TOWARD A PROGRAMMING LABORATORY

Beranek and Newman

Teitelman

Inc

50 Moulton Street

Warren
Bolt
Cambridge,
Abstract

This paper discusses the feasibility

and desirability of constructing a "pro-
grammling laboratory"” which would cooperate

with the wuser in the development of his
programs, freeing him to concentrate more

fully on the conceptual difficulties of

the problem he wishes to solve. Experience
with similar systems in other fields in-
dicates that such a system would signifi-
cantly increase the programmerfs producti-
vity.

The PILOT system, implemented within
the interactive BBN LISP system, is a step
in the direction of a programming labora-

tory. PILOT operates as an interface bet-
ween the user and his programs, monitoring
both the requests of the user and the oper-
ation of his programs. For example, If

PILOT detects an error during the execution
of a program, it takes the appropriate cor-
rective action based on previous Instruct-
ions from the user. Similarly, the user
can give directions to PILOT about the
operation of his programs, even while they
are running, and PILOT will perform the
work required. In addition, the wuser can
easily modify PILOT by instructing it about
its own operation, and thus develop his own

language and conventions for interacting
with PILOT.
Several examples are presented.

Introduction

The research described in this paper
focuses on the programmer’s environment.
This term is meant to suggest not only the
usual specifics of programming system and
language but also such more elusive and
subjective considerations as ease and level
of interaction, "forgivefulness" of errors,
human engineering, and system "lInitiative."
In normal usage, the word "environment"
refers to the "aggregate of social and cul-
tural conditions that influence the life of
an individual." The programmer's enivron-
ment influences, to a large extent deter-
mines, what sort of problems he can (and
will want to) tackle, how far he can go,

and how fast. If the environment is "co-
operative" and "helpful"” -- the anthropomor-
phism is deliberate — then the programmer

can be more ambitious and oroductive. If

Massachusetts

not, he will spend most of his time and
energy "fighting"” the system, which at
times seems bent on frustrating his best
efforts.

Ore immediate goal to strive for is an
environment comparable to that found in the
well designed laboratory of the physical
sciences. Such a laboratory usually con-
tains equipment for many applications as
well as facilities for designing and build-
ing new apparatus, or adapting that alreacfy
present. In a large (well-funded) install-
ation, the researcher will also often have
available assistants for performing the
"routine" tasks. For example, a chemist
might simply request an analysis of a
sample, and not have to itemize each step
in the process. This type of assistant
and assistance frees the researcher for
problems more worthy of his attention.

Computer based systems have been con-
structed that create this type of labora-
tory environment for certain well-defined
areas, e.g., mathematics [3,5,6], design
of electronic circuits [7], and general-
ized graphical design [4,8], such as for
aircraft, automobiles, bridges, etc.

These systems are organized to allow
the computer to perform the routine work
(where routine is a function of the soph-
istication of the system), while the user
guides and directs the process at a rela-
tively high level. For example, in the
mathematical laooratory developed by
Willian Martin, [5], the mathematician
interacts with the computer by asking
questions or making requests. The system
employs graphical input and output (lipsnt-
pen and display) to allow the mathematician
to operate in an environment that closely
resembles the pencil and paper with wnich
he is already familiar. For output, the
display utilizes subscripts, and observes
the conventions concerning physical size,
grouping, and placement of subexpressions
which mathematicians have ado)ted to make
It easier to read and comprehend mathemati-
cal formulae. For input, the mathematician
can communicate directly with the computer
via the light peny either by writing new
expressions, or by pointing to old ones, or
portions thereof.

In a typical case, the user might be try-
ing to find the solution of a differential
equation. On the screen are displayed one
or two equations, while the user has in
his head the name of several other expres-
sions or partial results already studied
and filed away. The user decides to per-
form an action such as substituting a dis-
played equation, solving it for some vari-
able, expanding some subexpression in a
certain way, or perhaps asking to see some-
thing else. He makes the request using a
combination of light-pen and key-board
signals. These are encoded and transmitted
to the system where the appropriate rou-
tines compute or retrieve the required new
expressions and transmit them back to the
display routines which then compile and
display the desired new picture. In this
way, the user can perform in a few minutes
a long and involved analysis which, assum-
ing he did not make any mistakes or lose
track of what he was doing, might other-
wise take him many hours.

This paper describes a step in the
direction of such a laboratory for program-
ming and programmers: the PILOT system.

As with the mathematical laboratory, the
goal is to allow the computer to perform
the routine tasks while the user, in this
case a programmer, is left free to concen-
trate on the more creative aspects of his
problem, which is the writing and debugging
of a program.

Most of the previous efforts bent at
Improving the environment of the program-
mer have concentrated on providing and im-
proving packages, such as editors, com-
pilers, trace packages, display routines,
etc. While a good deal of effort has been
devoted to such facilities in the design
of PILOT, the basic innovation of the
PILOT system Is the emphasis placed on the
problem of making changes In programs. The
reason for this emphasis is that making
changes in programs is the task that oc-
cupies most of a programmers time and ef-
fort, from the early stages In the develop-
ment of programs when they consist primar-
ily of correcting syntactical and simple
logical errors in individual subroutines,
to the final stages when the programmer
makes the type of logical and organizational
changes that affect many different parts of
his program.

The problem of making changes to the
PILOT system itself is handled as a special
case of the problem of making changes in
programs in general. Since PILOT is de-
signed to facilitate making changes in pro-
grams, its tools and techniques can be ap-
plied directly to itself in what is essent-
ially a bootstrapping process. The user
can thus easily introduce new tools and/or
modify existing ones to suit his own methods

_2-

and problems, In short, tailor the per-
formance of the system to suit himself.
Puthermore, PILOT is designed with this in
mind, so that it can cooperate with the
user during this phase of the development.

The PILOT System

PILOT ic Implemented in the LISP pro-
gramming language at Bolt Beranek and
Newman Inc., Cambridge, Massachusetts. [1]
Although there Is a PILOT subsystem in
LISP, all of the features and tools des-
cribed in this paper were incorporated
directly into the BBN LISP system once
their usefulness was established, and are
now in general use by the entire community
of LISP users. It is thus more meaning-
ful to view PILOT as a conceptual system,
a philosophy of design. It is this philo-
sophy that we are trying to Impart, in the
hopes that it may prove useful in the de-
sign and construction of systems in other
languages. ()

Automatic Error Correcting

The initial stages in the implementa-
tion of a large program are usually devot-
ed to the writing and debugging of inde-
pendent component routines. Only after
these have been checked out, at least
superficially, can the programmer begin to
assemble the program and check for inter-
routine problems. However, before the pro-
grammer can even begin to debug a routine,
he must first get it to run, i.e., elimi-
nate those syntactical and/or simple logi-
cal errors that cause complaints from the
language or system in which he Is operat-
ing. Facilitating the correction of these
lowest-level errors would improve the ef-
ficiency of debugging by allowing the pro-
grammer to proceed directly to higher
level problems.

From the user's standpoint, clearly
the best of all possible solutions would
be for the system to correct these low-
level errors automatically and continue
with the computation. This is not far-
fetched: a surprisingly large percentage
of the errors made by LISP users are of
the type that could be corrected by a-
nother LISP programmer without any infor-
mation about the purpose or application
of the LISP program or expression in

(") LISP is especially suited for imple-
menting a system such as PILOT because of
the ease with which LISP programs can be
treated as data by other programs. This
capability is essential for creating tools
which themselves will create and/or modify
programs, an indispensible feature of a
programming laborabory.

question,(*) e.g., misspellings, certain
types of parenthesis errors, etc. If these
corrections were performed automatically
by a program that was called only when
(after) an error occurred in the execution
of a LISP program, it would in no way de-
tract from the performance of the LISP sys-

tem with debugged programs. Thus the ef-
ficiency of the error correcting program
would not be a critical factor in its use-

fulness.

A primitive program which corrected

certain types of spelling errors was im-
plemented in PILOT and users were encour-
aged to experiment with it and comment on

its features. As a result of this experi-
ence, we discovered that in order to be
acceptable to users:

(1)

The program must have a measure of how
certain it is about the nature and cor-

rection of a mistake, and use this
measure in determining the amount of
interaction with the wuser.

The program must be able to distin-

(2)

guish between significant and

trivial corrections, and to be more

cautious, i.e., more interactive,
about correcting the former.

(3) The user must be able to specify to
the program his degree of confidence
in its ability to correct his mis-
takes, as reflected by the amount of
interaction he desires.

(4) The user must be able to interrupt
and/or abort any attempted correction.

(5) The user must be able to disable or
overrule the entire correcting program
if or whenever he wishes.

With these criteria in mind, a more
sophisticated set of error correcting
routines were implemented. These routines
make up the DWIM package, for Do-What-I-
Mean. The following output is represent-
ative of the kind of corrections and flavor
of interaction of DWIM. User input is pre-
ceded by an arrow («).

In this example, the wuser first de-
fines a function PACT of one argument, N,
whose value is to be N factorial. The
function contains several errors: TIMES
and FACT have been misspelled. The 9 in
N9 was intended to be a right parenthesis
but the teletype shift key was not depress-
ed. Similarly, the 8 in 8SUB1 was intend-
ed to be a left parenthesis. Finally,
there are two left parenthesis in front of
the T that begins the second clause in the

conditional, instead of the

(*)

in

required one.

We that this is also true

other

conjecture
languages.

«DEFINE(((FACT (LAMADA (N}
(COND ((ZEROP M9 1)

((T (TINS N (FACTT BSUB1 K}
{FACT)
«PRETTYPRNT ({FACCT))
aPRETTYORINT
=FACT

(FACT
{LAMBDA
(COND
({FEROP N9 1}
((T (fI¥s N (FACTT BSUB1 H))Y}V)))

(W)

NIL

+FACT(3)

EDITING FACT ...
NG »»--> NJ)
EDITING TACT ...
{COND ({T ==))} >>-=> [COND -=
TIMS=TINfS
FACTT=FACT
EDITING FACT ..,
BSUBY »>»a=> {SUB1
]

(T --))

-

«PRETIYPRINT{(FACT))

{FACT
{LAMBD2
{COKD
{{ZEHOP N)
1)
{T (TIMNES N (FACT (SUB1 ¥3))313)))

(N)

NIL

After
user wishes

defining the function FACT, the
to look at Is definition usinr
PRETTYPRINT, which he unfortunately mis-
spells. Since there is no function PRETTY-
PRNT in the system, an UNDEFINED FUNCTION
error occurs, and the DWIM program is
called. DWIM invokes its spelling cor-
:ector, which searches for the best pos-
sible match a list of functions frequently
used (by this user). Finding one that is
extremely close, DWIM proceeds on the as-
sumption that PRETTYPRNT meant PRETTY-
PRINT, informs the user of this, and calls
PRETTYPRINT.

At this point, PRETTYPRINT would
normally print (FACCT NOT PRINTABLE)
exit, since FACCT has no definition. This
is not a system error condition, but the
DWIM facility is not restricted to just
error conditions. DWIM modifies selected

and

system functions, such as PRETTYPRINT and
DEFINEQ, to make them cooperate more with
the user. DEFINEQ is modified (by ADVISE,
to be described later) to note any new
functions defined by the user, and add
them to the spelling list of user functions.
Similarly, PRETTYPRINT is modified so that

when given a function with no definition,

it calls the spelling corrector. Thus,
PRETTYPRINT determines that the user wants
to see the definition of the function

PACT, not FACCT, and proceeds accordingly.

The user now calls his function FACT.
During its execution, five errors are gener-
ated, and DWM is called five times. t
each point, the error is corrected, a com-
ment made of the action taken, and the com-
putation allowed to continue as if no er-
ror had occurred. Following the last cor-

rection, 6, the value of FACT(3), is print-
ed. Finally, the user prints the new, now
correct, definition of FACT.

In this particular example, the user
was shown operating in a mode which gave
the DIMM system the green light on all cor-
rections. Had the user wished to interact
more and approve or disapprove of the in-
tended corrections at each stage, he could
have operated in a different mode. Or,
operating as shown above, he could have at
any point aborted the correction or sig-
nalled his desire to see the results of a
correction after it was made by typing a
? on the teletype.

We have found from our experience with
DWM that most users are quite willing to
entrust the program with the correction of
errors, although each different user may
want to operate with a different "confi-
dence factor," a parameter which indicates
how sure DWM must be before making a cor-
rection without approval. Above a certain
user-established level, DWMM makes the cor-
rection and goes on. Below another level,
DWM types what it thinks is the problem,
e.g., PRTYPNT MEAN PRETTYPRINT ?, and
waits for the user to respond. In the in-
between area, DWM types what it is about

to do, pauses for about a second, and if
the user does not respond, goes ahead and
does it. The important thing to note is

error has occurred, the user
would have to intervene in any event, so
any attempt at correction is appreciated,
even if wrong, as long as the correction
does not cause more trouble than the orig-
inal to correct¢ Since DWIM can recognize
the difference between trivial corrections,
such as misspellings, and serious correct-

that since an

ions, such as those involving extensive
editing, bad mistakes are usually avoided.
When M does make a mistake, the user

merely aborts his computation and makes
the correction he would have to make any-

way.

Error Handling in General

Certain types of errors that occur in
the BBN LISP system cannot be handled by
the DWIM program, e.g., NON-NUMERIC ARG,
an error generated by the arithmetic
functions, ARG NOT ARRAY, from the primi-
tive array functions, etc. These are data

type errors.(*) Another class of errors
not handled by DWMM are the 'panic" errors:
BP FULL, a complaint from the compiler
meaning it has run out of binary program
space; NONXMEM, an attempt to reference
non-existent memory, usually caused by
treating an arrag pointer as a piece of
list structure; PDL OWHW meaning pushdown
list overflow, which usually implies a
looping program, etc. Both data type and
ﬁanic errors are not fixable, but they are

helpable.

In our system, whenever an error

occurs, it causes a trap to a user-modi-
fiable program. (It is throu%h this pro-
gram that M works.) If has not

been enabled, or if the user aborts an at-
tempted DWM correction, or if DIMM can-
not fix the error that has occurred, the
system goes into a "break" and allows the
user to Interact with the system While
maintaining the context of the program in
which the error occurred. This allows the
user to intervene to try to rectify the
problem, or to salvage what he can of the
computation. While in the break, the
system accepts and evaluates inputs from
the teletype. Since all of the power of
the system Is available to him, the user
can examine variables, change their values,
define and evaluate new functions, and
even edit functions he is currently in. If
another error occurs in a computation re-
quested while in the break, the system

oes into a second, lower break, and so on.
hus it is rarely the case that the results
of a lengthy computation are lost by the
occurrence of an error near its end.

illustrates this

The following example
ll:ll Or

process (user input is preceded by
"*"). The user is running a large account>-
Ing system, one of "whose subroutines is to
perform the alphabetization of a list of

names. The first indication of the pre-
sence of a logical error in the system is
the message A PT TO CLOBBER NIL, mean-

ing the pro?ram is attempting to change
the value of NIL. The system goes into a
break (1), and the user tries to determine
where the error occurred by performing a
backtrace (2). He sees that he is in the
function ALPHA, interrogates the value of
some of ALPHA'S variables (3?], and realizes
that the problem arose when his alphabeti-
zation routine attempted to compare the
last element In the list to the one follow-
ing it, l.e. and end-check problem. While
still in the break, he proceeds to edit
the function ALPHA (4). DMM corrects his
spelling, and since happens to be

in fact
is impossi-

Sometimes these errors are

G but it

caused by misspellings,
ble to tell in general.

compiled, the editor retrieves its de-
fining symbolic expression from its pro-

pert%/ list, typing PFOP (5) to call this
to the user's attention. Consulting his
listing, the user instructs the editor to

find the expression beginning with COND
that contains RETURN, (6) which he then
prettyprints V)' The expression he wants
iIs the one before this one, so he backs up
&8), and makes the appropriate correction
9).He then recompiles ALBHA (10).

ATTEMPT TO CLOBBER NIL
TEITELMAN
IN RPLACA

(RPLACA BROKEN)
BT 2
RPLACA

ALPHA

ACCOUNTS2

ACCOUNTS1

ACCOUNTS

-

(SOBROW OUILLIAN MURPHY BELL NIL) 3
'Y

(AIL)
Z
TEITELMAN
:(EDITF ALHPA) 4
=ALPHA
PROP 5
EDIT
*(COND CONTAINING RETURN) 6
PP 7
(COND
(FLG (GO LP))
(T (RETURN X)))
*BACK PP 8
(NULL (SETO Y (CDR Y)))
*(EMBED SETQ IN CUR) 1
*PP
(CDR (SETQ Y (CUR Y)))
*OK
(ALPHA)
:(COMPILE (QUOTE (ALPHA))) 10
LISTING?
ST
(OUTPUT FILE)
NONE
(ALPHA COMPILING)
(ALPHA REDEFINED)
(ALPHA)
7= 11
U = NIL
V = TEITELMAN
(SETU u YY) 12
(NIL)
SEVAL 13
RPLACA EVALUATED
:VALUE 14

(TEITELMAN)
X
(BOBROW QUILLIAN MURPHY BELL TEITELMAN)
10K

15
RPLACA

Now the user wishes to proceed with
the computation, and so must correct the
immediate error situation in the function
RPLACA. He interrogates the value of
RPLACA'S arguments by typing ?= (11), and
changes the first argument to the value of
Y (12). He then evaluates RPLACA (13),
checks its value (14), and releases the
break by typing OK (15).

As illustrated above, when an error
occurs a user invariably wants to "look
back" and see what happened earlier in the
computation to cause the error situation.
In LISP, all information regarding the
state of the computation in progress is
stored on the push-down list and is ex-
plicitly available to the user and to user
programs. In fact, without this capabil-
ity, DIMM could only be used to correct
certain trivial errors. We believe that
for any type of programming laboratory
environment, it Is absolutely essential
that programs be able to examine the state
of the world at an{ goint in the computat-
ion. In terms of LISP, this implies being
able to examine the sequence of functions
that have been called, and looking at vari-
able bindings. Since the same variable
may be bound in nested function calls a
number of times, expecially during a re-
cursive computation, the program must be
able to specifv which binding of a vari-
able it is referencin% and be able to
change a particular binding if necessary.
For example, had X and Y been the name of
RPLACA's arguments, the user should still
be able to mterroPate the value of X and
Y in ALPHA. Finally, the program must be
able £b cause the computation to revert
back to a specified place on the push-down
list regardless of the number and type of
intervening functions that have been called
All of these capabilities are present In
our system.

User Breaks o]

e capability of stopping a compu-
tationt. andtn|1atinta|ning tits_conltextd_/vhilttaI
executing teletype inputs is also direc
available to the user as an aid in debug-
ging in a variety of forms. [2] In the
simplest case, the user can request that
selected functions be modified to cause
breaks whenever they are called, or only
when a certain condition is satisfied,
e.%.. (BREAK ALPHA (GREATERP (LENGTH X) 10))
will cause the alphabetization routine to
break whenever it is given a list of length
greater than 10. At this point the user
can intervene and examine variables, edit
functions, etc. exactly as with the case
whtta)n aE error occurs and the system causes
a break.

Another way of using the break feature
Is to specify that a function be "broken"
only when it Is called from some parti-
cular function. For example, the user
would be reluctant to break on the function
SETQ, since almost every function uses it.
However, he could (BREAK (SETQ IN ALPHA)),
which would only break on calls to SETQ
from within ALPHA. This is performed by
calling the editor to find and modify all
calls to SETQ inside of the function ALPHA.
Thus the performance of SETQ Is not af-
fected or degraded when called from any
other function.

The user can also request that breaks
be inserted at specified points inside of
a function. The editor is then called (in
this case the function must be an interpre-
ted one, i.e. have an S-expression definit-
ion) to find the appropriate point and insert
the break. For example, the user could
(BREAKIN ALPHA (BEFORE (COND CONTAINING
RETURN))), which would cause a break Just
before executing the indicated form. Al-
ternatively, he can call for a break by
using the function HELP.

Finally, the user can request a break
at any time during a computation by simply
depressing a special key on the teletype.
The next time a function is called, usually
within a few milliseconds, a break will
occur, and again the user can Intervene and
examine the state of the computation, etc.
These capabilities are invaluable for lo-
calizing problems in complex programs,
especially recursive ones, and are powerful
tools for finding where to make changes
that complement those described below that
provide how to make changes.

Advising
PILOT was originally motivated by the
difficulties encountered In using computers

for solving very hard problems, particular-
ly those in the area of artificial intel-
ligence. [9] These problems can be char-

acterized as being extremely difficult to
think through in advance, that I|s, away
from the computer. In some cases, the pro-
grammer cannot foresee the implications of
certain decisions he must make in the de-
sign of the program. In others, he can
compare several alternatives only by try-
ing them out on the machine. Even after
he gets his program debugged, he continues
to make alterations to see their effects.
Only by experimenting with his working pro-
gram can he evaluate its performance or
hope to extend its generality. Since he
cannot accurately predict the effect of
changes on the behavior of the program

because of its size and complexity, he must
adopt the more pragmatic policy of "let's
try it and see what happens." In short, he

must be able to treat the computer as his
laboratory.

Unfortunately, making changes in pro-
grams, especially large and complex pro-
grams, is often not a simple matter. Since
they may require so much effort, many ex-
perimental changes are simply not imple-
mented, with the result that the programs
soon become "frozen." For this reason,
considerable attention and effort in the
design and development of PILOT has been
devoted to the problem of making changes.
One of the results is the concept of

advising.

The operation of advising consists or
modifying the interface between individual
functions in a program, as opposea to mod-
ifying the functions themselves, which is
cdllet editing. The advantage of advising
is that it allows the user to treat sect-
ions of his own (or someone else's) program
as "black boxes," and to make modificat-
ions to them without concern for their

contents. Since each modification is it-
self a small program, and modifications
can be inserted so as to operate either

before or after the original function
would be run, advising is a very general
and powerful concept.

Advising is carried out in LISP by
creating a new function definition in
which the original function definition is
embedded, and surrounded by the "pieces
of advice." This procedure is completely
general: the function being advised can be
arbitrarily large or small, complex or
simple, compiled or interpreted, a system
function or one of the user's own.

ADVICE]
ADVICE BEFORE

ADYICEN

it

{ ORIGINAL FUNCTION |

ADVICEL
ADVICE AFTER

ADVICEM

It

The individual pieces of advice are
each LISP expressions, and so they to are
completely general. Thus a piece of ad-
vice may simply change the value of some
variable, or, at the other extreme, request
a lengthy computation including perhaps
calling the entire advised function recur-
sively. Advice can also be given so as to
bypass the entire advised function.

For example, the user could have re-
paired the problem In ALPHA shown earlier
by giving the appropriate advice to RPLACA
instead of editing ALPHA. Since RPLACA is
called from many functions, the user would
probably want to advise RPLACA IN ALPHA:

ADVISE((RPLACA IN ALPHA) (COND ((NULL U)
(SETQ U Y))))

As with break, this would only modify the
call to RPLACA from within ALPHA.

This operation demonstrates the advan-
tage of advising. It allows the user to
make online modifications quickly and
simply. In addition to using it for cor-
recting bugs, the user can perform modi-
fications for the sake of experimentation,
undo the modifications if he wishes, try
out other configurations, etc., all with-
out disruption to his high-level, problem
oriented train of thought. Such disruption
usually follows when implementing changes
requiring a lengthy sequence of operations.

Note that advising complements rather
than competes with editing as a way of
making changes. In the early stages of de-
bugging, the wuser is primarily attending
to local phenomena in his program, and
thus may find it natural to make changes
by editing. In later stages, he considers
his program more in terms of what each
piece does, rather than how it does it,
and here advising is the tool he wants to
use for making changes.

Advising as a Tool for Modifying the System

Advising not only provides the user
with a convenient tool for making changes
in his own programs, but also with the-
means for experimenting with and tailoring
the system to his own particular tastes.
For example, suppose a user wished to nod-
ify PRETTYPRINT to print comments along
the right had side of the page, where a
comment was to be Indicated as an express-
ion beginning with the atom *. Knowing
that SUPERPRINT is the function that "does
the work" of prettyprinting, he could

ADVISE(SUPERPRINT (COND ((EQ (CAR E)
(QUOTE *)) (RETURN (COMMENT E)))))

and then define the function COMMENT to do
the appropriate formatting. (*)

TD The comment feature is now a part of
our system. However, it was initially in-
troduced in precisely this way, in order
to evaluate its usefulness. Advising thus
provides system designers with a quick
means for trying out new features.

Admittedly this particular piece of
advising requires the user to have some
detailed knowledge of the workings of
PRETTYPRINT. However, the important point
is that by using ADVISE, changes can be
easily effected, even with system functions
where changes were not anticipated.

Conversational Input

PILOT" can be vTewed as an interface
between the user and his programs. The
following somewhat over simplified diagram
illustrates the user-PILOT-program con-
figuration:

1 2 .
USER PILOT paSERS s
4 3
Most of the effort in PILOT is con-
centrated at interface 2 and 3. However,
in order to be really effective, a pro-

gramming laboratory should not only pro-
vide the means whereby changes can be ef-
fected immediately, but also in a way that
seems natural to the user. Accordingly,
we have been experimenting with an English-
to-LISP translating program that operates
at interface 1, and translates the user's
requests to PITOT into the appropriate
LISP computation. The following dialogue
gives the flavor of user-PILOT interactions
obtained with this program. User input is
preceded by ">."

«PILOT(T)

PROCEED:

»TELL PROGRESS: IF THE CANWIBALS CUTNUMBER
THE MLSSTOMARIES ONH SLDEY, OR THE CANNIBALS
NJINUNBER THY MISSIQNARIES ON SIDEZ,

THEN RETHEN FALSE,

THE CANNIbBALS CUTNUMBER THE MISSIONARIES
OK SIDEY 7?

>THE X OUTNUMBER THE ¥ ON Z MEANS

Y IS COKTAINED IN Z AND THE NUMBER OF X

IN Z IS GREATER THAN THE NUMBER OF Y IN I,

THE NUMYFHR OF X IN Z 27

»DEFINF wUKBER, X Y, AS PROG (N)
S5ET 3 TD 43

LP: IF¥ T L5 wAPTY THEN RETURN N,
IV X 1% egUaAL TO THE FIRST MEMBER OF Y

THEN LNCHEMEHT N;

SET v T THE HEST oOF Y:
GD Tn Lp,

(HUMBKR)

>THE NUAQER QF X AN 2 MEANS

I UNDERSTARKRD,

sCONTINT:

NUMBER X Z.

I UNDERSTAND.
>CONTINUI-:

PROGRESS

The user instructs PILOT to advise
the function PROGRESS with the statement
beginning "TELL PROGRESS:" PILOT re-
cognizes this form of request, but does
hot understand the part about outnumbering.
The user then attempts to explain this
with the input beginning THE X OUTNUMBER
THE Y. This statement will cause an ad-
dition to PILOT'S already fairly extensive
capability for converting English state-

ments to LISP, so that PILOT will be able
to understand expressions of this type en-
countered in the future. However, PILOT

cannot interpret the phrase THE NUMBER OP
X IN Z in this explanation, and so inter-
rogates the user at this lower level. At
this point, the user defines a new function
NUMBER, and then explains the troublesome
phrase in terms of this function. PILOT
responds that it "understands." The user
then instructs PILOT to continue with what
it was doing, namely translating the ex-

planation of OUTNUMBER. When this is com-
pleted, the user instructs PILOT to con-
tinue with the original request, which

PILOT now successfully completes.

The current English-to-LISP translator
contains a large assortment of useful, if

ad hoc, transformational rules written in
FLIP, [10], a string processing language
embedded in the BBN LISP system. The set

of FLIP rules can be easily expanded or
modified. For example, the dialogue shown
above resulted in rules for transforming
expressions of the form THE X OUTNUMBER
THE Y ON Z and for THE NUMBER OF X IN Z
being added to the translator

In addition to the FLIP portion of the
translating program, there is a post-
processor which allows intermingling of
LISP expressions with the English, as well
as a sort of pidgin-LISP which looks like
LISP with the parentheses removed. The
translator also contains specialize infor-
mation for dealing with quantifiers and
and-or clauses. For example, the following
expressions will be translated correctly
into the equivalent LISP forms.

NO MEMBER OF X IS ATOMIC AND NOT NULL

THE FIRST ELEMENT OF X IS GREATER THAN THE
SECOND AND NOT LESS THAN THE THIRD

THE FIRST ELEMENT OF SOME MEMBER OF X IS
A NUMBER THAT IS GREATER THAN THE
SECOND ELEMENT

The translator also "remembers" cer-
tain contextual information such as what
was the last operation requested, what
function it referred to etc. For example:

>TELL FOO: IF ITS FIRST ARGUMENT IS ATOMIC
THEN RETURN IT,
FOO

SWHAT IS ITS SECOND ARGUMENT?
Y

We are not asserting that English is
a good or even desirable programming
language. However, if the user is think-
ing about his programs in English, then
providing him the facility for expressing
requests in English will allow him to
concentrate more fully on the problem at
hand.

Improving PILOT

"PILOT is the result of an evolution-
ary process extending over more than two
years. However, there is no reason to
assume that this process has terminated,
nor that PILOT has reached some sort of
ultimate state." [9] This statement was
written in my Ph.D. thesis three years
ago, and in the elapsed time, many of the
goals established for improvements and
additions to PILOT have been realized in
our present system. But the statement is
still true, and the process still continues.

One area of current interest is that
of program-writing programs. Programming
languages are.currently designed to allow
the programmer to express the operations
he wants the computer to perform in a
simple and concise fashion. However, often
the programmer many not know precisely what
operation he wants the computer to perform,
although he may have a clear idea of what
he wants the program to accomplish. That
is, he may be able to give a description
of its output, or the changes it should
make in a data structure. This is not to
say that the programmer could not con-
struct the program. However, a system
which could accept more goal-oriented
descriptions of tasks and produce programs
to accomplish them, even if only effective
for simple, subroutine-level tasks, would
further free its users for high-level
operations. Such a system would require
a fair degree of problem solving capabil-
ity, and should have a sufficiently rich
store of information about programming
and programs to enable it to determine
similarities in tasks. It should be able
to adapt previously written or construct-
ed programs to a new task. In other words,
we are trying to construct a system that
can handle more of the routine aspects of
programming, in order to free the human
to concern himself more with the creative
aspects of the problem. This is the
basic philosophy of the PILOT system:
let the computer do it. The significance
of PILOT is that it demonstrates this
feasability and desirability of ths
approach. Even in its current form,
PILOT clearly shows that it is possible
to get computers to participate in, and
cooperate with, research efforts in

programming to a much greater extent than
Is now being done.

References
1. Bobrow, D.G., Murphy, D.L. and

Teltelman, W. The BBN LISP System,
April 1969.

2. Bobrow, D.G. and Teltelman, W.
Debugging In_an On-Line Interactive
LISP, November 1967. Bolt Beranek
and Newman Inc

3. Engelman, C. "MATHLAB 68" IFIP Congress
68, pp. B91-B95.

4. Johnson, T.E. "Sketchpad IIl1: A
Computer Program for Drawing In Three
Dimensions," Proc. SJCC, Spartan Press,
Baltimore, Maryland. 1963

5. Martin, W.A. Symbolic Mathematical
Laboratory, Doctoral Dissertation,
MIT, Cambridge, Massachusetts,
January 1967. (also Report TM-36,
Project MAC, MIT)

6. Maurer, W.D. "Computer Experiments in
Finite Algebra," Comm. ACM, Vol. 9,
No. 8, August 1966, pp. 589-603.

7. Reintjes, J.F. and Dertouzos, M.L.
"Computer-Aided Design of Electronic
Circuits," presented at WINCON Confer.,
Los Angeles, California, February 2-5,
1966.

8. Sutherland, I.E. "SKETCHPAD: A Man-
Machine Graphical Communication System,"
Proc. SJ'CC, Spartan Press, Baltimore,
Maryland. 1963

9. Teltelman, W. PILOT: A Step Toward
Man-Computer Symbiosis, Doctoral
Dissertation, MIT, Cambridge, Massachu-
setts, June 1966. (also Report TR-32,
Project MAC, MIT)

10. Teltelman, W. Design and Implementation
of FLIP, A LIsP Format Directed LisT
Processor, BBN Report No. 1495, July

-8 a-

