Computer Science > Computation and Language
[Submitted on 1 Jul 2024]
Title:TimeToM: Temporal Space is the Key to Unlocking the Door of Large Language Models' Theory-of-Mind
View PDF HTML (experimental)Abstract:Theory of Mind (ToM)-the cognitive ability to reason about mental states of ourselves and others, is the foundation of social interaction. Although ToM comes naturally to humans, it poses a significant challenge to even the most advanced Large Language Models (LLMs). Due to the complex logical chains in ToM reasoning, especially in higher-order ToM questions, simply utilizing reasoning methods like Chain of Thought (CoT) will not improve the ToM capabilities of LLMs. We present TimeToM, which constructs a temporal space and uses it as the foundation to improve the ToM capabilities of LLMs in multiple scenarios. Specifically, within the temporal space, we construct Temporal Belief State Chain (TBSC) for each character and inspired by the cognition perspective of the social world model, we divide TBSC into self-world beliefs and social world beliefs, aligning with first-order ToM (first-order beliefs) and higher-order ToM (higher-order beliefs) questions, respectively. Moreover, we design a novel tool-belief solver that, by considering belief communication between characters in temporal space, can transform a character's higher-order beliefs into another character's first-order beliefs under belief communication period. Experimental results indicate that TimeToM can dramatically improve the reasoning performance of LLMs on ToM questions while taking a big step towards coherent and robust ToM reasoning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.