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Abstract

Bandit problems are a classic way of formulating
exploration versus exploitation tradeoffs. Auer et
al. [ACBFS02] introduced the EXP4 algorithm,
which explicitly decouples the set of A actions
which can be taken in the world from the set of M
experts (general strategies for selecting actions)
with which we wish to be competitive. Auer et al.
show that EXP4 has expected cumulative regret
bounded by O(

√
TA logM), where T is the total

number of rounds. This bound is attractive when
the number of actions is small compared to the
number of experts, but poor when the situation is
reversed. In this paper we introduce a new algo-
rithm, similar in spirit to EXP4, which has a bound
ofO(

√
TS logM). The S parameter measures the

extent to which expert recommendations agree; we
always have S ≤ min {A,M}. We discuss practi-
cal applications that arise in the contextual bandits
setting, including sponsored search keyword ad-
vertising. In these problems, common context
means many actions are irrelevant on any given
round, and so S << min {A,M}, implying our
bounds offer a significant improvement. The key
to our new algorithm is a linear-programing-based
exploration strategy that is optimal in a certain
sense. In addition to proving tighter bounds, we
run experiments on real-world data from an on-
line advertising problem, and demonstrate that our
refined exploration strategy leads to significant
improvements over known approaches.

1 Introduction
The various formulations of the k-armed bandit problem pro-
vide clean frameworks for analyzing tradeoffs between ex-
ploration and exploitation, and hence have seen extensive at-
tention from researchers in a variety of fields.

A bandit problem takes place over a series of rounds. On
each round t, the algorithm selects some action át ∈ A to
be executed in the world. After át is chosen, a reward rt(át)
is obtained and observed by the algorithm. The goal is to

maximize the sum of rewards
∑
t rt(át). In this paper we

adopt the nonstochastic viewpoint: we make no assumptions
about the source of rewards, and so seek bounds that hold
for arbitrary sequences of reward vectors (we assume each
reward is in [0, 1]).1 It is not possible to make any guaran-
tees about cumulative reward (for example, we might face a
sequence of vectors where every action on every round gets
reward 0). Instead, algorithms for this problem bound per-
formance in terms of regret, the difference between the al-
gorithm’s cumulative reward and the reward achieved by the
best fixed action. Such nonstochastic assumptions are justi-
fied in changing worlds, where the past performance of ac-
tions may not be indicative of their future rewards.

In many real-world problems, however, it is not appropri-
ate to compare ourselves to the performance of the best fixed
action: for example, suppose the actions are advertisements
that could be shown in response to queries on a search en-
gine. Any single ad will have terrible performance if shown
for all queries, and so treating this as a single multi-armed
bandit problem would provide extremely weak guarantees.
Instead, our approach decouples the actions A that can be
taken in the world from the set of strategies (experts)Mwith
which we wish to be competitive. This approach is not new
to this paper: the EXP4 algorithm of [ACBFS02] addresses
this problem. However, the bounds for that algorithm are
only useful when the set of strategies M is larger than A.
We propose and analyze a new algorithm for this problem
which addresses this issue.

For an algorithm to perform as well as the best expert
from M, it must implicitly estimate the cumulative reward
obtained by each expert. If experts often agree on the ac-
tions they recommend, intuitively this estimation problem
should become easier; however, current bounds for the prob-
lem do not reflect this. We propose a new algorithm, NEXP
(the N is for Nonuniform exploration), which solves a lin-
ear program to select a distribution on actions that offers a
locally optimal (with respect to our analysis) balance of ex-
ploration and exploitation. This algorithm has a bound of
O(
√
GS logM) on total regret, where M = |M|, A = |A|,

G is a bound on the best expert’s cumulative reward (for
example, G = T ), and S is a parameter that measures the

1The stochastic version, where the reward of each action is
drawn i.i.d. from some distribution (unknown to the algorithm)
on each round, has also been extensively studied. Lai and Rob-
bins [LR85] is the foundational paper.



Alg Bound Example Reference
EXP3 2.63

√
GM logM/T 0.689 [ACBFS02]

EXP4 2.63
√
GA logM/T 2.178 [ACBFS02]

NEXP 2.63
√
GS logM/T 0.097 this paper

Table 1: Bounds for the bandit problem with expert advice
with A actions and M experts. G is a bound on the reward
of the best expert. The parameter S, introduced in this pa-
per, satisfies S ≤ min {A,M}, and is often much less. To
make these bounds concrete, the “Example” column shows
the bound on expected regret per round for A = 10000,
M = 1000, S = 20, and T = G = 100, 000. Note that
the bound for EXP4 is vacuous. EXP3 directly selects ex-
perts, without using the structure induced by the actions.

extent to which the expert’s recommendations agree. Impor-
tantly, S ≤ min {A,M}, and for some problems (such as
the sponsored search advertising problem mentioned above)
it can be many orders of magnitude smaller.

The paper is organized as follows: Section 2 completes
the formal statement of the problem, defines notation, and
compares the bounds for our algorithm to previously pub-
lished results. Section 3 introduces several real-world in-
stances of this setting where the tighter bounds proved can
have significant practical impact. Section 4 summarizes re-
lated work. In Section 5 we introduce our algorithm and
present and prove bounds. Section 6 presents experiments.

2 Preliminaries
An instance I = (A, r, e) of the bandit problem with ex-
pert advice is defined by a sequence of reward vectors that
is fixed in advance, with rewards bounded in [0, 1], that is
rt : A → [0, 1]. The bandit algorithm has access to the rec-
ommendations of M experts from a set M. Each expert i
suggests a probability distribution ei,t over actions on each
round t. These recommendations must be fixed (though not
necessarily known to the algorithm) in advance, to the extent
that they do not depend on the actions selected on earlier
rounds. We discuss the ramifications of this assumption in
the next section.

Our goal is to construct a randomized algorithm that on
each round proposes a distribution p over the actions in such
a way that our cumulative regret is small. In order to formal-
ize the notion of regret, let Gi be a random variable (with
respect to the distributions ei,t) giving the performance of
the i-th expert on a fixed problem instance I. Then, taking
expectation with respect to the draws from ei,t,

E[Gi] =
T∑
t=1

∑
a∈A

ei,t(a)rt(a) =
T∑
t=1

ei,t · rt

is the expected performance of the i-th expert on I. We
then define GOPT = maxi {E[Gi]} and GALG =

∑
t rt(át),

where át is the action chosen by the algorithm on round t.
Then,

Regret = GOPT −GALG.

The cumulative reward GALG of the algorithm is a random
variable (with a distribution dependent on the randomization

used by the algorithm in choosing the át), and so Regret is
also a random variable.

Since only rt(át) is observed, even post-hoc we will not
be able to exactly calculate our regret as in the experts set-
ting where rt is fully observable;2 instead we can bound
E[Regret], the algorithm’s expected regret. Unless otherwise
stated, expectations are with respect to any internal random-
ness of the bandit algorithm. In the case where experts make
probabilistic recommendations e, this expectation may im-
plicitly include draws from these distributions, depending on
whether the given algorithm internally samples from these
distributions. The notation used in this paper is summarized
in Table 2. We use subscripts for time, but sometimes omit
them when referring to time t, so wi is wi,t implicitly.

Our Main Result We can now state the main theoretical
result of this paper. Define

st =
∑
a

max
i
{ei,t(a)} .

Observe that st ≤ A, and also st ≤
∑
a

∑
i ei(a) = M . If

all the experts recommend the same distribution, then st =
1. If all experts are deterministic, then st is the number of
distinct actions recommended by the experts.

Our main theorem (stated fully as Theorem 3) shows that
the NEXP algorithm we introduce, when run with appropri-
ate parameters, satisfies

E[Regret] ≤ 2.63
√
SG lnM (1)

where S = maxt {st} ≤ min {A,M}.
The dependence on the maximum of st over all rounds

is perhaps unsatisfying: suppose on a single round all the
expert are “confused” and each puts probability 1.0 on a sep-
arate action: suddenly S = M , and our bound is no better
than EXP3, even if on every other round the experts agree
entirely—clearly a tighter bound should be possible in this
case. Under mild assumptions on the rewards of the problem,
we strengthen our main theorem to handle this situation, re-
placing S in Equation (1) with S̃, the harmonic mean of the
ns largest st; the precise statement is given as Theorem 6.

Comparison to Previous Bounds The first algorithm
proposed for the bandit problem with expert advice was
EXP4 [ACBFS02], which bounds the expected regret by
O(
√
GA logM), where G is an upper bound on GOPT.

Since rewards are in [0, 1], one can always use G = T . Di-
viding the bound by T shows that the per-round regret goes
to zero as T →∞, and so this is a no-regret algorithm. This
bound is good when the number of actions is small and the
number of experts is large.

What if the number of actions is much larger than the
number of experts? If we have deterministic experts that
recommend a single action ai (e.g., ei(ai) = 1), then we
can construct a reward vector r′ directly on experts, where
r′(i) = ei,t · rt = rt(ai,t). Now we apply a standard
nonstochastic multi-armed bandit algorithm (say, EXP3, also
from [ACBFS02]) where the arms of the bandit problem are

2[FS95] describes the fully-observable experts setting in de-
tail; for a comparison of the fully and partially observable cases,
see [DHK07].



Experts Actions/Ads 

Discount Climbing Gear

Buy Pet Lizardsm
1

1-800-Rosesm
2

Digital Camera Supplym
3

Best Local Floristsm
4

Cheap MP3 Playersm
5

Figure 1: The ad selection bandit problem with expert ad-
vice. Each expert i corresponds to a deterministic function
mi mapping queries to a recommend ad to show for the
query. While the set A of all ads can be very large, given
knowledge of the query many of the schemes mi are likely
to suggest the same action/ad. Our algorithm leverages this
fact to achieve sharper regret bounds. In this example round
(considering only the experts and actions shown), we have
M = 5, A = 6, and st = 2.

the deterministic experts from the original bandit problem
with expert advice. This gives a bound of O(

√
GM logM)

on expected regret, which is better than the bound of EXP4
when A > M . If the recommendations ei are stochastic,
ei,t · rt is not fully observable, but a method based on sam-
pling deterministic experts from the stochastic ones can be
applied to obtain bounds on expected regret.

Intuitively, the extra information provided by observing
the recommendations of each expert should only make the
problem easier, but in the case of large numbers of actions
EXP4 actually has worse bounds than EXP3 (and signifi-
cantly worse performance in our experiments as well). Our
new algorithm resolves this deficiency. In fact, our bounds
remain unchanged even if an entirely different set of actions
are recommended on each round or if actions are arbitrarily
re-indexed on each round. This makes it clear that the only
value in knowing the experts’ recommendations (rather than,
say, just being able to blindly follow the experts’ advice)
comes from their use in correlating the performance of the
experts, making estimating each expert’s performance eas-
ier. In the full-information case (i.e., the full reward vector
rt is observed on each round), the actions can be effectively
ignored, as the exact expected performance of each expert
can be computed directly, and so a standard full-information
algorithm like Hedge can be applied directly to the experts
and performs essentially optimally.

These bounds are summarized in Table 1, along with
some concrete average per-round regret numbers; the pa-
rameters for the example were chosen to be reasonable both
in terms of computation and data, but show that both EXP3
and EXP4 might perform poorly. As the gap between S
and min {A,M} grows large, there are problems where
both EXP3 and EXP4 will provide vacuous guarantees, but
NEXP’s bounds will be quite tight.

Problem Statement
A set of actions, |A| = A
M set of experts, |M| = M
a generic action
át action played by the algorithm on round t
T total number of rounds
t index of a round
r reward vector on actions
ei,t(a) expert i’s recommended probability on a on round t
st

P
a maxi {ei,t(a)}

Algorithm
p distribution on actions executed in world
p̃ “ideal” (non-exploration) distribution on actions
q distribution on experts
w weights on experts
W sum of weights

Bounds and Analysis Variables
GOPT cumulative reward of best expert in hindsight
Gi cumulative reward of the i-th expert
GALG cumulative reward of a bandit algorithm
S bound on st, S ≥ maxt {st}
zt bound on p̃t(a)/pt(a) for all a
Z bound on zt, Z ≥ maxt {zt}
G bound on GOPT

Table 2: Summary of notation.

3 Applications
While the improvement in bounds for bandit problems with
expert advice is interesting from a purely theoretical point of
view, we also believe that many (perhaps even most) real-
world bandit problems are better framed as bandit problems
with expert advice. To support this claim, we consider sev-
eral motivating problem domains where expert advice is par-
ticularly useful and the new algorithms introduced in this pa-
per are particularly advantageous.

Search Engine Keyword Advertising The problem of se-
lecting and pricing ads to be shown alongside Internet search
engine queries has received a great deal of attention lately,
for example [RCKU08, Var07, GP07, WVLL07, PO07].

We can effectively apply our algorithm to this problem
as follows. Consider a set of M different schemes for deter-
mining which ads to show on a particular query. Let A be
the total set of advertisements available to be shown across
all possible queries, and let X be the set of possible queries.
Each (deterministic) expert i is associated with a function
mi : X → A (for simplicity, we assume we show one ad per
query). Clearly, the set A may be extremely large, and the
EXP4 regret bound will likely be vacuous. Further, the set
M may also be very large—suppose, for example, we have
a family of schemes for showing ads that are parameterized
by some vector θ ∈ Θ; we might construct the set M by
discretizing Θ. If Θ has even moderately high dimension,
the square-root dependence on M from EXP3 will be pro-
hibitive. However, here we see that the structure induced by
the context can be used to our advantage: for many queries,
only a small number of ads will be relevant (see Figure 1).



If all of the schemes mi are basically in agreement for most
queries, then our job of selecting the best one should become
much easier. This is exactly the intuition that our algorithm
captures. We apply our algorithm to a problem from this
setting in Section 6, and demonstrate substantial empirical
improvements.

Online Choice of Active Learning Algorithms Baram et
al. proposed using EXP4 to dynamically choose among sev-
eral active learning algorithms in the pool-based active learn-
ing setting [BEYL04]. They empirically evaluate their ap-
proach using EXP4 with M = 3 active learning algorithms;
on each round each algorithm suggests an example from a
poolA of unlabeled examples which it would like to have la-
beled (the size of this pool ranged from 215 to 8300 in their
experiments). Ideally, the reward associated with labelling
a particular example should be the differential improvement
in generalization error gained by having access to the label.
This is not generally available, so [BEYL04] introduced the
Classification Entropy Maximization (CEM) heuristic, and
used it to assign a reward for the example labelled. They
show empirically that this is quite effective, and further that
their approach does a remarkably good job of tracking the
best expert (individual active learning algorithm) with al-
most no regret. In fact, on some problems their combined
approach outperforms any of the individual experts (that is,
achieves negative regret).3

The Contextual Bandits Problem The above applications
can be viewed as examples of contextual multi-armed bandit
problems [LZ07] (also known as bandits with side informa-
tion). In this setting, on each round the algorithm has ac-
cess to a vector xt ∈ X that provides context (side informa-
tion) for the current round, which may be used in determin-
ing which action to take. Formally, an instance of the non-
stochastic contextual bandits problem I = (A, r, x) is given
by a sequence (xt, rt), where the side information xt ∈ X
is observed by the algorithm before at is chosen and reward
rt(at) is obtained and observed.

Rather than try to leverage the context information x in a
general-purpose way that is applicable to arbitrary instances
I = (A, r, x), we consider introducing domain-specific ex-
perts that know how to make use of the side information, but
then ignore the side information in the master algorithm: this
transforms the contextual bandit problem to a bandit prob-
lem with expert advice. A domain-specific scheme for in-
corporating the context can be viewed as an expert template
e′i : X → ∆(A), where ∆(A) is the set of probability dis-
tributions over actions. Using these templates, given an in-
stance I = (A, r, x) of the contextual bandits problem we

3Interestingly, the small M and large A imply that EXP3 gives
better bounds for this problem than EXP4. However, because the
individual algorithms use all of the labels observed so far, the
uniform-random exploration done by EXP4 may in fact be a benefit:
it provides labelled training data to each active learning algorithm
that might not have been available to any of the active learning al-
gorithms if they had been run individually. This may explain both
why EXP4 is so effective despite its poor bounds, and also why the
authors observe that their combined approach can actually outper-
form the individual algorithms. (We will have more to say on the
exact nature of these bounds in a few paragraphs).

construct an instance I = (A, r, e) of the bandit problem
with expert advice by setting ei,t = e′i(xt) for all i and t.
This is the approach implicitly taken in the applications just
discussed.

When this transformation is applied and the context is ac-
tually highly relevant (as is the query in determining which
ads to show), it is likely that the experts access to the com-
mon xt will cause S to be much smaller than A, and so the
approach taken in this paper will be particularly beneficial.

History-Dependent Experts There is a subtle issue with
the application of EXP4 (or our algorithms) to many practi-
cal problems, including the online choice of active learning
algorithms. In this domain, the recommendations ei natu-
rally depend on the observations and context from the previ-
ous rounds. In particular, the recommendations of the active
learning algorithms depend on which examples have previ-
ously been labelled. In a contextual bandits problem, some
experts might be online learning algorithms that continue
to train on the newly labelled examples (xt, rt(at)) (where,
rt(at) can be associated with a label).

In a pure contextual bandits problem, as just defined,
the xt and ei,t are jointly fixed in advance, and so depen-
dence of et on x1, . . . , xt (or even rt) is implicitly allowed
by the bounds. However, if ei,t is actually a function of
a1, . . . , at−1, we cannot bound regret with respect to the ex-
pected gain of following expert i on every time step. Hence,
even though [BEYL04] show that their combined approach
does as well or better than each individual learning algo-
rithm, the bound from EXP4 provides no such guarantee.
Regret bounds still hold, but they bound regret with respect
to the post-hoc sequence of recommendations that each ex-
pert i actually made. It is straightforward to construct patho-
logical examples where this quantity may be very different
than the expected performance of expert i had it been played
on every round (for example, consider an expert that makes
perfect recommendations, but only if its advice is followed
exactly on the first k rounds).

If the experts are history-dependent, our algorithm is re-
ally trying to solve a reinforcement learning problem where
the state is the history of past actions. If it is reasonable
to make assumptions about the transition probabilities and
rewards, or if we are allowed to reset to previously visited
states, then standard reinforcement learning techniques can
be applied, for example [KMN00]. If one believes that only
a limited window of history matters to the performance of
experts, approaches like those of [dFM06] can be adapted.
In this work we are unwilling to make such strong assump-
tions, but it means our bounds can only hold with respect to
the post-hoc recommendations of the experts. However, for
many practical applications (including the online choice of
active learning algorithms setting) it is reasonable to believe
that pathological cases like the above will not occur, or even
that the experts will do better based on the obtained shared
history than if they had been run independently. In these
cases, algorithms for the bandit problem with expert advice
are an appropriate (and easy to implement) option.



4 Related Work
We have already mentioned several important pieces of re-
lated work. For an excellent summary of bounds for standard
bandit problems, comparisons to the full information setting,
and generalizations, see [DHK07].

Langford and Zhang [LZ07] formalize a general contex-
tual multi-armed bandit problem under stochastic assump-
tions. In particular, they assume that each (xt, rt) is drawn
i.i.d. from a fixed (i.e., independent of t) distribution. Their
focus is on the case whereM is an infinite hypothesis space
(but with finite VC dimension), and so their work can be seen
as extending supervised learning techniques to the contextual
bandits problem. When their algorithm is applied to a finite
hypothesis spaceM of size M , they get bounds of the form

O(G2/3A1/3(lnM)1/3).

Thus, compared to EXP4, they get a better dependence on
M and A, but worse dependence on G. However, this is re-
ally an apples-to-oranges comparison, as their work makes a
strong probabilistic assumption on (xt, rt) in order to be able
to handle infinite hypothesis spaces. In contrast, we make no
distributional assumptions and so get bounds that hold for ar-
bitrary sequences (xt, rt). We can also obtain much tighter
bounds in terms of the number of actions A (in some cases
removing the dependence entirely), and we can combine en-
tirely arbitrary and unrelated ways of incorporating the side
information.

Several authors have considered applying bandit-style
algorithms to sponsored search auctions. Explore-exploit
tradeoffs may arise at two different levels in this domain.
Most prior work (including [PO07] and [WVLL07]) has
addressed the tradeoff between showing ads that are known
to have a good click-through-rate (CTR) versus the need
to show ads with unknown CTRs in order to estimate their
relevance. These algorithms directly propose a set of ads to
show on each query. In particular, Pandey and Olston [PO07]
consider a bandit-based algorithm that directly tries to learn
click-through rates as well as correctly allocate ads to queries
in the budget-limited case. Gonen and Pavlov [GP07] study
a similar problem, but also consider advertiser incentives.
Our approach is orthogonal to this work, as we address the
exploration/exploitation tradeoff at the meta-level: given a
selection m1, . . . ,mM of possible algorithms (possibly in-
cluding those from the above references), how do we trade
off evaluating these different algorithms versus using the
algorithm currently estimated to be best?

5 Algorithms and Analysis
The algorithms we analyze have the general form given in
Figure 2; the key distinction between the algorithms in this
family is the choice of the exploration policy Fmix. Our rec-
ommended approach, LP-Mix, is given by the linear program
in the figure. We refer to this algorithm as NEXP(LP-Mix)
or just NEXP.

The distribution p̃ can be viewed as the ideal distribution
to follow if all of our estimates were perfect; it corresponds
to the exponential weighting scheme used by algorithms like
Hedge [FS95]. The key algorithmic choice is how to modify
p̃ to ensure sufficient exploration. It will become clear from

Algorithm NEXP
Choose parameter α and subroutine Fmix

Add the expert e0(a) = 1
st

maxi {ei,t(a)} toM
(∀i ∈M) wi,1 ← 1

for t = 1, 2, . . . , T do
Observe expert distributions e1, . . . , eM

Wt ←
∑M
i=1 wi,t

qi ← wi,t/Wt

p̃(a)←
∑M
i=1 qiei(a)

p← Fmix(p̃, q, e) // For example, LP-Mixα
Draw á randomly according to p.

Take action á, observe reward r(á)

(∀i) ŷi ← ei(á)
p(á) r(á)

(∀i) wi,(t+1) ← wi,t exp(αŷi)

end for
Subroutine LP-Mixα(p̃, q, e) solves for p // Use for Fmix

Solve the linear program below, and return p

max
p,c

c

subject to ∀a p(a) ≥ αmax
i
{ei(a)}

∀a p(a) ≥ cp̃(a)∑
a

p(a) = 1.

Figure 2: Algorithm NEXP. Variables used only in a sin-
gle iteration of the for loop have subscripts t omitted. The
function Fmix takes an ideal exploitation distribution p̃ and
modifies it to ensure sufficient exploration. The solution p to
LP-Mix is the recommended choice for Fmix; other choices
are discussed in the text. Algorithm LP-Mix-Solve (Fig-
ure 3) can be used to solve LP-Mix efficiently.

Lemma 2 that we will want a p that satisfies the following
properties for an appropriate choice of α and as small a zt as
possible:

(α) : ∀t, i, a ei,t(a)
pt(a)

≤ 1
α
, (Z) : ∀a, t p̃t(a)

pt(a)
≤ zt.

(2)
The bound (α) ensures sufficient exploration, in particular
that our importance-weighted estimates ŷi of the true reward
of each expert remain bounded; (Z) bounds the componen-
twise ratio of the exploitation distribution p̃ we would like
to play to the exploration-modified distribution p we actu-
ally play. The need for this componentwise-ratio definition
of “distance” will become clear in the proof of Lemma 2.

For our analysis, we assume our set of experts con-
tains an expert that recommends the distribution e0,t(a) =
1
st

maxi {ei,t(a)} on each round. If this is not the case, M
becomes M + 1 in the bounds, and the e0,t expert can be



added in the algorithm implementation on a per-round basis.

Exploration Strategies We consider several exploration
strategies (subroutines Fmix), all of which we will be able to
analyze using Lemma 2.

UA-Mixγ: uniform distribution on actions. For all a ∈ A,
use

p(a) = (1− γ)p̃(a) + γ
1
A
. (3)

This produces an algorithm that is almost identical to the
original EXP4, and for which we prove identical bounds.
The only difference is that NEXP(UA-Mix) adds an addi-
tional expert e0, while EXP4 adds an additional expert that
plays the uniform distribution over all actions.

UE-Mixγ: uniform distribution on experts. Let pu(a) =
1
M

∑
i ei(a), and for all a ∈ A, use

p(a) = (1− γ)p̃(a) + γpu(a). (4)
This produces an algorithm similar to running EXP3 on the
experts, but it works immediately for experts that recom-
mend general probability distributions, and it takes advan-
tage of importance weighting to update the estimates for all
experts that recommended the action á actually played.

LP-Mixα: “optimal” exploration. Given a constant α, use
the p derived by solving the linear program given in Figure 2.
Theorem 7 gives an efficient, easy-to-implement algorithm
for solving this LP.

We now begin the analysis of these three algorithms in a
unified framework. The next lemma shows that even though
many per-round variables are not independently distributed
due to dependence on the prior actions chosen, in an impor-
tant case we can still treat their expectations independently:

Lemma 1 Let Xt be a random variable associated with the
t-th round of NEXP whose value depends on the outcome of
previous randomness (i.e., the history a1, . . . , at−1). Then,
if for all possible histories a1, . . . , at−1

E[Xt | a1, . . . , at−1] = x̄t
for a fixed value x̄t (independent of the previous a’s, and
hence independent of the distribution p), we have

E

[
T∑
t=1

Xt

]
=

T∑
t=1

x̄t.

The proof follows from linearity of expectation.
The above lemma will typically be applied where the ran-

dom variable Xt depends on the distribution pt; observe that
pt is a fixed distribution given a1, . . . , at−1. The next lemma
gives a general purpose bound in terms of the bounds α and
zt of Equation (2). The results for specific algorithms will
follow by plugging in suitable constants based on the differ-
ent exploration strategies.

Lemma 2 If conditions (α) and (Z) are satisfied by the p
distributions selected by NEXP(Fmix), then

E[GALG] ≥
(

1
Z
− (e− 2)αS

)
GOPT −

1
αZ

lnM (5)

where Z ≥ maxt {zt}.

Proof: Unless otherwise stated, variables are defined as in
Table 2, though in some cases subscript t’s have been added.
All expectations are with respect to the draws át ∼ pt. The
basic proof technique follows the lines of those for EXP3 and
EXP4 (see [ACBFS02] and [CBL06]). The key is relating
Wt, the sum of our weights on the last round, to both our
performance and the performance of the best expert. To do
this, we will use the inequality exp(x) ≤ 1 + x+ (e− 2)x2

for x ∈ [0, 1]. For compactness, we write κ = e− 2 ≈ 0.72.

Wt+1

Wt
=
∑
i

wi,t
Wt

exp(αŷi,t)

≤
∑
i

qi,t[1 + αŷi,t + κ(αŷi,t)2]

= 1 + α
∑
i

qi,tŷi,t + κα2
∑
i

qi,tŷ
2
i,t,

noting that because ŷi ≤ ei(á)/p(á) ≤ 1
α , we have αŷi ∈

[0, 1]. Now, taking logs and summing t from 1 to T , we have
for the left-hand side
T∑
t=1

ln
Wt+1

Wt
=

T∑
t=1

(lnWt+1 − lnWt) = lnWT+1 − lnM,

and using ln(1 + x) ≤ x for the right-hand side, we have

lnWT+1 − lnM︸ ︷︷ ︸
(I).GOPT

≤
T∑
t=1

[
α
∑
i

qi,tŷi,t︸ ︷︷ ︸
(II).GALG

+κα2
∑
i

qi,tŷ
2
i,t︸ ︷︷ ︸

(III). Regret

]
,

(6)
where the underbraces indicate the quantities to which we re-
late each term. First we relate term (I) to the gain of the best
expert. Note that ŷi,t is an unbiased estimate of the reward
we would have received on the t-th round if we had chosen
expert i, and

wi,T+1 =
T∏
t=1

exp (αŷi,t) = exp

(
α

T∑
t=1

ŷi,t

)
.

Thus, wi,T+1 is the exponentiated scaled estimated total re-
ward of expert i. Using the fact that ln

∑
a exp(xa) is a good

approximation for maxa {xa} , we can show lnWT+1 must
be close to the total reward of the best expert. In particular,
for any expert k, we have

lnWT+1 ≥ lnwk,T+1 = α

T∑
t=1

ŷk,t. (7)

We can relate term (II) in Equation (6) to our algorithm’s
actual gain on each round (dropping t subscripts):∑

i

qiŷi =
∑
i

qiei(á)
p(á)

r(á) =
p̃(á)
p(á)

r(á) ≤ Zr(á). (8)

Combining the main inequality (6) with the bounds of (7)
and (8), we have

α

T∑
t=1

ŷk,t − lnM ≤ α
T∑
t=1

Zrt(át) + κα2
T∑
t=1

∑
i

qi,tŷ
2
i,t .

(9)



Then, dividing by αZ and rearranging, we have

T∑
t=1

rt(át) ≥
1
Z

T∑
t=1

ŷk,t −
1
αZ

lnM − κα

Z

T∑
t=1

∑
i

qi,tŷ
2
i,t.

(10)
We now bound term (III), which contributes to our re-

gret. It is here that our analysis diverges from the analy-
sis of EXP4. Consider some particular t and define ē(a) =
maxi {ei(a)}. Again omitting t subscripts, we have∑

i

qiŷ
2
i =

∑
i

qi
ei(á)2r(á)2

p(á)2

≤
∑
i

qi
ei(á)ē(á)r(á)2

p(á)2

=
p̃(á)ē(á)
p(á)2

r(á)2 ≤ Zē(á)
r(á)
p(á)

, (11)

recalling r(a) ∈ [0, 1] and so r(a)2 ≤ r(a). Define

r̂(a) =
{
r(á)/p(á) if a = á

0 otherwise.

Summing the bound of Equation (11) over t, and using S ≥
st, we have∑

t

∑
i

qi,tŷ
2
i,t ≤ Z

T∑
t=1

ēt(át)
rt(át)
p(át)

≤ ZS
T∑
t=1

∑
a

ēt(a)
st

r̂t(a)

= ZS

T∑
t=1

∑
a

e0,t(a)r̂t(a) .

Note that for any a where p(a) > 0, Eá∼p[r̂(a)] = r(a). We
have qi,t > 0 for all i, and so condition (Z) implies p(a) > 0
whenever e0,t(a) > 0. Thus, applying Lemma 1 to r̂(a),

E

[
T∑
t=1

∑
a

e0,t(a)r̂t(a)

]
= G0 ≤ GOPT, (12)

where G0 is the reward for always following the advice of
the expert e0. The distribution pt is fixed given a1, . . . at−1,
so for any k,

Eát [ŷk,t | a1, . . . at−1] =
∑
a

pt(a)
ek,t(a)
pt(a)

rt(a) = ek,t · rt,

and so again using Lemma 1,

E

[
T∑
t=1

ŷk,t

]
= Gk.

By definition, E[
∑T
t=1 r(át)] = E[GALG], and so combin-

ing these expectations with Equation (10) and taking the max
over k,

E[GALG] ≥ 1
Z
GOPT −

1
αZ

lnM − καSGOPT

which proves the theorem.

We now consider bounds for specific versions of the al-
gorithm, parameterized by different choices of the Fmix func-
tion. We begin with our main theorem for NEXP(LP-Mix).

Theorem 3 Algorithm NEXP (LP-Mix), run with parameter
α = min

{
1
S ,
√

lnM/
√

(e− 1)SG
}

, has expected regret
bounded by

E[Regret] ≤ 2
√

(e− 1)SG lnM.

Proof: For the case when α = 1/S, solving
1
S
≤
√

lnM/
√

(e− 1)SG

for G shows that the gain of the best expert must be less
than

√
SG lnM and so the result follows immediately. In

the other case, we first show that, for this choice of α, the
optimum zt of the linear program is at most 1

1−γ , where γ =
Sα. To see this, let p(a) = (1− γ)p̃(a) + γe0,t(a). Because
ei(a) ≤ ē(a) and p(a) ≥ γe0,t(a) ≥ αē(a), we have

ei(a)
p(a)

≤ ē(a)
αē(a)

=
1
α
.

Thus, p is a feasible solution to the linear program. Further-
more,

p̃(a)
p(a)

=
p(a)− γe0,t(a)

(1− γ)p(a)
≤ 1

(1− γ)
which implies zt ≤ 1

1−γ .
Applying Theorem 2 and substituting into Equation (5)

with Z = 1
1−γ , we have

E[GALG] ≥ ((1− γ)− καS)GOPT −
(1− γ)
α

lnM

where κ ≡ e − 2. Dropping the (1 − γ) on the lnM term,
plugging in γ = Sα, re-arranging, and substituting G for
GOPT gives

E[Regret] = GOPT − E[GALG] ≤ (e− 1)SαG+
1
α

lnM.

Plugging in our choice of α proves the theorem.

Note that the optimal choice of α depends on S and G;
if good estimates of these are not available in advance, then
one can make conservative guesses initially. If the current
estimate is ever exceeded, then one simply restarts the al-
gorithm after re-setting γ based on doubling the exceeded
estimate. This only inflates the bounds by a constant factor.
Such approaches are standard, for details see [CBL06].

For completeness, we also derive regret bounds for
the EXP3 and EXP4 like algorithms NEXP(UA-Mix) and
NEXP(UE-Mix):

Theorem 4 Algorithm NEXP (UA-Mix), run with parameter
γ = min

{
1,
√
M lnM/

√
(e− 1)G

}
has

E[Regret] ≤ 2
√

(e− 1)GM lnM,

and NEXP(UE-Mix), using

γ = min
{

1,
√
A lnM/

√
(e− 1)G

}
,

has
E[Regret] ≤ 2

√
(e− 1)GA lnM.



Proof (sketch): For NEXP(UE-Mix), the result follows
along the lines of the previous theorem after showing α =
γ/M satisfies condition (α), Z = 1/(1 − γ) satisfies (Z),
and S ≤M . For NEXP(UA-Mix), the proof uses α = γ/A,
Z = 1/(1− γ), and S ≤ A.

Bounds In Terms of the Average st. We now prove a
bound that depends on the per-round st, rather than the max
over all rounds. We will need the following lemma about
weighted sums:

Lemma 5 Fix constants Ā ≥ ā ≥ 0. Let w1, . . . , wT ∈ R+

be a sequence of non-negative real numbers, let a1, . . . , aT ∈
[0, ā], with the additional constraint that

∑
t at ≥ Ā. Let

n = bĀ/āc. Then,∑
t

wtat ≥ MB(w, n)
∑
t

at,

where MB(w, n) is the mean of the n smallest w’s.

Proof: Assume without loss of generality that w is sorted in
non-decreasing order. Let A =

∑T
t=1 at and m = bA/āc.

The sum
∑
t wtat is minimized by setting at = ā for 1 ≤

t ≤ m and am+1 = A−mā. Thus,

T∑
t=1

wtat ≥ ā
m∑
t=1

wt + am+1wm+1

= māMB(w,m) + am+1wm+1

≥ (mā+ am+1) MB(w,m) (13)

≥ MB(w, n)
T∑
t=1

at (14)

where line (13) follows because MB(w,m) ≤ wm+1 and
line (14) usesA = mā+am+1 and MB(w,m) ≥ MB(w, n)
because m ≥ n .

Now we can prove the following Theorem, strengthening
Theorem 2. The key additional assumption is that we can
bound G0 away from zero, as this lets us show that a few
“bad” st can’t hurt us too much.

Theorem 6 Suppose G0 ≥ S, and let

S̃ =
1

MB(1/st, ns)

be the harmonic mean of the ns largest st, where ns =
bG0/Sc.

Then algorithm NEXP (LP-Mix), run with parameter

α =
√

lnM/
√

(e− 1)S̃G, has regret bounded by

E[Regret] ≤ 2
√

(e− 1)S̃G lnM .

Proof (sketch): Building on the proof of Lemma 2 and The-
orem 3, it suffices to show that

E

[∑
t

∑
i

qi,tŷ
2
i,t

]
≤ ZS̃G0 .

Algorithm LP-Mix-Solve
Define pmin(a) = αmaxi {ei(a)}
Initialize c̄← 1

repeat
Let A0 = {a : pmin(a) ≥ c̄p̃(a)}, and set

c̄←
1−

∑
a∈A0

pmin(a)∑
a∈A\A0

p̃(a)
(15)

until the update (15) produces no change in c̄

Return the distribution p(a) = max {pmin(a), c̄p̃(a)}

Figure 3: Algorithm LP-Mix-Solve.

Using Equation (11), we have∑
t

∑
i

qi,tŷ
2
i,t ≤ Z

∑
t

rt(át)
ēt(át)
p(át)

.

Recall that ēt(a) = maxi {ei,t(a)}. LetAp = {a |p(a) > 0},
and taking expectations, we get

E

[∑
t

∑
i

qi,tŷ
2
i,t

]
≤ Z

∑
t

∑
a∈Ap

rt(a)ēt(a) = Z
∑
t

gt

where gt =
∑
a∈Ap

rt(a)ēt(a). It remains to show that∑
t gt ≤ S̃G0. To see this, note that gt ≤ S and

∑
t gt ≥

G0 ≥ S. Thus, by Lemma 5,

G0 =
∑
t

1
st
gt ≥ MB(1/st, ns)

∑
t

gt .

Rearranging this inequality gives
∑
t gt ≤ S̃G0.

A Fast Algorithm for LP-Mix In this section, we present
an efficient and easy-to-implement algorithm for solving
LP-Mix. The algorithm, given in Figure 3, iteratively re-
fines an upper bound c̄ on the optimal objective function
value until it reaches a feasible (and optimal) solution. Its
performance is summarized in Theorem 7.

Theorem 7 Assuming the linear program is feasible, algo-
rithm LP-Mix-Solve runs for at most 1 + | {a | p̃(a) > 0} |
iterations before returning an optimal p for the linear pro-
gram

max
p,c

c

subject to ∀a p(a) ≥ αmax
i
{ei(a)}

∀a p(a) ≥ cp̃(a)∑
a

p(a) = 1.

Proof: Consider an arbitrary feasible solution (p, c). We first
show that our algorithm maintains the invariant c̄ ≥ c. First,
note that

c = c
∑
a

p̃(a) ≤
∑
a

p(a) = 1 .



so the invariant is true initially. For any setA0 ⊆ A, we have∑
a∈A0

pmin(a) +
∑

a∈A\A0

cp̃(a) ≤
∑
a∈A

p(a) = 1 .

Rearranging this inequality shows that (15) maintains the in-
variant.

Let c∗ be the optimal value of the objective function. We
next show that if c̄ > c∗, then applying (15) will reduce c̄.
To see this, consider the point (p̄, c̄), where

p̄(a) = max {pmin(a), c̄p̃(a)} .

Because c̄ > c∗, the point (p̄, c̄) cannot be feasible, which
implies

∑
a p̄(a) 6= 1 (the other two constraints are satisfied

by construction). Assume
∑
a p̄(a) > 1. Then, for the A0

defined from c̄,

1 <
∑
a

p̄(a) =
∑
a∈A0

pmin(a) +
∑

a∈A\A0

c̄p̃(a) .

Rearranging this inequality implies that (15) will decrease c̄.
On the other hand, if

∑
a p̄(a) < 1 then we could increase

the components of p̄ arbitrarily to obtain a feasible solution
(p̄′, c̄), contradicting c̄ > c∗.

Thus, c̄ keeps decreasing until c̄ = c∗, at which point c̄
no longer changes. This shows that our algorithm is correct
assuming it terminates.

We now consider the time the algorithm requires. Be-
cause c̄ is non-increasing, the set A0 can only grow across
iterations. Furthermore, by inspection of (15) we see that if
c̄ decreases, |A0| must have increased. Thus there can be at
most |A| iterations before c̄ does not change (at which point
the algorithm terminates). To tighten this bound, note that
every action a with p̃(a) = 0 is added to A0 on the first
iteration, so in fact the number of iterations can be at most
1 + | {a | p̃(a) > 0} |.

6 Experiments
We compare our new algorithm to EXP3 and EXP4 on a
large, real-world problem: predicting ad clicks on a search
engine. EXP3 is run directly on the experts, as discussed
in Section 2. In the “real” ad-selection bandit problem, the
search engine chooses a few (say 10) ads to show from a pre-
sumably much larger set of ads targeted at a particular query;
from this, we construct a smaller bandit problem where we
pretend only the 10 ads actually shown are relevant, and from
this set select a single ad to “show.” This simplification is
necessary because we only observe rewards (click vs. no-
click) for the ads that were shown to users. This sidesteps
a typical challenge in evaluating bandit algorithms on real
datasets: if the bandit problem was “real” then only a single
reward is observed each round, but for low-variance evalu-
ation of different bandit algorithms, the experimenter needs
access to the full reward vector.

Our datasets are based on anonymized query information
from google.com.4 From a 12 month period, we collected
queries for a particular phrase (e.g., “canon 40d”) where at

4No user-specific data was used in these experiments.

Avg. Regret
Actual Bound

Exp4 0.580 1.905
Exp3 0.143 0.303
NEXP 0.047 0.106

Table 3: Average experimental per-round regret and theoret-
ical bounds, for a problem with T = 19, 713, A = 3567,
M = 90, S = 11, and GOPT = 0.649. Regrets are averaged
over 100 runs, and 95% confidence intervals are all tighter
than ±0.004. Parameters were set and bounds computed us-
ing the true S and G; note the bound on EXP4 is vacuous.

least two ads were shown and at least one ad was clicked by a
user. We then transformed this to a prediction problem with
a feature vector x for each (query, ad) pair that was shown,
using features based on the text of the ad and the query; the
target label is 1 if the ad was clicked, and 0 otherwise.

Using the first 9 months of data, we trained a family
of logistic regression models m(λ, [a, b]), where λ gives
the amount of L1-regularization and [a, b] indicates which
months of data this particular model trained on; for example,
[a, b] = [1, 9] trains on all the data, while [9, 9] trains on only
the most recent month.

These models were fixed, and used to produce experts
for a hypothetical bandit problem played on the data from
months 10–12. Each timestep t in the bandit problem maps
to a real query that occured on google.com. On each round,
the bandit algorithm faces the problem of choosing a single
ad to show. The full setA of actions corresponds to the set of
all ads shown on the included queries over the 3 months. On
a given round, an ad/action a has reward 1 if it was shown
by the search engine and was clicked by the user, and 0 oth-
erwise.

For each model m, the bandit algorithm has access to
a deterministic expert E(m). The expert E(m) receives
side-information, namely, the query phrase and the set of
ads google showed when the query originally occured (only
these ads can have positive reward). The expert/model then
predicts the probability of a click on each ad in this set,
and recommends deterministically the action which received
the highest prediction. For example, if ads (a1, a2, a3)
were shown on the query for round t, and model m pre-
dicts (0.05, 0.02, 0.03) respectively, then the expert E(m)
recommends the distribution (1, 0, 0).

Our goal is not to fully capture the complexity of decid-
ing which ads to show alongside search results. In partic-
ular, we ignore the effect of the position in which ads are
shown, the auction typically used to rank and price the ads,
the fact that multiple ads are usually shown, and the fact that
the set of available actions would typically be a larger set
(e.g., all ads targeted at the query from advertisers with re-
maining budgets). However, we believe our setup captures
enough of the essence of the problem to be useful for eval-
uating how well different bandit algorithms might apply to
such real-world problems.

We report results for a representative dataset, based on
queries for “canon 40d”. About 200,000 training examples
were selected from the 9-month training period, on which
we trained 90 models based on different combinations of
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Figure 4: Effect on regret of varying γ for EXP3 and α for
NEXP. The Y -axis is scaled so that the top of the plot cor-
responds to the performance of the worst expert; NEXP out-
performs EXP3 for all parameters. The parameter values are
given as multiples of the parameters used in Table 3.

the regularization and date-range parameters. From the fol-
lowing 3-months of data, we formed a bandit problem with
19,713 timesteps and 90 experts.

Table 3 shows the experimental average per round regret
along with the corresponding bound. The parameters were
chosen based on Theorem 3 for NEXP and the correspond-
ing results from [ACBFS02] for EXP3 and EXP4, using the
true values for S and G—in practice good estimates of these
are likely to be available in advance; for example S ≤ 11
follows immediately from the side information present in our
example domain, since this is the maximum number of ads
google.com shows on a single query. Figure 4 shows the ef-
fect of using different parameters than those recommended
by the regret bounds. We explored the parameter space by
multiplying the parameter settings used for Table 3 by multi-
pliersm ∈ [0, 10], discarding values that produced infeasible
parameter settings (γ > 1, α > 1/S). The total number of
actions available in this problem is so large that EXP4 per-
forms hopelessly badly, as indicated in Table 3, and so it is
omitted from Figure 4. In fact, the theory suggests EXP4
should get γ = 1 for this problem (always play uniformly
random actions); we experimented with different parame-
ter settings, and the best results were effectively for γ = 0,
which essential plays a random expert. 5

These experiments demonstrate that the optimized explo-
ration strategy used by NEXP is not only a theoretical im-
provement useful in deriving tighter regret bounds, but also

5It is possible to run EXP4 with uniform exploration on the ac-
tions that some expert recommends with positive probability. The
standard analysis of EXP4 does not apply to this modified algo-
rithm, however. And, while this algorithm can easily be analyzed
along the lines of Theorem 3, it fails immediately if one introduces
a single “unsure” expert which puts some small probability on each
action.

an important algorithmic improvement that can produce sig-
nificantly lower regret in real-world applications.

7 Conclusions
We have introduced NEXP, a new algorithm for the ban-
dit problem with expert advice. NEXP provides a bound
of
√
GS logM on expected cumulative regret, where S ≤

min {A,M} (in practice, S can be much smaller). A refined
bound shows that a certain average S̃ can be used in place of
S. Experiments demonstrated that on a realistic problem of
significant real-world importance, our improved algorithms
dramatically outperform previously published approaches.
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