom should be accepted or rejected. This is combined
with automated reasoning to ensure consistency.

3.2. Further Background

We introduce syntax and semantics of the description logic SHOIN which cor-
responds to OWL-DL. Given a set of atomic roles NR, the set of roles is defined
as NR ∪ {R− | R ∈ NR}, where R− denotes the inverse role corresponding to
the atomic role R. A role inclusion axiom is an expression of the form R v S,
where R and S are atomic or inverse roles. A transitivity axiom is of the form
Trans(S) for S an atomic or inverse role. An RBox R is a finite set of role inclu-
sion axioms and transitivity axioms. v∗ denotes the reflexive, transitive closure
of v over {R v S, Inv(R) v Inv(S) | R v S ∈ R}. A role R is transitive in R
if there exists a role S such that S v∗ R, R v∗ S, and either Trans(S) ∈ R or
Trans(Inv(S)) ∈ R. If no transitive role S with S v∗ R exists, R is called simple.

Let NC be the set of atomic concepts and NI a set of individuals. The set of
concepts is inductively defined using the following grammar:

C → > | ⊥ | A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a}

where A ∈ NC , Ci SHOIN concepts, R ∈ NR, S ∈ NR a simple role and a ∈ NI .
A general concept inclusion (GCI) is of the form C v D with C and D

SHOIN concepts. A TBox T is a finite set of GCIs also called axioms. An ABox
A is a finite set of assertions of the form A(a) and R(a, b), with A an atomic
concept, R an atomic role and a, b are individuals from NI . Note that in our
setting, the ABox is only allowed to contain assertions about the belonging of
individuals to atomic concepts and roles.

A knowledge base K is a triple (R, T ,A) with signature Σ = (NC , NR, NI).
The tuple I = (·I ,∆I) is an interpretation for K iff ∆I 6= ∅ and ·I assigns an
element aI ∈ ∆I to each individual a, a set AI ⊆ ∆I to each atomic concept
A, and a relation RI ⊆ ∆I × ∆I to each atomic role R. ·I then assigns values
to more complex concepts and roles as described in Tab. 1. I is a model of K
(I |= K) if it satisfies all axioms and assertions in R, T and A as shown in Tab.
1. A TBox T is called consistent, if there is an interpretation satisfying all axioms
in T . A concept C is called satisfiable w.r.t. R and T iff there exists a model I
of R and T with CI 6= ∅. An assertion A of the form B(a) or R(a, b) is entailed
by a knowledge base K, denoted by K |= A, iff I |= A for all models I of K.

Since this paper only considers updates concerning the ABox, we restrict the
following definition to ABox assertions. For the task of deleting assertions from



Concepts and Roles

>I = ∆I {a}I = {aI}
⊥I = ∅ (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI

(¬C)I = ∆I\CI (∃R.C)I = {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}
(C tD)I = CI ∪DI (≥ n S)I = {x | |{y | (x, y) ∈ SI}| ≥ n}
(C uD)I = CI ∩DI (≤ n S)I = {x | |{y | (x, y) ∈ SI}| ≤ n}

(R−)I = {(y, x) | (x, y) ∈ RI}
TBox & RBox axioms ABox assertion

C v D ⇒ CI ⊆ DI A(a) ⇒ aI ∈ AI

R v S ⇒ RI ⊆ SI R(a, b) ⇒ (aI , bI) ∈ RI

Trans(R) ⇒ (RI)+ ⊆ RI

Table 1. Model-theoretic semantics of SHOIN . R+ is the transitive closure of R, R− is the

inverse of role R.

ABox RDF

A(x) x a A.

P (x, y) x P y.

Table 2. SHOIN ABox assertions vs. RDF as presented in [2], with A a concept name, P a

role (or property) name, Γ a set of IRIs and x, y ∈ Γ.

a knowledge base or the task of debugging an ABox which is unsatisfiable w.r.t.
the TBox and RBox, the notion of justifications is very helpful. Given an ABox
assertion α and a knowledge base K = (R, T ,A), a justification of α in K is a
minimal subset of A which together with T and R implies α.

Definition 1 (Justification [14]) Let K = (R, T ,A) be a knowledge base and α be
an ABox assertion. J ⊆ A is a justification for α in K if (R, T ,J ) |= α and for
all J ′ ⊂ J , (R, T ,J ′) 6|= α. The set of all justifications for α in K is denoted by
Just(α,K).

An Internationalized Resource Identifier (IRI) is a character string used to iden-
tify a resource. Blank nodes identify anonymous resources which are not directly
identifiable from an RDF statement. A literal is a character string which possibly
can be interpreted by means of a certain datatype.

Definition 2 (RDF Triple, RDF Graph) Let I, B and L be disjoints sets of IRIs,
blank nodes and literals. An RDF triple is of the form (s, p, o) ∈ (I ∪ B) × I ×
(I ∪B ∪ L). A set of RDF triples is called RDF graph.

A triple without blank node is called ground triple. Every SHOIN knowledge
base can be mapped to an RDF graph and vice versa. See Tab. 2 for the mapping
of ABox assertions and [19] for further details on the mapping. Therefore, we
consider a knowledge base K = (R, T ,A) to be equivalent to the RDF graph
produced by this mapping. Furthermore, for the sake of uniform notation, in most
cases we will stick to DL syntax.



Definition 3 (BGP, CQ, UCQ, Query Answer [2]) A conjunctive query (CQ) q,
or basic graph pattern (BGP), is a set of atoms of the form given in Tab. 2
where x, y ∈ Γ ∪ V with V a countable infinite set of variables (written as ’?-’

prefixed alphanumeric strings) and Γ a set of IRIs. A union of conjunctive queries
(UCQ) or UNION pattern Q, is a set of CGs. V(q) (V(Q)) denotes the set of
variables, occurring in q (Q). An answer to a CQ q over a knowledge base K is a
substitution θ of the variables in V(q) with constants in Γ such that every model of
K satisfies all facts in qθ. The set of all such answers is denoted with ans(q,K).
The set of answers to a UCQ Q is ∪q∈Qans(q,K).

Please note, that our definition of a BGP disallows blank nodes. Next, we intro-
duce the notion of a SPARQL update operation and simple update semantics.

Definition 4 (SPARQL Update Operation[2]) Let Pd and Pi be BGPs and Pw a
BGP or UNION pattern. An update operation u(Pd, Pi, Pw) has the form

DELETE Pd INSERT Pi WHERE Pw

Definition 5 (Simple Update Semantics [2]) Let K = (R, T ,A) be a knowl-
edge base then the simple update of K w.r.t. an SPARQL update operation
u(Pd, Pi, Pw) is defined as Ku(Pd,Pi,Pw) = (R, T , ((A \ Ad) ∪ Ai) where Ad =
∪θ∈ans(Pw,K)gr(Pdθ) and Ai = ∪θ∈ans(Pw,K)gr(Piθ) with gr a selection function
which selects all ground triples from a BGP.

The simple update of a knowledge base w.r.t. u(Pd, Pi, Pw) results in remov-
ing the set of ABox assertions corresponding to Pd and adding the set of ABox
assertions corresponding to Pi. Note that in case of using simple update seman-
tics, it is not guaranteed that the assertions in Pd are not entailed anymore. Fur-
thermore, it is possible that the resulting knowledge base is inconsistent. Since
this outcome is not always acceptable for an update, in Sec. 6 we suggest different
semantics for SPARQL update operations which behave differently.

4. Overall Architecture

According to [9], the overall processing model for performing a SPARQL update
query is to first evaluate the pattern in the WHERE clause, then perform the dele-
tion and after that the insertion. This is why we suggest the workflow given in
Algorithm 1.

In Line 1 a CONSTRUCT query for the DELETE and WHERE clause is used to cre-
ate a graph GD consisting of the triples which are supposed to be deleted. These
triples correspond to a set of ABox assertions denoted by Ad. Similar to this,
Line 2 constructs the set Ai of ABox assertions which are supposed to be inserted.
Next, the task of deleting the set of assertions given in Ad is addressed. For this,
in Line 3 function compDeletion is called which, given a knowledge base, a set
of ABox assertions which should be deleted and a keyword indicating the desired
semantics, determines a subset of A which accomplishes the deletion. The pseudo
code for this procedure is given in Algorithm 2. Line 4 checks the satisfiability of



Algorithm 1 Perform a SPARQL update query to a knowledge base.

Input: K = (R, T ,A), SPARQL update query u(Pd, Pi, Pw), DeleteSem the de-
sired sematics for deletion and InsertSem the desired semantics for insertion.
Output: Revised knowledge base K = (R, T ,ARevised)

1: Ad = set of ABox ass. for the result of asking CONSTRUCT Pd WHERE Pw to K
2: Ai = set of ABox ass. for the result asking CONSTRUCT Pi WHERE Pw to K
3: Deletion = compDeletion(K,Ad, DeleteSem)
4: if K = (R, T , (A \Deletion) ∪ Ai) consistent then
5: return K = (R, T , (A \Deletion) ∪ Ai)
6: else
7: Debug = compDeletion(K = (R, T , (A\Deletion)∪Ai), {⊥}, InsertSem)
8: return K = (R, T , ((A \Deletion) ∪ Ai) \Debug)
9: end if

the knowledge base resulting from first deleting the ABox assertions determined
by the compDeletion function and then adding the assertions in Ai. If the result-
ing knowledge base is satisfiable, then Line 5 returns the resulting knowledge base.
If however the resulting knowledge base is unsatisfiable, the compDeletion pro-
cedure is used to debug the knowledge base. For this purpose, the compDeletion
procedure is called with {⊥} as the set of assertions which are supposed to be
deleted together with the desired insert semantics InsertSem. compDelete com-
putes a set of ABox assertions which should be deleted in order to debug the
knowledge base. This approach exploits the fact that debugging a knowledge base
can be accomplished by deleting false from the knowledge base. Line 8 returns
the knowledge base resulting from removing the computed set Debug , resulting
in the knowledge base K = (R, T , ((A \Deletion) ∪ Ai) \Debug).

5. Deletion

For a knowledge base K = (R, T ,A) and Ad a set of ABox assertions which are
supposed to be deleted, we now describe how to determine a minimal subset of
A whose deletion prevents the assertions in Ad from being entailed by K.

Definition 6 (Deletion) Let K = (R, T ,A) be a knowledge base and Ad a set of
ABox assertions. A deletion D of Ad in K is a minimal subset of the ABox A
such that no element in Ad is entailed by (R, T ,A \D).

As demonstrated by the example provided in Sec. 2, it is not sufficient to only
remove all elements contained in Ad from the ABox since even after their removal
they might still be entailed by the knowledge base. Furthermore, there might be
more than one possible way to accomplish the deletion of Ad. The latter aspects
will be addressed in Sec. 6. To determine a deletion of Ad in a knowledge base K,
we suggest to use justifications.

5.1. Justification based Deletion

Justifications can be used to compute a deletion for an assertion α from a knowl-
edge base K = (R, T ,A). Please note that according to Def. 1, we restrict jus-



tifications to be subsets of the ABox. Since the set of all justifications for α in
K = (R, T ,A) corresponds to the set of all minimal subsets of A which together
with R and T imply α, it is sufficient to delete exactly one element from each
justification in order to prevent α from being entailed. This corresponds to the
construction of a minimal hitting set of the set of all justifications for α in K.

Definition 7 (Hitting Set) Let S = {S1, . . . Sn} be a set of sets. A hitting set for
S is a set H ⊆ ∪ni=1Si with H ∩Si 6= ∅,∀1 ≤ i ≤ n. If further no proper subset of
H is a hitting set for S, H is called a minimal hitting set. The set of all minimal
hitting sets for S is denoted by HS (S).

Each minimal hitting set in HS (Just(α,K)) constitutes a deletion of {α} in K.

Example 1 The set of all justifications for StudentTrainee(john) in the knowledge
base K given in Sec. 2 is:

Just(StudentTrainee(john),K) = {{StudentTrainee(john)},

{Student(john),Employee(john)},

{Student(john),SoftwareEngineer(john)}}

The two minimal hitting sets for Just(StudentTrainee(john),K), which both pro-
vide a deletion for StudentTrainee(john) in K, are:

H1 ={StudentTrainee(john),Employee(john),SoftwareEngineer(john)}

H2 ={StudentTrainee(john),Student(john)}

Potentially every subset of the ABox can be a justification for α, resulting in jus-
tifications with arbitrary cardinalities. Hence, there can be more than one hitting
set for the set of all justifications of α and different ways to perform a deletion.
When dealing with SPARQL update queries, it is reasonable to assume that more
than one ABox assertion is supposed to be deleted. The first idea to compute
all possible deletions for a set of assertions Ad would be to compute all justifi-
cations for all assertions in Ad separately and then compute all minimal hitting
sets for these justifications. However this approach considers an unnecessarily
high number of justifications because the union of all justifications might contain
non-minimal sets.

Example 2 Consider the knowledge base presented in the Sec. 2 together with Ad =
{StudentTrainee(john),Student(john)} the set of assertions which are supposed
to be deleted. The task is to find a minimal set A′ ⊆ A such that (T ,A \ A′) 6|=
StudentTrainee(john) and (T ,A \ A′) 6|= Student(a). We construct the set of
justifications for both assertions:

Just(StudentTrainee(john),K) = {{StudentTrainee(john)},

{Employee(john),Student(john)},

{SoftwareEngineer(john),Student(john)}}

Just(Student(john),K) = {{Student(john)}}.



The only hitting for Just(StudentTrainee(john),K) ∪ Just(Student(john),K) is

HS(Just(StudentTrainee(john),K) ∪ Just(Student(john),K))

= {{StudentTrainee(john),Student(john)}}.

Only the justifications {StudentTrainee(john)} and {Student(john)} have to be
considered for the construction of the hitting set, since the other justifications are
supersets of {Student(john)}. This leads to the notion of root justifications.

Definition 8 (Root Justification [17]) Let K = (R, T ,A) be a knowledge base,
U = {α1, . . . , αn} a set of ABox assertions and Just(αi,K) the set of all justifica-
tions of αi in K. A set J ∈ ∪ni=1Just(αi,K) is a root justification for U in K iff
there is no J ′ ∈ ∪ni=1Just(αi,K) with J ′ ⊂ J . All justifications in ∪ni=1Just(αi,K)
which are not a root justification are called derived justification.

Example 3 Only {StudentTrainee(john)} and {Student(john)} are root justifica-
tions in Ex. 2.

As shown in [17], for a set of assertions Ad which are supposed to be deleted from
a knowledge base K it is sufficient to consider only root justifications in order to
determine what to delete.

Next we present Algorithm 2 which uses the notion of root justifications to
compute a deletion for a set of ABox assertions from a knowledge base. We use a
black box for the computation of root justifications. One way to compute all root
justifications for a given set of assertions Ad is to use an off the shelf reasoner
like Pellet [24] to compute first all justifications for the different elements of Ad
and then to remove all derived justifications. Another way is to use the algorithm
introduced in [17] which directly computes the root justifications. For a knowledge

Algorithm 2 (compDeletion)
Given K = (R, T ,A) and a set of ABox assertions Ad which should be deleted,
construct a minimal set A′ with A′ ⊆ A and (R, T ,A \A′) 6|= A for all A ∈ Ad.
Input: K = (R, T ,A), a set of ABox assertions Ad which should be deleted and
the desired semantics.
Output: A deletion for Ad in K.

1: RJust = set of all root justifications for Ad in K
2: HS = set of all minimal hitting sets for RJust
3: Deletion = chooseDeletion(K, u(Pd, Pi, Pw),HS , Semantics)
4: return Deletion

base K and a set of ABox assertions Ad which are supposed to be deleted, line 1
computes all root justifications for Ad in K. Next, line 2 constructs all minimal
hitting sets for the set of root justifications. Line 3 uses these minimal hitting sets
together with a specified semantic to choose a subset of the ABox which should
be deleted. The next Section presents possible choices for these semantics.



6. Semantics

In the previous section, we learnt that there can be more than one possible way
to delete a set of assertions from a knowledge base. Furthermore, there might be
more than one possible way to debug a knowledge base resulting from an insertion.
To handle this problem, different semantics are suggested to choose among the
possibilities.

6.1. Semantics for Deletion

Maxichoice Semantics [8]: In maxichoice semantics, the deletion with minimal
cardinality is chosen. This corresponds to maximizing the number of ABox as-
sertions which are preserved. Thus the resulting ABox implements the deletion
while possessing maximal cardinality.

In cases, where there is more than one deletion with minimal cardinality, the
maxichoice semantics does not specify which of these deletions to choose. We
refrain from choosing an arbitrary one just for the sake of determinism. One way
to solve this issue would be to offer the different possibilities to the user and let the
user choose. Another possibility would be to use additional information associated
with the ABox assertions like suggested in the priority/credibility based semantics
introduced at the end of this section.

Meet Semantics [8]: This semantics is rather pessimistic since it removes all as-
sertions occurring in a deletion. Thus the resulting ABox implements the deletion
while possessing minimal cardinality.

Priority/Credibility based Semantics [8]: In some cases, additional information
associated to the assertions in the ABox is available. Examples for this kind
of information are credibility or time stamps and are summarized by the term
provenance information. This provenance information can be used to decide which
assertions to delete by for example preferably deleting those assertions associated
with a low credibility or an old time stamp [20].

6.2. Semantics for Insertion

Insertion of a set of ABox assertions Ai can be accomplished by adding it to the
knowledge base and then checking if the resulting knowledge base is satisfiable.
If it is satisfiable, the resulting knowledge base corresponds to the result of the
update operation. If it is unsatisfiable, the methods for deletion can be used to
remove the inconsistencies from the knowledge base by deleting {⊥} from the
knowledge base. As soon as a debugging step is used during an insertion, there
might be several possibilities to perform the insertion. Different semantics can be
used to pick one of these possibilities. Please note that it is possible that some (or
even all) possibilities to debug the knowledge base remove the inserted assertions.

In addition to the semantics introduced in the previous section, semantics
for insertion can take into account the fact that one can distinguish between
old information, which was present in the ABox before the insertion and new
information which was introduced by the insertion. The semantics presented below
build on this distinction and were first introduced in [2] for DL− LiteRDFS¬ .



Brave Semantics: This semantics gives priority to new assertions which are in-
serted by the query meaning that the possibility to debug is selected which con-
tains the highest number of assertions in Ai.

Note that there are cases, where there is is more than one possible way for
debugging which contains the highest number of assertions in Ai. Similar to the
maxichoice semantics we are facing non-determinism here and refrain from choos-
ing an arbitrary possibility to debug just for the sake of determinism. One way to
solve this issue would be to leave the decision to the user by offering the different
debugging possibilities to the user. Another possibility would be to use additional
provenance information associated with the ABox assertions.

Cautious Semantics: In contrast to brave semantics, the cautious semantics gives
priority to assertions which were already present before the insertion. This means
that the possibility to debug is selected, which preserves as many of the already
present assertions as possible. In the worst case, the debugging step removes the
inserted assertion, making the insertion a semi-revision operator as corresponding
to the one introduced in [11].

Fainthearted Semantics: This semantics is rather overcautious since it totally
discards an insertion as soon as there is a conflict between the inserted assertions
and the already present assertions.

6.3. Update Semantics taking into account the Interplay of Deletion and
Insertion

Next, we introduce another semantics, which aims at optimizing the overall result
of an update. When considering the deletion and the insertion part of an update
separately, it is possible that the insertion cancels the deletion. More precisely, it
is possible that inserting assertions causes other assertions to be entailed which
were deleted by the very same update.

Example 4 We consider an update operation deleting StudentTrainee(john) and
inserting Secretary(john) into the knowledge base introduced in Sect 2. As shown
in Ex. 1, there are two possibilities to delete StudentTrainee(john) from the knowl-
edge base, which we here denote by Del1 and Del2:

Del1 = {StudentTrainee(john),Employee(john),SoftwareEngineer(john)}

Del2 = {StudentTrainee(john),Student(john)}

We choose Del1 to perform the deletion of StudentTrainee(john) leaving only
the assertion Student(john) in the ABox. Next we address the insertion: Adding
Secretary(john) to the ABox together with the TBox assertions (2) and (3) from
Sec. 2 causes the deleted assertion StudentTrainee(john) to be entailed which
clearly is not intended.

Ex. 4 illustrates that, in order to optimize the overall result of an update
operation, it might be worthwhile not to consider the deletion and the insertion
separately but to take their interplay into account. Before presenting semantics



implementing this idea, we introduce the notion of an implementation of an update
operation to a knowledge base, which corresponds to one possibility to perform an
update operation to this knowledge base.

Definition 9 (Implementation of an Update Operation) Let K = (R, T ,A) be a
knowledge base, u(Pd, Pi, Pw) an update operation, Ad the set of ABox assertions
for the result of asking CONSTRUCT Pd WHERE Pw, Ai set of ABox assertions for
the result of asking CONSTRUCT Pi WHERE Pw to K. Then (Del ,Dbg) is called an
implementation of update operation u(Pd, Pi, Pw) w.r.t. K, if Del is a deletion for
Ad in K and Dbg is a deletion for {⊥} in (R, T , (A\Del)∪Ai). The knowlege base

resulting from (Del ,Dbg) is defined as K(Del,Dbg)
u(Pd,Pi,Pw) = (R, T , ((A\Del)∪Ai)\Dbg).

We omit the knowledge base if it is clear from the context and simply say
that (Del ,Dbg) is an implementation of update operation u(Pd, Pi, Pw). Next we
present query-driven semantics which, can be used to choose one of the possible
implementations of an update operation u(Pd, Pi, Pw).

Query-driven Semantics: Given knowledge base K = (R, T ,A), an update oper-
ation u(Pd, Pi, Pw), Ad, Ai defined as in Def. 9 and an implementation (Del ,Dbg)

of u(Pd, Pi, Pw). All assertions in Ad which are not entailed by K(Del,Dbg)
u(Pd,Pi,Pw) can

be seen as successful deletions (w.r.t. this implementation (Del ,Dbg)). Similarly,

all assertions in Ai which are entailed by K(Del,Dbg)
u(Pd,Pi,Pw) can be seen as success-

ful insertions (w.r.t. this implementation (Del ,Dbg)). The aim of query-driven
semantics is to maximize the number of successful deletions and insertions.

Definition 10 (Query-driven Update Semantics) Let K = (R, T ,A) be a knowl-
edge base, u(Pd, Pi, Pw) an update operation, Ad the set of ABox assertions for
the result of asking CONSTRUCT Pd WHERE Pw and Ai the set of ABox assertions
for the result of asking CONSTRUCT Pi WHERE Pw to K. The query-driven update

of K w.r.t. u(Pd, Pi, Pw) is KSemqd

u(Pd,Pi,Pw) = (R, T , ((A \ Del) ∪ Ai) \ Dbg) where

(Del ,Dbg) is the implementation of u(Pd, Pi, Pw) maximizing

|{α ∈ Ad | K(Del,Dbg)
u(Pd,Pi,Pw) 6|= α}|+ |{β ∈ Ai | K(Del,Dbg)

u(Pd,Pi,Pw) |= β}| (9)

If the SPARQL update query does not contain a DELETE clause, Del is empty
and the query-driven update semantics behaves like the brave semantics. If the
SPARQL update query does not contain an INSERT clause, Equation 9 does not
choose a deletion. For these cases, query-driven semantics should be combined
with one of the semantics for deletion presented in Sec. 6.1.

Note that there are other cases where query-driven semantics still leaves some
choices: there could be more than one combination of deletion and debugging
maximizing Eq. (9). This non-determinism could be avoided by presenting the set
of successful deletions and insertions for these combinations to the user and let
the user decide which of the possibilities is closest to the desired result. Another
possibility would be to enhance the query mechanism such that the user is able
to give priorities to certain parts of the query. Considering for example the query
presented in Sec. 2 the user could specify that the deletion of the StudentTrainee
status is more important than the assignment of those students to course c1.



Example 5 Let us reconsider the update operation introduced in Ex. 4. Please
recall that Ad = {StudentTrainee(john)} and Ai = {Secretary(john)} and that
two different deletions Del1 and Del2 were presented.

(A \Del1) ∪ Ai = {Student(john),Secretary(john)}

(A \Del2) ∪ Ai = {SoftwareEngineer(john),Employee(john),

Secretary(john)}

Both (A\Del1)∪Ai and (A\Del2)∪Ai are satisfiable w.r.t. the TBox, hence no
debugging step is necessary. The two possible results of the update operation are:

K1 = (T , (A \Del1) ∪ Ai)

K2 = (T , (A \Del2) ∪ Ai)

Secretary(john) constitutes a successful insertion in both K1 and K2. Since K1 |=
StudentTrainee(john) and K2 6|= StudentTrainee(john), StudentTrainee(john) is
a successful deletion in K2 but not in K1. Query-driven semantics results in K2

since it maximizes the number of successful insertions and deletions.

Query-driven semantics aims at the optimization of the overall result of the query.
In extreme cases, where the sizes of Ad and Ai differ dramatically, it could happen
that the smaller set is neglected. For example if |Ad| = 5 and |Ai| = 1000,
Eq. (9) is dominated by the set of successful insertions. This could be remedied by
introducing a weight indicating the importance of the desired deletion or insertion.

7. Conclusion and Future Work

In this paper, we presented an approach to compute SPARQL ABox update in
the presence of OWL-DL TBoxes. We address the fact that there might be more
than one way to perform a deletion with different semantics according to which
one of the possibilities is chosen. To master the interplay of the deletion and the
insertion task of a SPARQL update query, we introduce query-driven semantics
which aim at maximizing the overall effect of an update operation.

An implementation of our approach is on the way. We are using SPARQL-DL
to evaluate the CONSTRUCT query and Pellet to compute all possible justifications.

Besides evaluating the approach, future work addresses the use of summa-
rization techniques to efficiently compute justifications. Since the set of ABox
assertions which are supposed to be deleted are created by a basic graph pattern,
this set is likely to contain many similar assertions. We want to exploit these
similarities by first aggregating similar individuals into one individual and then
computing the justification for a bunch of assertions in one single step. Possible
summarization techniques we are looking into are [7] and [10].
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